

FEM techniques for interfacial flows

How to avoid the explicit reconstruction of interfaces

Stefan Turek, Shu-Ren Hysing

(ture@featflow.de)

Institute for Applied Mathematics University of Dortmund

Int. Conf. of Theoretical and Numerical Fluid Mechanics III Vancouver – August 2007

Let's start with Benchmarking...

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska; *Proposal for quantitative benchmark computations of bubble dynamics*, Submitted to Int. J. Numer. Meth. Fluids.

Benchmark: 2D Rising Bubble

<u>Aim:</u> Development of **quantitative** two-phase flow benchmarks for rigorous evaluation of new and existing methods

Figure: Initial configuration and boundary conditions for the test cases

Benchmark Test Cases

Test Case	1	2	
ρ_1 (liquid)	1000	1000	
ρ_2 (gas)	1	100	
μ_1 (liquid)	10	10	
μ_2 (gas)	0.1	1	
<i>g</i> _y	-0.98	-0.98	
σ	1.96	24.5	
Re	35	35	
Eo	125	10	
ρ_1/ρ_2	1000	10	
μ_1/μ_2	100	10	

	Group and Affiliation	Code/Method
1	Uni. Dortmund, Inst. of Applied Math.	TP2D
	S. Turek, D. Kuzmin, S. Hysing	FEM-Level Set
2	EPFL Lausanne, Inst. of Analysis and Sci. Comp.	FreeLIFE
	E. Burman, N. Parolini	FEM-Level Set
3	Uni. Magdeburg, Inst. of Analysis and Num. Math.	MooNMD
	L. Tobiska, S. Ganesan	FEM-ALE

Visual comparison: Test Case 1

Benchmark quantities - circularity

Benchmark quantities - center of mass

Benchmark quantities - rise velocity

Visual comparison: Test Case 2

Benchmark quantities - circularity

Benchmark quantities - center of mass

Benchmark quantities - rise velocity

Conclusions

- Proposed two benchmarks for rigorous evaluation
- Established target reference values for the first benchmark
- Hinted at difficulties during break up in the second benchmark
- Look at www.featflow.de for participation

Interfacial flows: Challenging even in 2D!

Interfacial flows

Numerical simulation of interfacial or two-phase flows with immiscible fluids poses some challenging problems

Issues

- Accurate interface tracking
- Mass conservation
- Resolution of discontinuous fluid properties
- Treatment of interfacial boundary conditions

Numerical simulation of interfacial or two-phase flows with immiscible fluids poses some challenging problems

Issues

How to devise an efficient solution algorithm which addresses these issues?

• The Navier-Stokes equations govern incompressible fluid flow

$$\rho(\mathbf{x}) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla \rho + \nabla \cdot \left(\mu(\mathbf{x}) (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \right) + \rho(\mathbf{x}) \mathbf{g}$$
$$\nabla \cdot \mathbf{u} = 0$$

with varying density $\rho(\mathbf{x})$ and viscosity $\mu(\mathbf{x})$ fields

nterfacial Boundary Conditions

• Direct interface conditions

$$[\mathbf{u}]|_{\Gamma} = \mathbf{0}, \quad -\left[-\rho\mathbf{I} + \mu(\nabla\mathbf{u} + (\nabla\mathbf{u})^{T})\right]|_{\Gamma} \cdot \hat{\mathbf{n}} = \sigma\kappa\hat{\mathbf{n}}$$

Implicit conditions by weighted volume forces

$$\mathbf{f}_{st}|_{\Gamma} = \sigma \kappa \hat{\mathbf{n}}$$

• The Navier-Stokes equations govern incompressible fluid flow

$$\rho(\mathbf{x}) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla \rho + \nabla \cdot \left(\mu(\mathbf{x}) (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \right) + \rho(\mathbf{x}) \mathbf{g}$$
$$\nabla \cdot \mathbf{u} = 0$$

with varying density $\rho(\mathbf{x})$ and viscosity $\mu(\mathbf{x})$ fields

Interfacial Boundary Conditions

Direct interface conditions

$$[\mathbf{u}]|_{\Gamma} = \mathbf{0}, \quad -\left[-\rho\mathbf{I} + \mu(\nabla\mathbf{u} + (\nabla\mathbf{u})^{T})\right]|_{\Gamma} \cdot \hat{\mathbf{n}} = \sigma\kappa\hat{\mathbf{n}}$$

