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Numerical simulation of interfacial or two-phase flows
with immiscible fluids poses some challenging problems

Issues

©

Accurate interface tracking

@ Mass conservation

©

Resolution of discontinuous fluid properties

©

Treatment of interfacial boundary conditions

©

Overall numerical efficiency?
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Numerical simulation of interfacial or two-phase flows
with immiscible fluids poses some challenging problems

Issues

How can we devise an efficient solution algorithm
which addresses these issues?
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Equations governing the flow of
incompressible fluids
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@ The Navier-Stokes equations govern incompressible fluid flow

o) (G + @ V) = T T (T (Vu)T) + ol
V-u

0




) -l
ial Flows -

@ The Navier-Stokes equations govern incompressible fluid flow

Ou T
px) (5, + W VIu) = =Vp+ V- (u(x)(Vu+(Vu)")) + p(x)s

Vu = 0
with varying density p(x) and viscosity p(x) fields
Interfacial Boundary Conditions
o Direct interface conditions

[ullr =0, —[—pl+u(Vu+ (Vu)")]| - =okh

@ Implicit conditions by weighted volume forces

fst|r = okf




L Time Disceization g

Given u” and time step k = At, then solve for u = u"*! and p = p"*!

u—u"

p(x) —+ 0=V (u(x)(Vu+ (Vu)")) + p(x)(u-V)u] + Vp = £
V:u = 0
with right hand side
=0 (008" + ) 4 (1 0) (00" " + )

= (=) [V (1()"(Vu" + (Vu")T)) + p(x)"(u" - V)u"]

The parameter 6 is chosen according to the time stepping scheme,
6 = 1 for backward Euler, § = 1/2 for the Crank-Nicolson scheme,
or varying 6 according to a Fractional-step-6-scheme
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@ Any method can in general be used to discretize the equations in
space (FDM, FEM, FVM)

@ We currently prefer to use the efficient nonconforming rotated
Q1Qp finite element spaces

-

o In the future we plan to move to the highly accurate Q,P; basis
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Given u” and time step k = At, then solve for u = u"*! and p = p"*!

SutkBp = fril
B™uw = 0

with

Su=[M, + 0kN(u)]u

N(v) =~V - (u(x)(Vu + (Yu)T)) + p(x)(u - T)v

B and BT are discrete counterparts to the grad and div operators
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{ Su+tkBp = frt

Solve the system

B™uw = 0

with the discrete projection method

o Sii = f1— kBpn

BTa

x|=

o f, =
o B'S™'Bq ~ B"M,[Bq = Pq = f,
° pn+1 — Pn+04Rq+04DMp_1ﬂn

o u™l = &i— kM, !Bq
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We prefer to use an operator splitting approach

Given u” and p" do for time level n+ 1:

@ Solve the Navier-Stokes equations, with the interface given at ",
to obtain u”*! and p"t!

Q (Optionally perform grid adaptation)

@ Move the interface according to the given physics

@ Perform post-processing; e.g. computation of normals and curvature
Q (Optionally perform grid adaptation)

Q Reiterate time loop if deemed necessary (Goto 1)



Interface Tracking




L nterface Tracking g

The tasks of an interface tracking algorithm are:

o Correctly propagate the interface given a velocity field
@ Minimize additional mass loss due to the algorithm itself

o Enable easy and quick identification of both the interface and
the different phases

©

Enable easy reconstruction of interface normal vectors and curvature

©

Be relatively easy to implement and efficient to solve

[

Ideally treat coalescence and break-up automatically




Two main schools of thought...

Eulerian

Lagrangian
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Which method should we use then?

]

Pure Lagrangian Approach

©

Front Tracking Method

[

Segment Projection Method
Marker and Cell (MAC)

Volume of Fluid (VOF)

Phase Field Method

Level Set Method (LS)

Particle Level Set Method (PLS)
Combination ( LS-VOF )

©

©

(<]

©

(*]

©
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Our selection criteria

o Eulerian, simplifies implementation

o Allow for discretization and solution with fast and efficient PDE
solver techniques

@ Handle coalescence and break-up automatically

@ Allow for global reconstruction of normals and curvature
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Our selection criteria

Level Set Method




Level Set Method
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The Level Set Method

The general idea is to embed an interface in a higher dimensional
function ¢. The interface movement is then governed by a standard
transport equation

9¢

5 TV Ve=0

with initial condition ¢(x =T,t =0) =0
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The Level Set Method - Properties

@ A smoothness constraint on the level set field relaxes the
requirements on the solver

@ The natural choice is to restrict the level set field to be a signed
distance function
Vel =1
@ At any given point the magnitude of the level set function will thus
represent the shortest distance to the interface




The Level Set Method - Advantages

*]

The smooth LS function allows for higher order discretization
techniques to be employed

