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Let's start with Benchmarking...

FELSOS

TP2D

Femlab

Freel IFE

MooNMD

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska;
Proposal for quantitative benchmark computations of bubble dynamics,

Submitted to Int. J. Numer. Meth. Fluids.



R Benchmark: 20 Riing Eubi

Aim: Development of quantitative two-phase flow benchmarks

for rigorous evaluation of new and existing methods

Bubble benchmark quantities

@ Center of mass
@ Circularity

@ Rise velocity
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Figure: Initial configuration and

boundary conditions for the test cases
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| Test Case | 1 | 2 |
p1 (liquid) | 1000 1000
p2 (gas) 1 100
1 (liquid) 10 10
2 (gas) 0.1 1
8y -0.98 -0.98
o 1.96 24.5
Re 35 35
Eo 125 10
p1/p2 1000 10
fa/ o 100 10 Test Case 1 Test Case 2
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| Group and Affiliation | Code/Method |
1 | Uni. Dortmund, Inst. of Applied Math. TP2D
S. Turek, D. Kuzmin, S. Hysing FEM-Level Set
2 | EPFL Lausanne, Inst. of Analysis and Sci. Comp. FreeLIFE
E. Burman, N. Parolini FEM-Level Set
3 | Uni. Magdeburg, Inst. of Analysis and Num. Math. | MooNMD
L. Tobiska, S. Ganesan FEM-ALE
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Conclusions

[

Proposed two benchmarks for rigorous evaluation

©

Established target reference values for the first benchmark

©

Hinted at difficulties during break up in the second benchmark

©

Look at www.featflow.de for participation

Interfacial flows: Challenging even in 2D'!




Interfacial flows
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Numerical simulation of interfacial or two-phase flows
with immiscible fluids poses some challenging problems

Issues

@ Accurate interface tracking
@ Mass conservation
o Resolution of discontinuous fluid properties

@ Treatment of interfacial boundary conditions
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Numerical simulation of interfacial or two-phase flows
with immiscible fluids poses some challenging problems

Issues

How to devise an efficient solution algorithm
which addresses these issues?
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@ The Navier-Stokes equations govern incompressible fluid flow

o) (G + @ V) = T T (T (Vu)T) + ol
V-u

0




) -l
ial Flows -

@ The Navier-Stokes equations govern incompressible fluid flow

Ou T
px) (5, + W VIu) = =Vp+ V- (u(x)(Vu+(Vu)")) + p(x)s

Vu = 0
with varying density p(x) and viscosity p(x) fields
Interfacial Boundary Conditions
o Direct interface conditions

[ullr =0, —[—pl+u(Vu+ (Vu)")]| - =okh

@ Implicit conditions by weighted volume forces

fst|r = okf




Universitit Dortmund ” 7' 4
- = '

Given u” and time step k = At, then solve for u = u"*! and p = p"*!

SutkBp = fril
B™uw = 0

with

Su=[M, + 0kN(u)]u

N(v) =~V - (u(x)(Vu + (Yu)T)) + p(x)(u - T)v

B and BT are discrete counterparts to the grad and div operators



o Stucture i

We prefer to use an operator splitting approach:

Given u” and p”", then do for time level n + 1:

@ Solve the Navier-Stokes equations, with the interface given at ",
to obtain u”*! and p"t!

Q (Optionally perform grid adaptation)

© Move the interface according to the given physics

@ Perform post-processing; e.g. computation of normals and curvature
Q (Optionally perform grid adaptation)

Q (Re-iterate time loop if deemed necessary)



Interface Tracking




L nterface Tracking g

The tasks of an interface tracking algorithm are:

o Correctly propagate the interface given a velocity field
@ Minimize additional mass loss due to the algorithm itself

o Enable easy and quick identification of both the interface and
the different phases

©

Enable easy reconstruction of interface normal vectors and curvature

©

Be relatively easy to implement and efficient to solve

[

Ideally treat coalescence and break-up automatically




Two main schools of thought...

Eulerian

Lagrangian
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Which method should we use then?

]

Pure Lagrangian Approach

©

Front Tracking Method

[

Segment Projection Method
Marker and Cell (MAC)

Volume of Fluid (VOF)

Phase Field Method

Level Set Method (LS)

Particle Level Set Method (PLS)
Combination ( LS-VOF )

©

©

(<]

©

(*]

©
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Our selection criteria

o Eulerian, simplifies implementation

o Allow for discretization and solution with fast and efficient PDE
solver techniques

@ Handle coalescence and break-up automatically

@ Allow for global reconstruction of normals and curvature
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Our selection criteria

Level Set Method
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The Level Set Method

The general idea is to embed an interface in a higher dimensional
function ¢. The interface movement is then governed by a standard
transport equation

9¢

5 TV Ve=0

with initial condition ¢(x =T,t =0) =0
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The Level Set Method - Properties

