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Summary. Algebraic FEM-FCT and FEM-TVD schemes are integrated into in-
compressible flow solvers based on the ‘Multilevel Pressure Schur Complement’
(MPSC) approach. It is shown that algebraic flux correction is feasible for noncon-
forming (rotated bilinear) finite element approximations on unstructured meshes.
Both (approximate) operator-splitting and fully coupled solution strategies are in-
troduced for the discretized Navier-Stokes equations. The need for development
of robust and efficient iterative solvers (outer Newton-like schemes, linear multigrid
techniques, optimal smoothers/preconditioners) for implicit high-resolution schemes
is emphasized. Numerical treatment of extensions (Boussinesq approximation, k− ε
turbulence model) is addressed and pertinent implementation details are given. Sim-
ulation results are presented for three-dimensional benchmark problems as well as
for prototypical applications including multiphase and granular flows.

1 Introduction

For single-phase Newtonian fluids occupying a domain Ω ⊂ Rd (d = 2, 3)
during the time interval (t0, t0+T ], the incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u − ν∆u + ∇p = f , (1)

∇·u = 0

describe the laminar flow motion which depends on the physical properties of
the fluid (viscosity ν) and, possibly, on some external forces f like buoyancy.
The constant density ρ is “hidden” in the pressure p(x1, . . . , xd, t) which ad-
justs itself instantaneously so as to render the time-dependent velocity field
u(x1, . . . , xd, t) divergence-free. The problem statement is completed by spec-
ifying the initial and boundary values for each particular application.
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Although these equations seem to have a quite simple structure, they con-
stitute a ‘grand challenge’ problem for mathematicians, physicists, and engi-
neers alike, and they are (still) object of intensive research activities in the field
of Computational Fluid Dynamics (CFD). Incompressible flow problems are
especially interesting from the viewpoint of applied mathematics and scientific
computing, since they embody the whole range of difficulties which typically
arise in the numerical treatment of partial differential equations. Therefore,
they provide a perfect starting point for the development of reliable numerical
algorithms and efficient software for CFD simulations.

Specifically, the problems which scientists and engineers are frequently
confronted with, concern the following aspects:

• time-dependent partial differential equations in complex domains
• strongly nonlinear and stiff systems of intricately coupled equations
• convection-dominated transport at high Reynolds numbers (Re ≈ 1

ν )
• saddle–point problems due to the incompressibility constraint
• local changes of the problem character in space and time

Fig. 1. Experiment (source: Van Dyke’s ‘Album of Fluid Motion’) vs. numerical
simulation (source: ‘Virtual Album of Fluid Motion’) for flow around a cylinder.

These peculiarities of our model problem impose stringent requirements
on virtually all stages of algorithm design: discretization, solver, and software
engineering. In particular, the following difficulties must be reckoned with

• nonlinear systems for millions of unknowns (large but sparse matrices)
• conditional stability (explicit schemes) and/or proper time step control
• anisotropic/unstructured meshes (boundary layers, complex geometries)

Active research aimed at the development of improved numerical methods
for the incompressible Navier-Stokes equations has been going on for more
than three decades. The number of publications on this topic is enormous
(see the book by Gresho et al. [14] for a comprehensive overview). However,
in many cases the computational results produced by the available CFD tools
are only qualitatively correct. A quantitatively precise flow prediction for real-
life problems requires that the accuracy of discretization schemes be enhanced
and/or the solvers become more efficient. This can be easily demonstrated by
benchmark computations [40], especially for nonstationary flows.
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Moreover, a current trend in CFD is to combine the ‘basic’ Navier-Stokes
equations (2) with more or less sophisticated engineering models from physics
and chemistry which describe industrial applications involving turbulence,
multiphase flow, nonlinear fluids, combustion/detonation, free and moving
boundaries, fluid-structure interaction, weakly compressible effects, etc. These
extensions, some which will be discussed in the present chapter, have one thing
in common: they require highly accurate and robust discretization techniques
as well as efficient solution algorithms for generalized Navier–Stokes–like sys-
tems. In order to design and implement such powerful numerical methods for
real-life problems, many additional aspects need to be taken into account.