The governing transport equation can be solved with efficient
standard solvers

The interface is implicitly but also exactly defined
Break up and coalescence is treated automatically

Geometrical quantities such as normals and curvature can be
reconstructed globally
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The Level Set Method - Problems

@ The velocity field v convecting the level set function can not in
general be expected to maintain ¢ as a distance function

¢ _
5 TV V=0

o The distance function property is only preserved if Vv -V¢ =0

o Stretching and folding of the level set function can cause eventual
solver failure

T
y A
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The Level Set Method - Problems

Periodic Reinitialization




Reinitialization




S Reitlztion Methods

A stretched and folded level set function can be periodically reinitialized
in order to maintain the distance function property




S Reitlztion Methods

Several methods exist for constructing a distance function from given
interface data. The simplest ones use interface approximations for the
reconstruction

@ Redistancing via " Brute Force”

@ Algebraic Newton approach

The more complex algorithms deal with solving the Eikonal equation
|[Vé| = F on a fixed mesh

@ The Fast Marching Method
o The Fast Sweeping Method
o PDE Based redistancing

@ Branch and Bound approach to redistancing
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The different methods naturally have their respective strengths and
weaknesses
o Brute force method
-+ Very robust
- Scales quite badly, O(N * M)
o Algebraic Newton Approach
-+ Potentially very fast, O(N)

- Convergence dependent upon approximate distance function
@ The Fast Marching Method

-~ Easy to implement in an unstructured context

- Needs a heap structure to sort marching order, +O(logN)
@ The Fast Sweeping Method
-+ Potentially very fast, O(N)

- Difficult to generalize to fully unstructured grids
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@ Approximate the interface curve with line segments

@ Calculate the minimum distance to all segments for each point of
interest

@ Algorithmic complexity O(N x M)

o....---uu!!!&i‘.: ..........................
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@ Solve the following equation for each grid point xg

Lix) = [ V\Il(x)wx()g( ~x0) ] =0

@ where W is a given approximate distance field

o Algorithmic complexity is O(N)
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L(x) = [ (x — Xo)u\luy()j 8 = Yo)V¥x ]

J(x) = % = Vi Wy + (x = x0) Wiy — (¥ = %0)Vix ] !
ox UV, -V, +(y—y)Vsy +(x—x)V,

@ Typical Newton iteration

XK1 = xk — §J71(xF)L(x¥)

@ New distance is given by

B(x0) = |x — xof
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o Update grid points in order of increasing distances with the help of a
difference formula

@ The solution will thus correspond to an upwind solution

o Algorithmic complexity O(NlogN)
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@ Update grid points in predetermined characteristic directions to
capture the propagation of information

o Uses the same difference formula as the fast marching method

o Algorithmic complexity O(N)



A difference approximation to the Eikonal equation can be calculated as

PVo(x) = v(x) o )
{ IVo(x)| =1 = v(x)"(PP")v(x) =1,

given Ny, known distance values. Using the identities
vi(x) = ¢(x)a;i + bj, Q= (PPT)!
gives the following relation for the unknown distance value ¢(x)
(a" Qa)p(x)? + (2a” Qb)p(x) + (BT Qb —1) =0

where the coefficients in the differentiation formulas are

G I U C )
o2 ' o Bolx;
PO =2 B = 2 P Ve(x)
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o Since the difference update requires simplexes to work with
each quadrilateral is subdivided into triangles

AV

o This subdivision lessens the upwinding restriction




_ B =
~

o The stationary limit of the following PDE can also be used to apply
reinitialization to a given approximate distance field ¢g

99" Vo*

5 ta Vo™ = S(¢o), (¢°)|V¢*|

@ where S(¢o) is an appropriately chosen sign function
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A non-trivial test case was chosen to represent a typical level set
computation with the following properties

@ Include both smooth regions and shocks
@ Exact solution available:

d(x) = min(2.25 — y, /x> + (y — 1)2 —




@ Different degrees of grid distortion was imposed to test the
unstructured capabilities of the algorithms

@ The number of grid points was varied between 400 — 2.4 - 10°
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250 T T
== Fast marching o(1) - 0% :
=-= Fast marching o(1) - 10%
= Fast marching o(1) - 25%
=== Fast marching o(2) - 0%
Fast marching 0(2) - 10%
200H = Fast marching o(2) - 25% 4
= Algebraic Newton - 0%
=-= Algebraic Newton - 10%
= Algebraic Newton — 25%
- Brute force - 0%
+ Brute force - 10%
__ 150 - Brute force - 25% B
92,
@
E
=
o)
o
)
100 b
50~
0=
0

Number of vertices x10°
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—— Fast marching o(1) - 0%
107%™ Fast marching o(1) - 10%