@ A smoothness constraint on the level set field relaxes the
requirements on the solver

@ The natural choice is to restrict the level set field to be a signed
distance function
Vel =1
@ At any given point the magnitude of the level set function will thus
represent the shortest distance to the interface




The Level Set Method - Advantages

*]

The smooth LS function allows for higher order discretization
techniques to be employed

The governing transport equation can be solved with efficient
standard solvers

The interface is implicitly but also exactly defined
Break up and coalescence is treated automatically

Geometrical quantities such as normals and curvature can be
reconstructed globally




The Level Set Method - Problems

@ The velocity field v convecting the level set function can not in
general be expected to maintain ¢ as a distance function

9 B
5 TV Ve=0

@ The distance function property is only preserved if Vv - V¢ =0

@ Stretching and folding can cause eventual solver failure
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The Level Set Method - Problems

Periodic Reinitialization




S Reitlztion Methods

Several methods exist for constructing a distance function from given
interface data. The simplest ones use interface approximations for the
reconstruction

@ Redistancing via " Brute Force”

@ Algebraic Newton approach

The more complex algorithms deal with solving the Eikonal equation
|[Vé| = F on a fixed mesh

@ The Fast Marching Method
o The Fast Sweeping Method
o PDE Based redistancing

@ Branch and Bound approach to redistancing
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The different methods naturally have their respective strengths and
weaknesses
o Brute force method
-+ Very robust
- Scales quite badly, O(N * M)
o Algebraic Newton Approach
-+ Potentially very fast, O(N)

- Convergence dependent upon approximate distance function
@ The Fast Marching Method

-~ Easy to implement in an unstructured context

- Needs a heap structure to sort marching order, +O(logN)
@ The Fast Sweeping Method
-+ Potentially very fast, O(N)

- Difficult to generalize to fully unstructured grids
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@ The stationary limit of the following PDE can also be used to apply
reinitialization to a given approximate distance field ¢q
0¢* Vo*
— -Vo* =S =S —_
ot +4q ¢ (QSO)a q (¢0)|V¢*|

o where S(¢o) is an appropriately chosen sign function

@ no local reconstruction necessary, but very expensive !
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A non-trivial test case was chosen to represent a typical level set
computation with the following properties

@ Include both smooth regions and shocks
@ Exact solution available:

d(x) = min(2.25 — y, /x> + (y — 1)2 —
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—— Fast marching o(1) - 0%
107%™ Fast marching o(1) - 10%

+ = Fast marching o(1) - 25%
+v++ Fast marching o(1) - Unstr
—— Fast marching o(2) - 0%
=+= Fast marching o(2) - 10%
-~ Fast marching o(2) - 25%
1+ Fast marching o(2) - Unstr
= Algebraic Newton — 0%

10 '£| =-= Algebraic Newton — 10%
= Algebraic Newton — 25%
1o+ Algebraic Newton — Unstr
- Brute force - 0%
Brute force - 10%
- Brute force - 25%
Brute force — Unstr
T

Relative error - | |

10° 10° 10° 10° 10° 10
Number of vertices
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Reinitialization

@ The fast marching method scales very well with increasing grid
density

o Fast marching is very fast even for very dense grids (O(10°) grid
points)

@ The second order update only costs marginally more than the first
order version

@ The fast marching method is therefore our preferred algorithm!
(but: explicit local reconstruction)

T
y A
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Treatment of Surface Tension
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@ Interfacial or two-phase flow where capillary surface tension forces
are dominant poses some challenging problems

o Surface tension effects are generally modeled both explicitly in time
and space leading to the capillary time step restriction

(p) b

Atle) <

num

2no
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@ Interfacial or two-phase flow where capillary surface tension forces
are dominant poses some challenging problems

o Surface tension effects are generally modeled both explicitly in time
and space leading to the capillary time step restriction

h3
At(ca) <p>
num < 271_0_
Goal

Remove the capillary time step constraint
while retaining a fully Eulerian interface description
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Surface tension effects can essentially be included in the Navier-Stokes
equations in two different ways

@ Explicit interface reconstruction and direct evaluation

fSt = /Uﬁﬁ dr
r

o Implicit incorporation via the continuum surface force (CSF) model

for :/anﬁé(l') dQ
Q



Definition (Tangential gradient)

The tangential gradient of a function f, which is differentiable in an
open neighborhood of T, is defined by

Vi(x) = Vf(x) — (Aa(x) - Vf(x))i(x), xeTl

where V denotes the usual gradient in RY

Definition (Laplace-Beltrami operator)

If f is two times differentiable in a neighborhood of T', then we define
the Laplace-Beltrami operator of f as

Af(x) =V - (Vf(x)), xeTl
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Theorem

A theorem of differential geometry states that
éidr = ki

where k is the mean curvature and idr is the identity mapping on I’

