Universität Dortmund technische universität Fak dortmund

Fakultät für Mathematik IAM

Numerical Benchmarking of Fluid-Structure Interaction between elastic object and laminar incompressible flow

S. Turek, J. Hron, M. Razzaq, H. Wobker TU Dortmund

with support by

M.Schäfer, M. Heck, M. Krafczyk, J. Tölke, S. Geller, H.-J. Bungartz, M. Brenk, R. Rannacher, T. Dunne, W. Wall, A. Gerstenberger, E. Rank, A. Düster, S. Kollmannsberger K.-U. Bletzinger, R. Wüchner, A.Kupzok, T. Gallinger, U. Israel

Key question

- Accurate and robust description of the interaction mechanisms w.r.t. highly dynamical and nonlinear behaviour and significant geometry changes?
- > That includes:
 - Quality of different discretization techniques (FEM, FV, FD, LBM, resp., beam, shell, volume elements) for FSI?
 - Robustness and numerical efficiency of the integrated solver components?
 - Coupling mechnisms?

- <u>1st step</u>: Identification of appropriate **FSI** setting for numerical benchmarking
- <u>**2nd step</u>**: **FSI** benchmark setting due to experimental studies</u>

<u>**3rd step:**</u> Extension to **FSI**-Optimisation benchmark

Requirements for numerical FSI benchmarking

Mainly based on the successful DFG flow around cylinder benchmark

- Realistic materials
 - Incompressible Newtonian fluid, laminar flow regime
 - Elastic solid, large deformations
- Comparative evaluation
 - Setup with periodical oscillations
 - Non-graphically based quantities
- Computable configurations
 - Laminar flow
 - Reasonable aspect ratios
 - Simple geometry (2D)

Computational domain

Detail of the submerged structure

 $A(t=0) = (0.6, 0.2), \quad B = (0.15, 0.2), C = (0.2, 0.2)$

Boundary and initial conditions

- **Inflow** Parabolic velocity profile is prescribed at the left end of the channel
- **Outflow** Condition can be chosen by the user, assuming zero reference pressure (*stress free* or *do nothing*)
- **otherwise** The *no-slip* condition is prescribed for the fluid on the other boundary parts. i.e. top and bottom wall and cylinder
- Initial Zero velocity in the fluid and no deformation of the structure + smooth increase of the inflow profile

Fluid and structure properties

> **Incompressible** fluid with density ρ^{f}

Elastic material with density ρ^s , $F = I + \nabla u^s$, $J = \det F$: St. Venant – Kirchhoff material

$$\rho^{s} \frac{\partial^{2} u^{s}}{\partial t^{2}} = \operatorname{div}(\sigma^{s} F^{-T}) \qquad \text{in } \Omega^{s}$$
$$\sigma^{s} = \frac{1}{J} F(\lambda^{s} (\operatorname{tr} E) I + 2\mu^{s} E) F^{T}$$
$$E = \frac{1}{2} (F^{T} F - I)$$

Suggested material parameters

solid		fluid
ρ^s density		ρ^{f} density
ν^{s} Poisson ratio		V^f kinematic viscosity
μ^s shear modulus		
Parameter	polybutadiene & glycerine	polypropylene & glycerine
$\rho^{s}[10^{3} \text{kg/m}^{3}]$	0.91	1.1
\mathcal{V}^{s}	0.50	0.42
$\mu^{s}[10^{6}\mathrm{kg/ms^{2}}]$	0.53	317
$\rho^{f}[10^{3} \text{kg/m}^{3}]$	1.26	1.26
$v^{f} [10^{-3} \text{ m}^{2} / s]$	1.13	1.13

Parameter	FSI1	FSI2	FSI3
$\rho^{s}[10^{3}\mathrm{kg/m^{3}}]$	1	1	1
$\boldsymbol{\mathcal{V}}^{s}$	0.4	0.4	0.4
$\mu^{s}[10^{6}\mathrm{kg/ms^{2}}]$	0.5	0.5	2.0
ρ' [10 [°] kg/m]	1	1	1
$v^{f}[10^{-3}\text{m}^{2}/s]$	1	1	1
\overline{U} [m/s]	0.2	1	2