+ = Fast marching o(1) - 25%
+v++ Fast marching o(1) - Unstr
—— Fast marching o(2) - 0%
=+= Fast marching o(2) - 10%
-~ Fast marching o(2) - 25%
1+ Fast marching o(2) - Unstr
= Algebraic Newton — 0%

10 '£| =-= Algebraic Newton — 10%
= Algebraic Newton — 25%
1o+ Algebraic Newton — Unstr
- Brute force - 0%
Brute force - 10%
- Brute force - 25%
Brute force — Unstr
T

Relative error - | |

10° 10° 10° 10° 10° 10
Number of vertices
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Reinitialization

@ The fast marching method scales very well with increasing grid
density

o Fast marching is very fast even for very dense grids, O(10) seconds
for 2.4 - 10° grid points

o The second order update only costs marginally more than the first
order version

@ The fast marching method is therefore our preferred algorithm!
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©

Employs methods from computer graphics (Ray Tracing, Collision
Detection)

o Interfaces are described by NURBS curves or approximations of
NURBS curves (point sampling)

@ Hierarchical data structures (bounding volume hierarchies) supply
lower and upper bounds for the minimum distance

By repeated refinement the bounds converge against the solution

[
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Traversal of the bounding volume hierarchy to find the solution.
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o Algorithmic complexity O(NlogM) (N = #grid points, M =
#interfaces)

@ Accuracy is dependent on the quality of approximation (#point
samples)

@ Accuracy can be improved by Newton-lteration — increased runtime

o Hardware acceleration (parallelization, SIMD optimization, ...)




0 Gomparison - P 548

Grid Points | CPU FMM [s] e CPU BAB [s] e
24576 0.05 0.247E-03 0.02 0.704E-04
98304 0.24 0.752E-04 0.07 0.816E-04
393216 1.18 0.221E-04 0.28 0.612E-03
1572864 6.47 0.638E-05 1.09 0.158E-02

Table: Fast Marching Method vs Branch and Bound

Grid Points | CPU FMM [s] e CPU BABN [s] e
24576 0.05 0.247E-03 0.04 0.388E-06
98304 0.24 0.752E-04 0.17 0.308E-05
393216 1.18 0.221E-04 0.60 0.159E-05
1572864 6.47 0.638E-05 4.52 0.194E-05

Table: Fast Marching Method vs Branch and Bound with Newton-lteration
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Treatment of Surface Tension
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Different time scales are important in interfacial flows

(e)
=2 (g)L ~1 = A~ \/Z
Vel Ar®) el g

_pU@ ol () o, ML
Ca = . = A (ca) ~1 = Atphys ~ ?
tphysa
St = —pL2 ~1 = At(z) ~ p_L2
v phys
,uAtlgh}),s 1%
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Gravitational time step restriction

VgAtnum < 1

S adg) -
Vg = gAt(g)

num

Capillary time step restriction
Ves Al
Yalltun < 1

_ 5/,0'/'6;,
aca -

P 3/2
z e = Atgga),:,/;h/
(ca) o
Ves = acaAt(Ca) = &t

num?
num —

h2p

%L
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@ Interfacial or two-phase flow where capillary surface tension forces
are dominant poses some challenging problems

o Surface tension effects are generally modeled both explicitly in time
and space leading to the capillary time step restriction

(p) b

Atle) <

num

2no
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@ Interfacial or two-phase flow where capillary surface tension forces
are dominant poses some challenging problems

o Surface tension effects are generally modeled both explicitly in time
and space leading to the capillary time step restriction

h3
At(ca) <p>
num < 271_0_
Goal

Remove the capillary time step constraint
while retaining a fully Eulerian interface description
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Surface tension effects can essentially be included in the Navier-Stokes
equations in two different ways

@ Explicit interface reconstruction and direct evaluation

fSt = /Uﬁﬁ dr
r

o Implicit incorporation via the continuum surface force (CSF) model

for :/anﬁé(l') dQ
Q



Definition (Tangential gradient)

The tangential gradient of a function f, which is differentiable in an
open neighborhood of T, is defined by

Vi(x) = Vf(x) — (Aa(x) - Vf(x))i(x), xeTl

where V denotes the usual gradient in RY

Definition (Laplace-Beltrami operator)

If f is two times differentiable in a neighborhood of T', then we define
the Laplace-Beltrami operator of f as

Af(x) =V - (Vf(x)), xeTl
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Theorem

A theorem of differential geometry states that
éidr = ki

where k is the mean curvature and idr is the identity mapping on I’