• Implicit conditions by weighted volume forces

$$\mathbf{f}_{st}|_{\Gamma} = \sigma \kappa \hat{\mathbf{n}}$$

Saddle-point systems after Discretization

Given \mathbf{u}^n and time step $k = \Delta t$, then solve for $\mathbf{u} = \mathbf{u}^{n+1}$ and $p = p^{n+1}$

$$\begin{cases} S\mathbf{u} + kBp = \mathbf{f}^{n+1} \\ B^{\mathsf{T}}\mathbf{u} = 0 \end{cases}$$

with

$$S\mathbf{u} = [M_{\rho} + \theta k N(\mathbf{u})]\mathbf{u}$$

$$N(\mathbf{v}) = -
abla \cdot \left(\mu(\mathbf{x}) (
abla \mathbf{u} + (
abla \mathbf{u})^T) \right) +
ho(\mathbf{x}) (\mathbf{u} \cdot
abla) \mathbf{v}$$

B and B^T are discrete counterparts to the grad and div operators

We prefer to use an operator splitting approach:

Given \mathbf{u}^n and p^n , then do for time level n + 1:

- Solve the Navier-Stokes equations, with the interface given at Γⁿ, to obtain uⁿ⁺¹ and pⁿ⁺¹
- Optionally perform grid adaptation)
- Move the interface according to the given physics
- Perform post-processing; e.g. computation of normals and curvature
- Optionally perform grid adaptation)
- (Re-iterate time loop if deemed necessary)

Interface Tracking

The tasks of an interface tracking algorithm are:

- Correctly propagate the interface given a velocity field
- Minimize additional mass loss due to the algorithm itself
- Enable easy and quick identification of both the interface and the different phases
- Enable easy reconstruction of interface normal vectors and curvature
- Be relatively easy to implement and efficient to solve
- Ideally treat coalescence and break-up automatically

Interface Tracking

Two main schools of thought...

Lagrangian

Eulerian

Interface Tracking

Which method should we use then?

- Pure Lagrangian Approach
- Front Tracking Method
- Segment Projection Method
- Marker and Cell (MAC)
- Volume of Fluid (VOF)
- Phase Field Method
- Level Set Method (LS)
- Particle Level Set Method (PLS)
- Combination (LS-VOF)

Our selection criteria

- Eulerian, simplifies implementation
- Allow for discretization and solution with fast and efficient PDE solver techniques
- Handle coalescence and break-up automatically
- Allow for **global** reconstruction of normals and curvature

Interface Tracking

Our selection criteria

Level Set Method

Interface Tracking

The Level Set Method

The general idea is to embed an interface in a higher dimensional function ϕ . The interface movement is then governed by a standard transport equation

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \mathbf{0}$$

with initial condition $\phi(\mathbf{x} = \Gamma, t = 0) = 0$

The Level Set Method - Properties

- A smoothness constraint on the level set field relaxes the requirements on the solver
- The natural choice is to restrict the level set field to be a signed distance function

$$|
abla \phi| = 1$$

• At any given point the magnitude of the level set function will thus represent the shortest distance to the interface

The Level Set Method - Advantages

- The smooth LS function allows for higher order discretization techniques to be employed
- The governing transport equation can be solved with efficient standard solvers
- The interface is implicitly but also exactly defined
- Break up and coalescence is treated automatically
- Geometrical quantities such as normals and curvature can be reconstructed globally

Problems

The Level Set Method - Problems

• The velocity field **v** convecting the level set function can not in general be expected to maintain ϕ as a distance function

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \mathbf{0}$$

- ${\ensuremath{\, \bullet }}$ The distance function property is only preserved if $\nabla {\mathbf v} \cdot \nabla \phi = {\mathbf 0}$
- Stretching and folding can cause eventual solver failure

Problems

The Level Set Method - Problems

Periodic Reinitialization

Several methods exist for constructing a distance function from given interface data. The simplest ones use interface approximations for the reconstruction

- Redistancing via "Brute Force"
- Algebraic Newton approach

The more complex algorithms deal with solving the Eikonal equation $|\nabla \phi| = F$ on a fixed mesh

- The Fast Marching Method
- The Fast Sweeping Method
- PDE Based redistancing
- Branch and Bound approach to redistancing