The main ingredients of an ‘ultimate’ CFD code are as follows

• advanced mathematical methods for PDEs (→ discretization)
• efficient solution techniques for algebraic systems (→ solver)
• reliable and hardware-optimized software (→ implementation)

If all of these components were available, the number of unknowns could be
significantly reduced (e.g., via adaptivity or a high-order approximation) and,
moreover, discrete problems of the same size could be solved more efficiently.
Hence, the marriage of optimal numerical methods and fast iterative solvers
would make it possible to exploit the potential of modern computers to the full
extent and enhance the performance of incompressible flow solvers (improve
the MFLOP/s rates) by orders of magnitude. This is why these algorithmic
aspects play an increasingly important role in contemporary CFD research.

In this contribution, we briefly review the Multilevel Pressure Schur Com-
plement (MPSC) approach to solution of the incompressible Navier-Stokes
equations and combine it with a FEM-FCT or FEM-TVD discretization of
the (nonlinear) convective terms. We will explain the ramifications of these
new (for the FEM community) algebraic high-resolution schemes as applied to
incompressible flow problems and discuss a number of computational details
regarding the efficient numerical solution of the resulting nonlinear and linear
algebraic systems. Furthermore, we will examine different coupling mecha-
nisms between the ‘basic’ flow model (standard Navier-Stokes equations for
the velocity and pressure) and additional scalar or vector-valued transport
equations. The primary goal is numerical simulation of high Reynolds number
flows which require special stabilization techniques and/or advanced turbu-
lence models in order to capture the relevant physical effects.

On the other hand, we also consider incompressible flows at intermediate
and low Reynolds numbers. They may call for a different solution strategy
but the evolution of scalar variables (temperatures, concentrations, proba-
bility densities, volume fractions, level set functions etc.) is still dominated
by transport operators. Moreover, the transported quantities are inherently
nonnegative in many cases. Therefore, standard discretization techniques may
fail, whereas the positivity-preserving FCT/TVD schemes persevere and yield
excellent results as the numerical examples in this chapter will illustrate.
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2 Discretization of the Navier-Stokes Equations

Let us discretize the Navier–Stokes equations (2) in time by a standard method
for numerical solution of ODEs. For instance, an implicit θ–scheme (backward
Euler or Crank-Nicolson) or its three-step counterpart proposed by Glowinski
yields a sequence of boundary value problems of the form [47]

Given u(tn), compute u = u(tn+1) and p = p(tn+1) by solving

[I + θ∆t(u · ∇ − ν∆)]u + ∆t∇p = [I − θ1∆t(u(tn) · ∇ − ν∆)]u(tn)

+ θ2∆tf(tn+1) + θ3∆tf(tn) (2)

subject to the incompressibility constraint ∇ · u = 0.

For the spatial discretization, we choose a finite element approach. How-
ever finite volumes, finite differences or spectral methods are possible, too.
A finite element model of the Navier–Stokes equations is based on a suitable
variational formulation. On the finite mesh Th (triangles, quadrilaterals or
their analogues in 3D) covering the domain Ω with local mesh size h, one
defines polynomial trial functions for velocity and pressure. These spaces Hh

and Lh should lead to numerically stable approximations as h → 0, i.e., they
should satisfy the so-called Babuška–Brezzi (BB) condition [12]

min
qh∈Lh

max
vh∈Hh

(qh,∇ · vh)

‖qh‖0 ‖∇vh‖0
≥ γ > 0 (3)

with a mesh–independent constant γ. On the other hand, equal order interpo-
lations for velocity and pressure are also admissible provided that an a priori
unstable discretization is stabilized in an appropriate way (see, e.g., [19]).