Derivation

First take surface tension force source term, multiply it with the test
function space v, and apply partial integration

f: = /cmﬁ-v dr = /U(Aidr)-v dr =
r r
= —/aZidr-Zv dr—i—/a&yidr-v d~
r vy
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@ Boundary integrals can be transformed to volume integrals
with the help of a Dirac delta function 6(I", x)

fo = /Q okv (M%) dx = /Q o(Bidr) - (v3(T, %)) dx

= —/oyidr'y(vé(r,x)) dx = —/oyidr-ZV 5(T, x) dx
Q Q

@ Application of the semi-implicit time integration

=174+ At u™
yields
fo = - / oV (idr)" - Vv §(1", x) dx
Q

- At"+1/ oVu"t . Vv (1", x) dx
Q
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o Regularization of §(I', x) can easily be accomplished with
the help of a distance function

0e(T, x) = dc(dist(T, x)),

where dist(l, x) gives the minimum distance from x to I’

o The regularized continuous delta function &, is defined as
L
_J cox/e) |x|<e = mh,
0c(x) = { 0 Ix| >e¢ = mh,

where h is the mesh spacing which together with the constant m
defines the support € of the regularized delta function,
@ is a characteristic function determining the kernel shape
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The surface tension forces are finally given by ...
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R implicit Surface Tension Force Expresir

Implicit Surface Tension Force Expression

fo = —/ o de(dist(T",x)) V(idr)" - Vv dx
Q

—At”+1/ o de(dist(T",x)) Yu" . Vv dx
Q
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A number of key points makes the level set method an ideal candidate for
interface tracking algorithm when implementing the proposed surface
tension force expressions

@ Distance functions are in general readily available allowing for
simple construction of the regularized Dirac delta functions

@ Geometrical quantities such as normal and tangent vectors can be
reconstructed globally, eliminating the need to extend these
quantities from the interface separately

@ The level set method can be coupled with the finite element method
giving access to the variational form of the equations
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Method Validation

Numerical Examples
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A perfect circular static bubble should follow the Laplace-Young law

(o
Pinside = Poutside + 7

(a) CSF (b) CSF-LBI

Figure: Pressure cut-line for four different mesh sizes.



B Esampl, Osilting Euie (€SP
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OO OO
o0 Co 0

TIME

Wialele

Figure: Evolution of an oscillating bubble; standard explicit CSF method.



BEkample, Osilting Euie (CSF-LE1)

'Ie|j0 1000
YO 0000
IS0 OO O

TIME
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Figure: Evolution of an oscillating bubble; semi-implicit CSF-LBI method.



S Esample, Risng Bubbl (C5F)

O

t=0.5

O
O

QQQQQQ

| TIME >

Figure: Evolution of a rising bubble with the standard explicit CSF method.




R Esample, Risng Bubbl (CSF-L5)

O | O

=05

O ©

At

O

; O
;“QOOQ

| TIME >

Figure: Evolution of a rising bubble with the semi-implicit CSF-LBI method.
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A new implicit surface tension variant has been proposed which relaxes
the capillary time step restriction imposed on explicit implementations

Additional advantages

o Fully implicit in space

@ Is easily implemented when using the level set method
together with finite elements

o Explicit computation of curvature not necessary

o Conceptually identical algorithm in 3D
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Grid Deformation Techniques




L Gid Deformarion g

The grid deformation process involves constructing a transformation ¢,
from the computational space £ to the physical space x = ¢(&)

There are two basic types of grid deformation methods

@ local based, generally computing x by minimizing a variational form

o velocity based, computing the mesh velocity v = x; (Lagrangian)

The latter method has several advantages:

@ only linear Poisson problems on fixed meshes are needed to be solved
@ a monitor function may be obtained directly from error distributions
@ mesh tangling can be prevented quite easily

@ the data structure is always the same as that for the starting mesh



L Gra Deformation g

Given the area distribution of the undeformed mesh g(x), and a monitor
function/size distribution f(x) for the target grid, then the
transformation ¢ can be computed via the following four steps:

Q Compute the scale factors ¢r and ¢, for the given monitor function
f(x) > 0 and the area distribution g using

1 1
dx=c, | ——dx =9,
Cf/nf(x) x Cg/gg(x) =19

where, Q C R” is a computational domain. Let f and & denote the
reciprocals of the scaled functions f and g, that is,

~ ¢ ¢

F="L g

F £ %



@ Compute a grid-velocity vector field v : Q — R" by satisfying the
following linear Poisson equation

—div(v(x)) = f(x) —&(x), x€Q, and v(x) - n=0, x e dQ,

where n being the outer normal vector of the domain boundary 942,
which may consist of several boundary components

@ For each grid point x, solve the following ODE system

8<pé>: t) _ ne(x,t),t), 0<t<1, (x,0)=x,
with
n(y,s) = ) y€Q, sel0,1]

sf(y) +(1-9)&(y)

@ Get the deformed grid points via ¢(x) := ¢(x, 1)



L Gra Deformarion ad

Monitor function

o In the case of interfacial flow, then the monitor function f can be
constructed from a distance function, giving the shortest distance to
the interface, and possibly also weighing in the interface curvature x

f=f(lo(x)],5(x))