Parameter	FSI1	FSI2	FSI3
$\beta = \frac{\rho^s}{\rho^f}$	1	1	1
v^{s} ρ^{s}	0.4	0.4	0.4
Ae = $\frac{E^{s}}{\rho^{f}\overline{U}^{2}}$	3.5×10^{4}	1.4×10^{3}	1.4×10^{3}
$\operatorname{Re} = \frac{\overline{U}d}{\nu^{f}}$	20	100	200
\overline{U} [m/s]	0.2	1	2

Quantities of interest

> The position A(t)=(x(t), y(t)) of the end of the structure\item pressure difference between the points A(t) and B

$$\Delta p^{AB}(t) = p^{B}(t) - p^{A(t)}(t)$$

Forces exerted by the fluid on the whole body, i.e. lift and drag forces acting on the cylinder and the structure together

$$(F_D, F_L) = \int_{S} \sigma n dS = \int_{S_1} \sigma^f n dS + \int_{S_2} \sigma^{f|S} n dS = \int_{S_0} \sigma n dS$$

- Frequency and maximum amplitude
- Compare results for *one* full period and 3 different levels of spatial discretization *h* and 3 time step sizes Δt

1.Step: CFD tests for validation

	CFD1	CFD2	CFD3
ρ^{f} [10 ³ kg/m ³]	1	1	1
$v^{f}[10^{-3}m^{2}/s]$	1	1	1
\overline{U} [m/s]	0.2	1	2
$\operatorname{Re} = \frac{\overline{U}d}{v^{f}}$	20	100	200
\overline{U} [m/s]	0.2	1	2

Test	Drag	Lift
CFD1	14.29	1.119
CFD2	136.7	10.53
CFD3	439.4±5.618 [4.395]	-11.89 ± 437.8 [4.395]

2.Step: CSM tests for validation

	CSM1	CSM2	CSM3
$\rho^{s}[10^{3} \text{kg/m}^{3}]$	1	1	1
ν^{s}	0.4	0.4	0.4
$\mu^{s}[10^{6}\mathrm{kg/ms^{2}}]$	0.5	2.0	0.5
$g[m/s^2]$	2	2	2
$\beta = \frac{\rho^s}{\rho^f}$	1	1	1
V^{s}	0.4	0.4	0.4
$E^{s}[10^{6}kg/ms^{2}]$	1.4	5.6	1.4
$g[m/s^2]$	2	2	2

test	ux of A ${mag}10^{-3}$ m]	uy of A [×10 ⁻³ m]
CSM1	-7.187	- 66.10
CSM2	-0.4690	-16.97
CSM3	-14.305 ± 14.305 [1.0995]	- 63.607 ± 65.160 [1.0995]

FSI1: steady, small deformations

parameter	FSI1	FSI2	FSI3
$\rho^{s}[10^{3}\mathrm{kg/m^{3}}]$	1	1	1
\mathcal{V}^{s}	0.4	0.4	0.4
$\mu^{s}[10^{6}\mathrm{kg/ms}^{2}]$	0.5	0.5	2.0
$\rho^{s}[10^{3} \text{kg/m}^{3}]$	1	1	1
$v^{s}[10^{-3}m^{2}/s]$	1	1	1
$\overline{U}[m/s]$	0.2	1	2

parameter	FSI1	FSI2	FSI3
$\beta = \frac{\rho^s}{\rho^f}$ V^s	1	1	1
	0.4	0.4	0.4
Ae = $\frac{E^s}{\rho^f \overline{U}^2}$	3.5×10^4	1.4×10^{3}	1.4×10^{3}
$Re = \frac{\overline{U}d}{v^{f}}$ $\overline{U}[m/s]$	20	100	200
	0.2	1	2

	ux of A [$\times 10^{-3}$ m]	uy of A [$ imes 10^{-3}$ m]	drag	lift
FSI1	0.02270493	0.8208773	14.29426	0.763746