In what follows, we employ the stable Q̃1/Q0 finite element pair (rotated
bilinear/trilinear shape functions for the velocities, and a piecewise constant
pressure approximation). In the two-dimensional case, the nodal values are
the mean values of the velocity vector over the element edges, and the mean
values of the pressure over the elements (see Fig. 2).

p

u,v

u,v

u,v

u,v

Fig. 2. Nodal points of the nonconforming finite element pair Q̃1/Q0.
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This nonconforming finite element is a quadrilateral counterpart of the
well–known triangular Stokes element of Crouzeix–Raviart [6] and can easily
be defined in three space dimensions. A convergence analysis is given in [39]
and computational results are reported in [42] and [43]. An important advan-
tage of this finite element pair is the availability of efficient multigrid solvers
which are sufficiently robust in the whole range of Reynolds numbers even on
nonuniform and highly anisotropic meshes [41],[47].

Using the notation u and p also for the coefficient vectors in the represen-
tation of the approximate solution, the discrete version of problem (2) may
be written as a coupled (nonlinear) algebraic system of the form:

Given un and g, compute u = un+1 and p = pn+1 by solving

Au + ∆tBp = g , BT u = 0, where (4)

g = [M − θ1∆tN(un)]un + θ2∆tfn+1 + θ3∆tfn . (5)

Here M is the (consistent or lumped) mass matrix, B is the discrete gradient
operator, and −BT is the associated divergence operator. Furthermore,

Au = [M − θ∆tN(u)]u, N(u) = K(u) + νL, (6)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator
incorporating a certain amount of artificial diffusion. In the sequel, we assume
that it corresponds to a FEM-TVD discretization of the convective term,
although algebraic flux correction of FCT type or conventional stabilization
techniques (upwinding, streamline diffusion) are also feasible.

The solution of nonlinear algebraic systems like (4) is a rather difficult
task and many aspects need to be taken into account:

• treatment of the nonlinearity: fully nonlinear solution by Newton–like
methods or iterative defect correction, explicit or implicit underrelaxation,
monitoring of convergence rates, choice of stopping criteria etc.

• treatment of the incompressibility: strongly coupled approach (simul-
taneous solution for u and p) vs. segregated algorithms based on operator
splitting at the continuous or discrete level (classical projection schemes
[3],[56] and pressure correction methods like SIMPLE [8],[34]).

• complete outer control: problem-dependent degree of coupling and/or
implicitness, optimal choice of linear algebra tools (iterative solvers and
underlying smoothers/preconditioners), automatic time step control etc.

This abundance of choices leads to a great variety of incompressible flow
solvers which are closely related to one another but exhibit considerable dif-
ferences in terms of their stability, convergence, and efficiency. The Multilevel
Pressure Schur Complement (MPSC) approach outlined below makes it pos-
sible to put many existing solution techniques into a common framework and
combine their advantages so as to obtain better run-time characteristics. For
a detailed presentation and a numerical study of the resulting schemes, the
interested reader is referred to the monograph by Turek [47].
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3 Pressure Schur Complement Solvers

The fully discretized Navier-Stokes equations (4) as well as the linear sub-
problems to be solved within the outer iteration loop for a fixed-point defect
correction or a Newton-like method admit the following representation

[

A ∆tB
BT 0

] [

u
p

]

=

[

g
0

]

. (7)

This is a saddle point problem in which the pressure acts as the Lagrange
multiplier for the incompressibility constraint. In general, we have

A = αM + βN(u) , where β = −θ∆t. (8)

For time-dependent problems, the parameter α is set equal to unity, whereas
the steady-state formulation is recovered for α := 0 and β := −1.

If the operator A is nonsingular, the velocity can be formally expressed as

u = A−1(g − ∆tBp) (9)

and plugged into the discretized continuity equation

BT u = 0 (10)

which gives a scalar Schur complement equation for the pressure

BT A−1Bp =
1

∆t
BT A−1g. (11)

Thus, the coupled system (7) can be handled as follows

1. Solve the Pressure Schur Complement (PSC) equation (11) for p.
2. Substitute p into relation (9) and compute the velocity u.