@ This makes the level set method ideally suited to use as interface
tracking algorithm, since both the distance function and curvature
are defined globally




ation

Question

Does the increase in accuracy justify the increase in CPU time?
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Figure: Pressure field for a static bubble with and without grid deformation



Figure: Velocity error for a static bubble with and without grid deformation

’ GridLevel | 3 | 4 | 5 | 6
Tensor product grid
U error 37-1072[1.1-102[1.0-102 [ 56-103
P error 5.583% 1.433% 0.212% 0.037%
Adapted grid
U error 20-1072]73.-103[35-10°]1.8-103
P error 2.969% 0.261% 0.042% 0.013%
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Pressure Separation Algorithms
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The pressure separation algorithm is designed for flow situations which are
dominated by the pressure gradient or higher order pressure derivatives.

@ A priori error estimate for Navier-Stokes problem
hlu —uplie +u—usloq < CH* {Julksr0 + Slplka}

@ Modified problem with pressure separation (Ganesan & John)

%—Fqu—uAu—i—Vﬁ:f—Vpsep (P=pP— Psep)
@ New a priori error estimate
hlu—uplio+u—uplyg < CA {{ulkira + £lp — Pseplrn}
o Improvement if L|p|, o dominant and |p — pseplk.0 < [Pk,

How relevant for real CFD simulations ?



S Prssure Separaton Algrts

o Stationary case

o Remarks

1. Compute (up, ps), as finite element solution for
the original Navier-stokes equations

2. Compute psep p = I(pn), interpolation of pp, such
that |pn — Psep,h|k < |Phlk

3. Compute (Usep,h, Pn), the finite element solution of
the modified Navier-Stokes equations with V pep 4 as
right hand side:

(ﬁha bh) = Nsil(f - vPsep,h)
4. Set up = ugep p and pyp = pp + P

¢ This algorithm requires almost double CPU times
w.r.t solving the original problem.

O Psep,n can be deduced from pyp, in multigrid.

O If pp was approximated by piecewise constant
function, psep.p in the second step can be taken as its
linear interpolation (see Ganesan & John (2005) ).



S Prssure Separaton Algrts

o Nonstationary case

@ Remarks

1. Compute pg,, , == I(pZ‘l), interpolation of p,’;_l

2. Compute (ug,, ,, Pp), the finite element solution of
the modified Navier-Stokes equations with Vpg, , as

right hand side
(iih, p) := NS™H(f" — VL, 1)

3. Setup =ul,,, and p§ = p; ' + B}

¢ This algorithm is simple.
QO Pgep,p In the first step can be taken as high order

exrapolation, as for instance pZ,, , = /(2ph " — pp?).



ble Test

Cells Cells
Vectoh./!)e:) a3 Vecloh./!)e:) o5
0.00353 0.00779
—0.00314 ~0.00692
—0.00275 ~0.00608
—0.00236 ~0.00519
—0.00196 ~0.00433
—0.00157 ~0.00346
—0.00118 ~0.0026
—0.000785 ~0.00173
0.000393 0.000865
0 0

Figure: Velocity field for a static bubble with and without PSepA



Edge-oriented FEM Stabilization




B Edgerented Stablzaion FeM

o Based only on the “smoothness” of the discrete solution we
add the following jump term

> max(yvhe, v hz) / [Vu][Vv]do  withv,~v* € [0.0001,0.1]
edge E E

@ only one generic stabilization takes care of all instabilities

1. insatisfaction of Korn's inequality (yvhe)
2. convection dominated flow for medium and high
Reynolds number, even for pure transport (y*h2)

@ independent of the local Reynolds number and finite element space
Can EO-FEM solve the spurious velocity problem ?