FSI2: large deformations, periodical oscillations

Test	ux of A [$\times 10^{-3}$ m]	uy of A [$\times 10^{-3}$ m]	drag	lift
FSI2	$-14.85 \pm 12.70 [3.86]$	1.30±81.7[1.93]	$215.06 \pm 77.65 [3.86]$	0.61±237.8[1.93]

FSI3: large deformations, complex oscillations

Status of numerical benchmarking

Subtests for validating CFD and CSM components are available:

- CSM1-3: "OK"
- CFD1: "easy" \rightarrow *Re=20*
- CFD2: (also) "easy" $\rightarrow Re=100$
- CFD3: "non-trivial" \rightarrow *Re=200*
- FSI settings with desired properties:
 - FSI1: "simple" \rightarrow for validation only
 - FSI3: "hard" \rightarrow due to CFD3
 - FSI2: fully oscillating while CFD2 (≈same Re number!) is steady
 - \Rightarrow Excellent check for interaction mechanisms
- Evaluation and comparison of mathematical and algorithmic components everybody is invited to participate.

FSI4: Benchmarking of experimental data

> Flustruc experiment, Erlangen, http://www.lstm.uni-erlangen.de/flustruc/

fluid parameters	
density of the fluid kinematic viscosity	1.05e-6 [kg/mm^3] 164.0

solid parameters	
density of the beam (steel)	7.85e-6[kg/mm^3]
density of the rear mass	7.8e-6 [kg/mm^3]
shear modulus	7.58e13
poisson ratio	0.3

FSI4: New configuration

- + Laminar Flow (glycerine)
- + "2D" flow and deformation
- Rotational degree of freedom
- Large aspect ratio (thin structure),
- Corners

Laminar: Velocity=1.07 m/s, Re=140

Zoomed

Flustruc experiment, Erlangen

FSI4: Plots

FSI4: Experiment and numerical simulations

Laminar: Velocity=1.07 m/s, Re=140

Experiment

Numerical

FSI4: Experiment and numerical simulations

Laminar: Velocity=1.45 m/s, Re=190

Experiment

Numerical

FSI Optimization

- > The main design aims could be
 - I) Drag/Lift minimization
 - II) Minimal pressure loss
 - III) Minimal nonstationary oscillations
- > To reach these aims, we might allow
 - 1. Boundary control of inflow section
 - 2. Change of geometry: elastic channel walls or length/thickness of elastic beam
 - 3. Optimal control of volume forces
- > Optimal control of nonstationary flow might be hard for the starting
- Results for the moment are combination of I)-III) with 1)-3)

Lift $\neq 0$ \rightarrow Aim: minimize $(lift^2 + \alpha V^2)$

w.r.t V1, V2. V1 velocity from top V2 velocity from below

FSI OPT 1

Level 2

TESTS for FSI 1 (Boundary control)

Level 1

					2010.2			
α	lter steps	extreme point	drag	Lift	lter steps	extreme point	drag	Lift
1e0	57	(3.74e-1,3.88e-1)	1.5471e+01	8.1904e-1	59	(3.66e-1,3.79e-1)	1.5550e+01	7.8497e-1
1e-2	60	(1.04e0,1.06e0)	1.5474e+01	2.2684e-2	59	(1.02e0,1.04e0)	1.5553e+01	2.1755e-2
1e-4	73	(1.06e0,1.08e0)	1.5474e+01	2.3092e-4	71	(1.04e0,1.05e0)	1.5553e+01	2.2147e-4
1e-6	81	(1.06e0,1.08e0)	1.5474e+01	2.3096e-6	86	(1.04e0,1.05e0)	1.5553e+01	2.2151e-6

Outlook

Further examples might be:

- 1. minimize $(lift^2 + \alpha V^2)$ for deformed case
- 2. Pressure loss minimize: minimize $(p_{in} p_{out})$

w.r.t elastic deformation of the wall or w.r.t geometrical and material properties of beam