It is worth mentioning that the matrix A−1 is full and should not be assembled
explicitly. Instead, an auxiliary problem is to be solved by a direct method or
by inner iterations. For instance, the velocity update (9) is equivalent to the
solution of the discretized momentum equation Au = g − ∆tBp.

Likewise, the matrix S := BT A−1B is never generated in practice. Doing
so would be prohibitively expensive in terms of CPU time and memory re-
quirements. It is instructive to consider a preconditioned Richardson method
which yields the following basic iteration for the PSC equation

p(l+1) = p(l) − C−1

[

Sp(l) − 1

∆t
BT A−1g

]

, l = 0, . . . , L − 1. (12)

Here C is a suitable preconditioner which is supposed to be a reasonable
approximation to S but be easier to ‘invert’ in an iterative way.
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The number of PSC cycles L can be fixed or chosen adaptively so as to
achieve a prescribed tolerance for the residual. The choice C := S and L = 1 is
equivalent to the coupled solution of the original saddle-point problem (7). In
principle, this challenging task can be accomplished by a properly configured
multigrid method. However, the computational cost per iteration is very high
and severe problems are sometimes observed on anisotropic grids that contain
cells with high aspect ratios. Moreover, the convergence rates do not improve
as the time step ∆t is refined. Indeed, note that

A = M − θ∆tN(u) ≈ M + O(∆t) (13)

for sufficiently small time steps. In this case, A can be interpreted as a nonsym-
metric (and nonlinear) but well conditioned perturbation of the mass matrix
M . On the other hand, the PSC equation (11) reveals that

cond(S) = cond(BT [M + O(∆t)]−1B) ≈ cond(L) = O(h−2) . (14)

It follows that the condition number of the coupled system (7) is bounded from
below by O(h−2) regardless of the time step. The nonsymmetric matrix A
acting on the velocity components ‘improves’ for small ∆t but, unfortunately,
the overall convergence rates of coupled solvers depend also on the elliptic
part BT A−1B ≈ BT M−1B which is (almost) time step invariant.

In light of the above, the coupled solution strategy is inappropriate for nu-
merical simulation of nonstationary flows which are dominated by convection
and call for the use of small time steps. Hence, the preconditioner C for the
Schur complement operator should be designed so as to take relation (13) into
account. Let us consider ‘crude’ approximations of the form

C := BT Ã−1B, (15)

where the matrix Ã should be readily ‘invertible’ but stay close to A at least
in the limit ∆t → 0. Some typical choices are as follows

Ã := diag(A), Ã := ML, and Ã := M − θ∆tνL.

Incompressible flow solvers based on the Richardson iteration (12) with this
sort of preconditioning comprise fractional-step projection methods [7],[15],
[36],[46], various modifications of the SIMPLE algorithm (for an overview, see
Engelman [8] and the literature cited therein) as well as Uzawa-like iterations.
They can be classified as global pressure Schur complement schemes due to
the fact that C is an approximation to the global matrix S = BT A−1B.

On the other hand, coupled solution techniques are to be recommended for
the treatment of (quasi-) stationary flows and Navier-Stokes equations com-
bined with RANS turbulence models and/or convection-diffusion equations
for other scalar quantities (temperatures, concentrations etc). In this case, it
is worthwhile to approximate the pressure Schur complement operator locally
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via direct inversion of small matrix blocks associated with subdomains Ωi of
the domain Ω or, in general, with a subset of the unknowns to be solved for.
The resulting local pressure Schur complement techniques correspond to

C−1 :=
∑

i

(BT
|Ωi

A−1
|Ωi

B|Ωi
)−1, (16)

whereby the patches Ωi are usually related to the underlying mesh and can
consist of single elements or element clusters. The global relaxation scheme
is obtained by embedding these “local solvers” into an outer iteration loop of
Jacobi or Gauss–Seidel type. This strategy has a lot in common with domain
decomposition methods, but is more flexible when it comes to the treatment
of boundary conditions. A typical representative of local PSC schemes is the
Vanka smoother [55] which is widely used in the multigrid community.