If so, how to generalize the mesh-dependent penalty
parameter ?
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t: Errors on an equidistant mesh
Level [pi—pol/(Z)  u—unl, u—uplyy  N/MG T [pin— Pourl /(%) u—unfy lu—unl;,  N/MG
without pressure separation with pressure separation
without edge-oriented FEM
4 0.954349 0.00260818914  0.207652409 5/1 0.9923660 0.00155247296  0.118638289 5/1
5 0.979682 0.00097177495  0.153784641 5/1 0.9975795 0.00060710946  0.0917261177 5/1
6 0.992961 0.00036200902  0.112884238 4/1 1.0012544 0.00023717308  0.0694932176 4/1
7 0.997166 0.00013827272  0.082118238 4/1 1.0010944 9.7099099E-05  0.0514852452 4/1
with edge-oriented FEM with global constant penalty parameter v = 1d1
4 0.951601 3.340218E-05  0.0025474881  6/1 0.9520738 3.330621E-05  0.00256013778  6/1
5 0.979383 1.086225E-05  0.0016437028 5/1 0.9792187 1.214066E-05  0.00181935191 5/1
6 0.992989 4.221967E-06  0.0012491933  5/1 0.9926422 4.712407E-06  0.00140673313  5/1
7 0.997110 1.624452E-06  0.0009130933  4/1 0.9966825 1.725864E-06  0.00103094094  4/1
with edge-oriented FEM with global constant penalty parameter y = 1d3
4 0.951998 3.385404E-07  2.600357E-05  6/1 0.988809 2.201445E-07  1.644319E-05 6/1
5 0.979198 1.233316E-07  1.846353E-05 5/1 0.997101 8.065997E-08 1.169144E-05 5/1
6 0.992635 4.789259E-08  1.428115E-05  5/1 1.001279 3.218998E-08  9.075670E-06 5/1
7 0.996678 1.753280E-08  1.046342E-05  4/1 1.000998 1.258395E-08  6.466150E-06 4/1
with edge-oriented FEM with local penalty parameter  as a function of the monitor/distance function
4 0.949683 3.617674E-07  2.686804E-05  6/1 0.986366 2.402242E-07  1.756815E-05 6/1
5 0.978834 1.191665E-07  1.730090E-05  5/1 0.996440 9.042803E-08  1.250519E-05 5/1
6 0.992673 4.752538E-08  1.313859E-05  5/1 1.000876 3.748013E-08  9.682061E-06 5/1
7 0.996931 2.010113E-08  9.567174E-06  4/1 1.000757 1.671886E-08  6.858230E-06 4/1

o Pressure Separation: Good results for the pressure

o Edge-oriented FEM: Excellent results for the velocity with any
desired error & no degradation in the performance of the iterative

solver



t: Errors on an aligned mesh

Level  [pin — pout|/(Z) [u— s, Ju—uply N/MG | |pin = Pout| /(F) [ [u—unly, N/MG
without pressure separation with pressure separation
without edge-oriented FEM
4 1.000669 0.0001899205  0.09765440 6/1 1.0019009 0.0001749634  0.04170730 6/1
5 1.000135 3.503739E-05  0.05796067 5/1 1.0009837 5.679786E-05  0.03268579 5/1
6 1.000032 6.628077E-06 0.03782558 4/1 1.0003227 1.897943E-05 0.02315339 3/1
7 1.000000 2.257852E-06  0.02894883 4/1 1.0001409 6.480485E-06  0.01641194 4/1
with edge-oriented FEM with global constant penalty parameter v = 1d1
4 1.000719 1.872302E-05  0.004474451 5/1 1.0008292 1.559681E-05  0.00334168 5/1
5 1.000336 4.214648E-06  0.002285405 4/2 1.0005137 5.341385E-06  0.00252941 4/2
6 1.000109 1.665666E-06  0.001819288 4/2 1.0001367 2.051831E-06 0.00201336 4/2
7 1.000040 5.368627E-07  0.001158316 4/2 1.0000440 6.515407E-07  0.00128245 4/2
with edge-oriented FEM with global constant penalty parameter v = 1d3
4 1.000712 2.186715E-07 5.113188E-05  5/1 1.0006502 1.810321E-07 3.810090E-05  5/1
5 1.000347 5.257776E-08  2.710133E-05 4/2 1.0004652 6.212258E-08  2.860246E-05 4/2
6 1.000113 2.139767E-08  2.195185E-05 4/2 1.0001190 2.437015E-08  2.309864E-05 4/2
7 1.000043 6.806535E-09  1.378594E-05  4/2 1.0000350 7.652504E-09  1.453748E-05  4/2
with edge-oriented FEM with local penalty parameter  as a function of the monitor/distance function
4 1.000599 5.221021E-07 0.0001083159  6/1 1.0008286 4.957030E-07  8.887125E-05  5/1
5 1.000277 1.094104E-07 8.527144E-05  4/2 1.0000613 1.726385E-07  6.962604E-05  4/2
6 0.999927 7.079676E-08  6.249968E-05 5/2 0.9997869 7.318976E-08  5.877441E-05 5/2
7 1.000017 2.608346E-08  4.290585E-05 4/2 0.9999271 2.460148E-08 3.811101E-05 4/2
o Grid deformation: Good results for the pressure & amelioration in
the velocity

o Edge-oriented FEM: Excellent results for the velocity with any
desired error & no degradation in the performance of the iterative
solver
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o Pressure Separation: Good results for the pressure mainly seen on
non adapted mesh

@ Grid deformation: Good results for the pressure as well as
significant amelioration in the velocity

o Edge-oriented FEM:
1. Excellent results for the velocity with any desired
error without any degradation in the performance of
the iterative solver for both equidistant and aligned
mesh
2. The penalty mesh-dependent parameter can be
applied as global constant as well as a function of the
interface or location of the spurious velocity;