Reinitialization Methods

The different methods naturally have their respective strengths and weaknesses

- Brute force method
 - + Very robust
 - Scales quite badly, $\mathcal{O}(N * M)$
- Algebraic Newton Approach
 - + Potentially very fast, $\mathcal{O}(N)$
 - Convergence dependent upon approximate distance function
- The Fast Marching Method
 - + Easy to implement in an unstructured context
 - Needs a heap structure to sort marching order, $+\mathcal{O}(logN)$
- The Fast Sweeping Method
 - + Potentially very fast, $\mathcal{O}(N)$
 - Difficult to generalize to fully unstructured grids

• The stationary limit of the following PDE can also be used to apply reinitialization to a given approximate distance field ϕ_0

$$rac{\partial \phi^*}{\partial t} + \mathbf{q} \cdot
abla \phi^* = S(\phi_0), \qquad \mathbf{q} = S(\phi_0) rac{
abla \phi^*}{|
abla \phi^*|}$$

- where $S(\phi_0)$ is an appropriately chosen sign function
- no local reconstruction necessary, but very expensive !

Test Case

A non-trivial test case was chosen to represent a typical level set computation with the following properties

- Include both smooth regions and shocks
- Exact solution available:

$$\phi(\mathbf{x}) = \min(2.25 - y, \sqrt{x^2 + (y - 1)^2} - 0.4)$$

Results - CPU Time

Results - Accuracy

Reinitialization

- The fast marching method scales very well with increasing grid density
- Fast marching is very fast even for very dense grids ($O(10^6)$ grid points)
- The second order update only costs marginally more than the first order version
- The fast marching method is therefore our preferred algorithm! (but: explicit local reconstruction)

Treatment of Surface Tension

- Interfacial or two-phase flow where capillary surface tension forces are dominant poses some challenging problems
- Surface tension effects are generally modeled both explicitly in time and space leading to the capillary time step restriction

$$\Delta t_{num}^{(ca)} < \sqrt{rac{\langle
ho
angle \, h^3}{2\pi\sigma}}$$

Goal

Remove the capillary time step constraint while retaining a fully Eulerian interface description

- Interfacial or two-phase flow where capillary surface tension forces are dominant poses some challenging problems
- Surface tension effects are generally modeled both explicitly in time and space leading to the capillary time step restriction

$$\Delta t_{num}^{(ca)} < \sqrt{rac{\langle
ho
angle \, h^3}{2\pi\sigma}}$$

Goal

Remove the capillary time step constraint while retaining a fully Eulerian interface description

Computation of Surface Tension

Surface tension effects can essentially be included in the Navier-Stokes equations in two different ways

• Explicit interface reconstruction and direct evaluation

$$\mathbf{f}_{st} = \int_{\Gamma} \sigma \kappa \hat{\mathbf{n}} \ d\Gamma$$

• Implicit incorporation via the continuum surface force (CSF) model

$$\mathbf{f}_{st} = \int_{\Omega} \sigma \kappa \hat{\mathbf{n}} \delta(\Gamma) \ d\Omega$$

Definitions

Definition (Tangential gradient)

The tangential gradient of a function f, which is differentiable in an open neighborhood of $\Gamma,$ is defined by

 $\underline{\nabla} f(x) = \nabla f(x) - (\hat{\mathbf{n}}(x) \cdot \nabla f(x))\hat{\mathbf{n}}(x), \quad x \in \Gamma$

where ∇ denotes the usual gradient in \mathbb{R}^d

Definition (Laplace-Beltrami operator)

If f is two times differentiable in a neighborhood of Γ , then we define the Laplace-Beltrami operator of f as

 $\underline{\Delta}f(x) = \underline{\nabla} \cdot (\underline{\nabla}f(x)), \quad x \in \Gamma$

Definitions and Derivation

Theorem

A theorem of differential geometry states that

$$\underline{\Delta}$$
id _{Γ} = $\kappa \hat{\mathbf{n}}$

where κ is the mean curvature and id_Γ is the identity mapping on Γ

Derivation

First take surface tension force source term, multiply it with the test function space $\bm{v},$ and apply partial integration

$$\begin{aligned} \mathbf{f}_{st} &= \int_{\Gamma} \sigma \kappa \hat{\mathbf{n}} \cdot \mathbf{v} \ d\Gamma &= \int_{\Gamma} \sigma (\underline{\Delta} \mathrm{id}_{\Gamma}) \cdot \mathbf{v} \ d\Gamma &= \\ &= -\int_{\Gamma} \sigma \underline{\nabla} \mathrm{id}_{\Gamma} \cdot \underline{\nabla} \mathbf{v} \ d\Gamma + \int_{\gamma} \sigma \partial_{\gamma} \mathrm{id}_{\Gamma} \cdot \mathbf{v} \ d\gamma \end{aligned}$$