Furthermore, it is possible to combine incompressible flow solvers based
on global PSC (“operator splitting”) and local PSC (“domain decomposi-
tion”) methods in a general-purpose CFD code. Indeed, all of these seemingly
different solution techniques utilize additive preconditioners of the form

C−1 :=
∑

i

αiC
−1
i .

In the next two sections, we briefly discuss the design of such preconditioners
and present the resulting basic iteration schemes which can be used as

• preconditioners for Krylov space methods (CG, BiCGSTAB, GMRES)
• Multilevel pressure Schur complement (MPSC) smoothers for multigrid

The multigrid approach is usually more efficient, as demonstrated by bench-
mark computations in [40] (see also the numerical examples below).

4 Global MPSC Approach

The basic idea behind the family of global MPSC schemes is the construction
of globally defined additive preconditioners for the Schur complement operator
S = BT A−1B. Recall that the matrix A has the following structure

A := αM + βK(u) + γL, (17)

where β = −θ∆t and γ = νβ. Unfortunately, it is hardly possible to construct
a matrix Ã and a preconditioner C = BT Ã−1B that would be a sufficiently
good approximation to all three components of A and S, respectively. There-
fore, one can start with developing individual preconditioners for the reactive
(M), convective (K), and diffusive (L) part. In other words, the original prob-
lem can be decomposed into simpler tasks by resorting to operator splitting.
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Let the inverse of C be composed from those of ‘optimal’ preconditioners
for the limiting cases of a divergence–free L2-projection (for small time steps),
incompressible Euler equations, and a diffusion-dominated Stokes problem

C−1 = α′C−1
M + β′C−1

K + γ′C−1
L ≈ S−1, (18)

where the user-defined parameters (α′, β′, γ′) may toggle between (α, β, γ)
and zero depending on the flow regime. Furthermore, it is implied that

CM is an ‘optimal’ approximation of the reactive part BT M−1B,

CK is an ‘optimal’ approximation of the convective part BT K−1B,

CL is an ‘optimal’ approximation of the diffusive part BT L−1B.

The meaning of ‘optimality’ has to be defined more precisely. Ideally,
partial preconditioners should be direct solvers with respect to the under-
lying subproblem. In fact, this may even be true for the fully ‘reactive’ case
S = BT M−1B. However, if these preconditioners are applied as smoothers
in a multigrid context and the convergence rates are largely independent of
outer parameter settings as well as of the underlying mesh, then this is already
sufficient for optimality of the global MPSC solver. Preconditioners CM , CK ,
and CL satisfying this criterion are introduced and analyzed in [47].

At high Reynolds numbers, the time steps must remain small due to the
physical scales of flow motion. Therefore, the lumped mass matrix ML proves
to be a reasonable approximation to the complete operator A. In this case,
our basic iteration (12) for the pressure Schur complement equation

p(l+1) = p(l) + [BT M−1
L B]−1 1

∆t
BT A−1

[

g − ∆tBp(l)
]

(19)

can be interpreted and implemented as a discrete projection scheme such as
those proposed in [7],[15],[36]. The main algorithmic steps are as follows [46]

1. Solve the ‘viscous Burgers’ equation for ũ

Aũ = g − ∆tBp(l).

2. Solve the discrete ‘Pressure-Poisson’ problem

BT M−1
L Bq =

1

∆t
BT ũ.

3. Correct the pressure and the velocity

p(l+1) = p(l) + q, u = ũ − ∆tM−1
L Bq.

In essence, the right-hand side of the momentum equation is assembled using
the old pressure iterate and the intermediate velocity ũ is projected onto the
subspace of solenoidal functions so as to satisfy the constraint BT u = 0.
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The matrix BT M−1
L B corresponds to a mixed discretization of the Lapla-

cian operator [15] so that this method is a discrete analogue of the classical
projection schemes derived by Chorin (p(0) = 0) and Van Kan (p(0) = p(tn))
via operator splitting for the continuous problem [3],[56]. For an in-depth pre-
sentation of continuous projection schemes we refer to [35],[36]. Our discrete
approach offers a number of important advantages including

• applicability to discontinuous pressure approximations
• consistent treatment (no splitting) of boundary conditions
• alleviation of spurious boundary layers for the pressure
• convergence to the fully coupled solution as l increases
• remarkable efficiency for nonstationary flow problems

On the other hand, discrete projection methods lack the inherent stabilization
mechanisms that make their continuous counterparts applicable to equal-order
interpolations provided that the time step is not too small [35].