S maxywhe, 7 B2, s (dist(T); he)) e / [Vul[Vv]do  with ,
edge E E

~dist > 0 (big enough), dist(l") a distance function to the interface, and

f any variant of dirac function



ble Test

Cells Cells
Vectzh.llza - Vecloh./!)e:) o5
2.03e-08 0.00779
—1.81e-08 ~0.00692
—1.58e-08 ~0.00608
—1.35e-08 ~0.00519
—1.13e-08 ~0.00433
—9.03e-09 ~0.00346
—6.77e-09 ~0.0026
—451e-09 ~0.00173
2.26e-09 0.000865
0 0

Figure: Velocity field for a static bubble with and without EO-FEM



In development...

@ ALE techniques coupled with time dependent grid deformation

o Inclusion of pressure separation techniques to improve the velocity
and pressure

o Linear high order edge stabilization for convection of the level set
field

o QyP; finite element approximation for the NS-equations and @Q,, for
the level set equation

o 3D + benchmarking
o Contact angle, heat transfer, and solidification effects




Benchmarking
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Why spend valuable time and effort to establish benchmark test cases?

@ Validation
o Comparison

o Evaluation
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Why spend valuable time and effort to establish benchmark test cases?

What is the CPU cost for achieving a certain accuracy?




FELSOS' || TP2D’ Femlab FreelIFE” | [MooNMD’

1)  A. Smolianski; Finite-element/level-set/operator-splitting (FELSOS) approach for
computing two-fluid unsteady flows with free moving interfaces,
Int. J. Numer. Meth. Fluids 2005; 48:231-269.

2) S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska;
Proposal for quantitative benchmark computations of bubble dynamics,
Submitted to Int. J. Numer. Meth. Fluids.
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Development of quantitative two-phase flow benchmarks
for critical evaluation of new and existing methods

u=v=0

Bubble benchmark quantities oo oo

@ Center of mass
fluid 1

o Circularity ~

@ Rise velocity

-3

]y_.x of u=v=0
1

—g—

Figure: Initial configuration and
boundary conditions for the test cases
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o Center of mass:

X¢ :/ xdx/ [ 1dx
Q Q

o Circularity:

perimeter of area-equivalent circle

¢

perimeter of Q;

o Rise velocity:

U=/ udx/ [ 1dx
(o} Q



L Benchmark Tes C g
dses

| Test Case | 1 | 2 |
p1 (liquid) | 1000 1000
p2 (gas) 1 100
1 (liquid) 10 10
2 (gas) 0.1 1
8y -0.98 -0.98
o 1.96 24.5
Re 35 35
Eo 125 10
p1/p2 1000 10
fa/ o 100 10 Test Case 1 Test Case 2
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)

TestCase1 -3 | TestCase2
B
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Figure: Shape regimes for bubbles and drops in unhindered gravitational
motion through liquids [Clift et al., Bubbles, Drops and Particles (1978)]
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Preliminary computations
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| Group and Affiliation | Code/Method |
1 | Uni. Dortmund, Inst. of Applied Math. TP2D
S. Turek, D. Kuzmin, S. Hysing FEM-Level Set
2 | EPFL Lausanne, Inst. of Analysis and Sci. Comp. FreeLIFE
E. Burman, N. Parolini FEM-Level Set
3 | Uni. Magdeburg, Inst. of Analysis and Num. Math. | MooNMD
L. Tobiska, S. Ganesan FEM-ALE




Test Case 1
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TP2D Freel IFE MooNMD
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FreeLIFE
MooNMD (—
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rity

1.02
—&— TP2D

—©— FreeLIFE

—— MooNMD

0.98f

0.961

0.94r

0.92r-

0.9-
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rity
0.905r
—&— TP2D
0.9045r —©— FreeLIFE
—— MooNMD
0.904+
0.9035
0.903r
0.9025+

0.9015

0.901+




_ies - circularity

| GridLevel | 1 | 2 | 3 | 4
Minimum circularity, ¢ .
TP2D 0.9016 | 0.9014 | 0.9014 | 0.9013
FreelIFE 0.9060 | 0.9021 | 0.9011

MooNMD | 0.9022 | 0.9018 | 0.9013 | 0.9014

Incidence time, t|¢=¢m,-n

TP2D 1.9234 | 1.8734 | 1.9070 | 1.9041

FreelIFE 1.8375 | 1.9125 | 1.8750

MooNMD | 1.8630 | 1.8883 | 1.9023 | 1.8987

Reference target range

£ in = 0.901240.0002,  t[g—g = 1.8940.01
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of mass