Fully Implicit Evaluation in Space

• Boundary integrals can be transformed to volume integrals with the help of a Dirac delta function $\delta(\Gamma, \mathbf{x})$

$$\begin{aligned} \mathbf{f}_{st} &= \int_{\Omega} \sigma \kappa \hat{\mathbf{n}} \cdot \mathbf{v} \ \delta(\Gamma, \mathbf{x}) \ d\mathbf{x} &= \int_{\Omega} \sigma(\underline{\Delta} \mathrm{id}_{\Gamma}) \cdot (\mathbf{v} \delta(\Gamma, \mathbf{x})) \ d\mathbf{x} \\ &= -\int_{\Omega} \sigma \underline{\nabla} \mathrm{id}_{\Gamma} \cdot \underline{\nabla} (\mathbf{v} \delta(\Gamma, \mathbf{x})) \ d\mathbf{x} \ = -\int_{\Omega} \sigma \underline{\nabla} \mathrm{id}_{\Gamma} \cdot \underline{\nabla} \mathbf{v} \ \delta(\Gamma, \mathbf{x}) \ d\mathbf{x} \end{aligned}$$

• Application of the semi-implicit time integration

$$\Gamma^{n+1} = \Gamma^n + \Delta t \, \mathbf{u}^{n+1}$$

yields

$$\begin{aligned} \mathbf{f}_{st} &= -\int_{\Omega} \sigma \underline{\nabla} (\mathrm{id}_{\Gamma})^{n} \cdot \underline{\nabla} \mathbf{v} \ \delta(\Gamma^{n}, \mathbf{x}) \ d\mathbf{x} \\ &- \Delta t^{n+1} \int_{\Omega} \sigma \underline{\nabla} \mathbf{u}^{n+1} \cdot \underline{\nabla} \mathbf{v} \ \delta(\Gamma^{n}, \mathbf{x}) \ d\mathbf{x} \end{aligned}$$

Regularization

• Regularization of $\delta(\Gamma, \mathbf{x})$ can easily be accomplished with the help of a distance function

$$\delta_{\boldsymbol{\epsilon}}(\boldsymbol{\Gamma}, \mathbf{x}) = \delta_{\boldsymbol{\epsilon}}(dist(\boldsymbol{\Gamma}, \mathbf{x})),$$

where $dist(\Gamma, \mathbf{x})$ gives the minimum distance from \mathbf{x} to Γ

 ${\, \bullet \,}$ The regularized continuous delta function δ_ϵ is defined as

$$\delta_{\epsilon}(x) = \begin{cases} \frac{1}{\epsilon}\varphi(x/\epsilon) & |x| \leq \epsilon & = \ mh, \\ 0 & |x| > \epsilon & = \ mh, \end{cases}$$

where h is the mesh spacing which together with the constant m defines the support ϵ of the regularized delta function, φ is a characteristic function determining the kernel shape

 A second order method can alternatively be constructed according to [Engquist, Tornberg, and Tsai: J. Comput. Phys. 207:28-51, 2005]

Regularization

There are several possible choices for $\varphi(\xi)$, common choices are:

- The linear hat function $arphi^1(\xi) = 1 |\xi|$
- The commonly used cosine approximation $\varphi^2(\xi) = \frac{1}{2}(1 + \cos(\frac{\pi\xi}{2}))$
- Higher order polynomials, for example;

$$\varphi^{3}(\xi) = \frac{312}{512} (3 - 20\xi^{2} + 42\xi^{4} - 36\xi^{6} + 11\xi^{8})$$

Implicit Surface Tension Force Expression

The surface tension forces are finally given by ...