Derivation

First take surface tension force source term, multiply it with the test
function space v, and apply partial integration

f: = /cmﬁ-v dr = /U(Aidr)-v dr =
r r
= —/aZidr-Zv dr—i—/a&yidr-v d~
r vy
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@ Boundary integrals can be transformed to volume integrals
with the help of a Dirac delta function 6(I", x)

fo = /Q okv (M%) dx = /Q o(Bidr) - (v3(T, %)) dx

= —/oyidr'y(vé(r,x)) dx = —/oyidr-ZV 5(T, x) dx
Q Q

@ Application of the semi-implicit time integration

=174+ At u™
yields
fo = - / oV (idr)" - Vv §(1", x) dx
Q

- At"+1/ oVu"t . Vv (1", x) dx
Q



o Regularization of §(I', x) can easily be accomplished with
the help of a distance function

0e(T, x) = dc(dist(I, x)),
where dist(I,x) gives the minimum distance from x to I’
@ The regularized continuous delta function J. is defined as

1
_§ celx/e) Ix|<e = mh,
0c(x) = { 0 x| >€e = mh,

where h is the mesh spacing which together with the constant m
defines the support € of the regularized delta function,
@ is a characteristic function determining the kernel shape

@ A second order method can alternatively be constructed according to
[Engquist, Tornberg, and Tsai: J. Comput. Phys. 207:28-51, 2005]
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There are several possible choices for ¢(&), common choices are:

@ The linear hat function (&) =1 — [¢]
@ The commonly used cosine approximation ¢?(£) = 1(1+ cos(”—f))

o Higher order polynomials for example;

03 (&) = (3 2062 + 42¢* — 3665 + 11¢9)

512

1e 1/e
1/e

Cg—— gy Xy

(a) de(¢") (b) 0c(#%) (©) de(®)
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The surface tension forces are finally given by ...
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R implicit Surface Tension Force Expresir

Implicit Surface Tension Force Expression

fo = —/ o de(dist(T",x)) V(idr)" - Vv dx
Q

—At”+1/ o de(dist(T",x)) Yu" . Vv dx
Q
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A number of key points makes the level set method an ideal candidate for
interface tracking algorithm when implementing the proposed surface
tension force expressions

@ Distance functions are in general readily available allowing for
simple construction of the regularized Dirac delta functions

@ Geometrical quantities such as normal and tangent vectors can be
reconstructed globally, eliminating the need to extend these
quantities from the interface separately

@ The level set method can be coupled with the finite element method
giving access to the variational form of the equations
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Method Validation

Numerical Examples
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A perfect circular static bubble should follow the Laplace-Young law

(o
Pinside = Poutside + 7

(a) CSF (b) CSF-LBI

Figure: Pressure cut-line for four different mesh sizes.



B Esampl, Osilting Euie (€SP

(1S OO0 O

OO OO
o 0O 0

TIME

Wialee

Figure: Evolution of an oscillating bubble; standard explicit CSF method.
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Figure: Evolution of an oscillating bubble; semi-implicit CSF-LBI method.
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Figure: Evolution of a rising bubble with the standard explicit CSF method.




R Esample, Risng Bubbl (CSF-L5)
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Figure: Evolution of a rising bubble with the semi-implicit CSF-LBI method.
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A new implicit surface tension variant has been proposed which relaxes
the capillary time step restriction imposed on explicit implementations

Additional advantages

o Fully implicit in space

@ Is easily implemented when using the level set method
together with finite elements

o Explicit computation of curvature not necessary

o Conceptually identical algorithm in 3D
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Grid Deformation Techniques
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Monitor function

@ In the case of interfacial flow, then the monitor function f can be
constructed from a distance function, giving the shortest distance to
the interface, and possibly also weighting the interface curvature k

f = f(lo(x)], 5(x))

@ This makes the level set method ideally suited to use as interface
tracking algorithm, since both the distance function and
curvature are defined globally

@ Special high-performance-computing techniques and hardware (GPU
computing, Cell processor, Sony PSP3) can be exploited







. Static Bubbl Tes

{0
R)A"M‘\

,,,l'i

r:

\

!

4

:

f

N |



Figure: Velocity error for a static bubble with and without grid deformation

’ GridLevel | 3 | 4 | 5 | 6
Tensor product grid
U error 37-1072[1.1-102[1.0-102 [ 56-103
P error 5.583% 1.433% 0.212% 0.037%
Adapted grid
U error 20-1072]73.-103[35-10°]1.8-103
P error 2.969% 0.261% 0.042% 0.013%




In development...

@ ALE techniques coupled with time dependent grid deformation

o Inclusion of pressure separation techniques to improve the velocity
and pressure

o Linear high order edge stabilization for convection of the level set
field

o QyP; finite element approximation for the NS-equations and @Q,, for
the level set equation

o Contact angle, heat transfer, and solidification effects

@ 3D + benchmarking