1.2r

0.9

0.8+
—8— TP2D

07 —©— FreeLIFE
—4— MooNMD
0.6
0.5
04 L L L L L I}
0 0.5 1 15 2 25 3

Time
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of mass

1.085r
1.08r
1.075r
1.07
1.065

1.06

—8— TP2D

1.055
—©— FreeLIFE
1.05
—4— MooNMD
1.045
1.04
1.035
L L L L I}
2.75 2.8 2.85 2.9 2.95 3

Time
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[GridLevel | 1 2 E E
Center of mass, yc|i—3
TP2D 1.0818 | 1.0810 | 1.0812 | 1.0813
FreelIFE 1.0715 | 1.0817 | 1.0799
MooNMD | 1.0833 | 1.0823 | 1.0815 | 1.0817

Reference target range J

Yelt=3 = 1.081£0.001




Universitit Dortmund >
y 4

locity
0.3
0.25¢
0.2+
0.15¢
0.1
0.05- —&— TP2D
—0— FreelLIFE
0 : | —*— MooNMD
L L L L L I}
0 0.5 1 15 2 25 3

Time
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locity
0.2435r
—&— TP2D
0.243F —0— FreelLIFE
—— MooNMD
0.2425f
0.242

0.2415

0.241

0.2405

0.24

0.2395

0.8 0.85 0.9 0.95 1 1.05
Time




_ies - rise velocity

| GridLevel |1 | 2 [ 3 | 4 |
Maximum rise velocity, V¢ max
TP2D 0.2418 | 0.2418 | 0.2419 | 0.2417
Freel IFE 0.2427 | 0.2410 | 0.2421

MooNMD | 0.2418 | 0.2417 | 0.2417 | 0.2417
Incidence time, t|v.—v, ..
MooNMD | 0.9236 | 0.9236 | 0.9249 | 0.9214
FreelIFE 0.9000 | 0.9375 | 0.9313
TP2D 0.9141 | 0.9375 | 0.9281 | 0.9213

Reference target range

Vemax = 02417, t|y.—v, ., = 0.9213-0.9214




Test Case 2
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rity
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rity

0.9

—a—TP2D
0.85¢ —o— FreelLIFE
—— MooNMD

0.75

0.7

0.65

0.6

0.55

0.5

0.45r

0.4 I I I I I I |

Time




_ies - circularity

| GridLevel |1 | 2 | 3 | 4 IE

Minimum circularity, ¢ .

TP2D 0.5193 | 0.5717 | 0.5946 | 0.5943 | 0.5869

FreelIFE 0.4868 | 0.5071 | 0.4647

MooNMD - 0.5191 | 0.5144
Incidence time, t|g—¢

TP2D 3.0000 | 2.4266 | 2.2988 | 2.3439 | 2.4004

FreelIFE 2.7500 | 2.8438 | 3.0000

MooNMD - 3.0000 | 3.0000

Reference target range
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of mass
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[Gridlevel [1 |2 [3 |4 |5 |
Center of mass, yc|i—3
TP2D 1.1303 | 1.1370 | 1.1377 | 1.1387 | 1.1380
Freel IFE 1.0843 | 1.1099 | 1.1249
MooNMD - 1.1380 | 1.1376

Reference target range J




s y 4
locity
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Time




_ies - rise velocity

GridLevel |1 | 2 | 3 | 4 IE

First rise velocity maximum, Vc max 1
TP2D 0.2790 | 0.2638 | 0.2570 | 0.2538 | 0.2524
FreelIFE 0.2563 | 0.2518 | 0.2514
MooNMD 0.2503 | 0.2502 | 0.2502
First Incidence time, t|v.—v,,.. ;
TP2D 0.7641 | 0.7250 | 0.7430 | 0.7340 | 0.7332
FreelIFE 0.7750 | 0.7188 | 0.7281
MooNMD 0.7317 | 0.7317 | 0.7317

Reference target range

Vemax 1 = 0.2540.01,  t|y.—v, .. , = 0.73+0.02




_ies - rise velocity

| GridLevel |1 | 2 | 3 | 4 | 5 \
Second rise velocity maximum, V¢ max 2
TP2D 0.2749 | 0.2597 | 0.2522 | 0.2467 | 0.2434
FreelLIFE 0.2397 | 0.2384 | 0.2440
MooNMD 0.2390 | 0.2393 | 0.2393
Second Incidence time, t|v —v, .. .
TP2D 1.9375 | 1.9688 | 2.0234 | 2.0553 | 2.0705
FreelLIFE 1.9875 | 1.9062 | 1.9844
MooNMD 2.0650 | 2.0600 | 2.0600

Reference target range




Conclusions
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Conclusions

@ Proposed two benchmarks
@ Established target reference values for the first benchmark

o Hinted at difficulties during break up in the second benchmark
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Participate?

If you would like to participate in this or other numerical
benchmarking projects please visit our benchmarking forum at:

www. featflow.de
or send an email to:

ture@featflow.de