Implicit Surface Tension Force Expression

$$\begin{split} \mathbf{f}_{st} &= -\int_{\Omega} \sigma \ \delta_{\boldsymbol{\epsilon}}(dist(\boldsymbol{\Gamma}^{n},\mathbf{x})) \ \underline{\nabla}(\widetilde{\mathrm{id}}_{\boldsymbol{\Gamma}})^{n} \cdot \underline{\nabla} \mathbf{v} \ d\mathbf{x} \\ &- \Delta t^{n+1} \int_{\Omega} \sigma \ \delta_{\boldsymbol{\epsilon}}(dist(\boldsymbol{\Gamma}^{n},\mathbf{x})) \ \underline{\nabla} \mathbf{u}^{n+1} \cdot \underline{\nabla} \mathbf{v} \ d\mathbf{x} \end{split}$$

Implicit Surface Tension Force Expression

The surface tension forces are finally given by ...

Implicit Surface Tension Force Expression

$$\begin{aligned} \mathbf{f}_{st} &= -\int_{\Omega} \sigma \ \delta_{\boldsymbol{\epsilon}}(dist(\boldsymbol{\Gamma}^{n},\mathbf{x})) \ \underline{\nabla}(\widetilde{\mathrm{id}}_{\boldsymbol{\Gamma}})^{n} \cdot \underline{\nabla} \mathbf{v} \ d\mathbf{x} \\ &-\Delta t^{n+1} \int_{\Omega} \sigma \ \delta_{\boldsymbol{\epsilon}}(dist(\boldsymbol{\Gamma}^{n},\mathbf{x})) \ \underline{\nabla} \mathbf{u}^{n+1} \cdot \underline{\nabla} \mathbf{v} \ d\mathbf{x} \end{aligned}$$

A number of key points makes the *level set method* an ideal candidate for interface tracking algorithm when implementing the proposed surface tension force expressions

- Distance functions are in general readily available allowing for simple construction of the regularized Dirac delta functions
- Geometrical quantities such as normal and tangent vectors can be reconstructed globally, eliminating the need to extend these quantities from the interface separately
- The level set method can be coupled with the finite element method giving access to the variational form of the equations

Method Validation

Numerical Examples

Validation, Laplace-Young Law

A perfect circular static bubble should follow the Laplace-Young law

$$p_{inside} = p_{outside} + \frac{\sigma}{r}$$

Figure: Pressure cut-line for four different mesh sizes.

Example, Oscillating Bubble (CSF)

Figure: Evolution of an oscillating bubble; standard explicit CSF method.

Example, Oscillating Bubble (CSF-LBI)

Figure: Evolution of an oscillating bubble; semi-implicit CSF-LBI method.

Example, Rising Bubble (CSF)

Figure: Evolution of a rising bubble with the standard explicit CSF method.

Example, Rising Bubble (CSF-LBI)

Figure: Evolution of a rising bubble with the semi-implicit CSF-LBI method.

A new implicit surface tension variant has been proposed which relaxes the capillary time step restriction imposed on explicit implementations

Additional advantages

- Fully implicit in space
- Is easily implemented when using the level set method together with finite elements
- Explicit computation of curvature not necessary
- Conceptually identical algorithm in 3D

Grid Deformation Techniques

Grid Deformation

Monitor function

• In the case of interfacial flow, then the **monitor function** f can be constructed from a distance function, giving the shortest distance to the interface, and possibly also weighting the interface curvature κ

 $f = f(|\phi(x)|, \kappa(x))$

- This makes the *level set method* ideally suited to use as interface tracking algorithm, since both the **distance function and curvature** are defined **globally**
- Special high-performance-computing techniques and hardware (GPU computing, Cell processor, Sony PSP3) can be exploited

Grid Deformation

Static Bubble Test

Figure: Pressure field for a static bubble with and without grid deformation

Static Bubble Test

Figure: Velocity error for a static bubble with and without grid deformation

GridLevel	3	4	5	6			
Tensor product grid							
U error	$3.7 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$	$5.6 \cdot 10^{-3}$			
P error	5.583%	1.433%	0.212%	0.037%			
Adapted grid							
U error	$2.0 \cdot 10^{-2}$	$7.3 \cdot 10^{-3}$	$3.5 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$			
P error	2.969%	0.261%	0.042%	0.013%			

Future Research Directions

In development...

- ALE techniques coupled with time dependent grid deformation
- Inclusion of *pressure separation* techniques to improve the velocity and pressure
- Linear high order *edge stabilization* for convection of the level set field
- $\mathbb{Q}_2\mathbb{P}_1$ finite element approximation for the NS-equations and \mathbb{Q}_n for the level set equation
- Contact angle, heat transfer, and solidification effects
- 3D + benchmarking