In our experience, it is often sufficient to perform exactly L = 1 pressure
Schur complement iteration with just one multigrid sweep. Due to the fact
that the numerical effort for solving the linear subproblems is insignificant,
global MPSC methods are much more efficient than coupled solvers in the high
Reynolds number regime. However, they perform so well only for relatively
small time steps, so that the more robust local MPSC schemes are to be
recommended for low Reynolds number flows.

5 Local MPSC Approach

The local pressure Schur complement approach is tailored to solving ‘small’
problems so as to exploit the fast cache of modern processors, in contrast to
the readily vectorizable global MPSC schemes. As already mentioned above,
the basic idea is to subdivide the complete set of unknowns into patches
Ωi and solve the local subproblems exactly within an outer block-Gauss-
Seidel/Jacobi iteration loop. Typically, every patch (macroelement) for this
‘domain decomposition’ method consists of one or several neighboring mesh
cells and the corresponding local ‘stiffness matrix’ Ci is given by

Ci :=

[

Ã|Ωi
∆tB|Ωi

BT
|Ωi

0

]

. (20)

Its coefficients (and hence the corresponding ‘boundary conditions’ for the
subdomains) are taken from the global matrices, whereby Ã may represent ei-
ther the complete velocity matrix A or some approximation of it, for instance,
the diagonal part diag(A). The local subproblems at hand are so small that
they can be solved directly by Gaussian elimination. This is equivalent to
applying the inverse of Ci to a portion of the global defect vector.
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The elimination process leads to a fill-in of the matrix, which increases the
storage requirements dramatically. Thus, it is advisable to solve the equivalent
local pressure Schur complement problem with the compact matrix

Si := BT
|Ωi

Ã−1
|Ωi

B|Ωi
. (21)

In general, Si is a full matrix but it is much smaller than Ci, since only
the pressure values are solved for. If the patch Ωi contains just a moderate
number of elements, the pressure Schur complement matrix is likely to fit into
the processor cache. Having solved the local PSC subproblem, one can recover
the corresponding velocity field as described in the previous section.

In any case, the basic iteration for a local MPSC method reads

[

u(l+1)

p(l+1)

]

=

[

u(l)

p(l)

]

− ω(l+1)

Np
∑

i=1

[

Ã|Ωi
∆tB|Ωi

BT
|Ωi

0

]−1
[

δu
(l)
i

δp
(l)
i

]

, (22)

where Np denotes the total number of patches, ω(l+1) is a relaxation param-
eter, and the global defect vector restricted to a single patch Ωi is given by

[

δu
(l)
i

δp
(l)
i

]

=

([

A ∆tB
BT 0

] [

u(l)

p(l)

]

−
[

g
0

])

|Ωi

. (23)

In practice, we solve the corresponding auxiliary problem

[

Ã|Ωi
∆tB|Ωi

BT
|Ωi

0

]

[

v
(l+1)
i

q
(l+1)
i

]

=

[

δu
(l)
i

δp
(l)
i

]

(24)

and compute the new iterates u
(l+1)
|Ωi

and p
(l+1)
|Ωi

as follows

[

u
(l+1)
|Ωi

p
(l+1)
|Ωi

]

=

[

u
(l)
|Ωi

p
(l)
|Ωi

]

− ω(l+1)

[

v
(l+1)
i

q
(l+1)
i

]

. (25)

This two-step relaxation procedure is applied to each patch, so some velocity
or pressure components may end up being updated several times. The easiest
way to obtain globally defined solution values at subdomain boundaries is to
overwrite the contributions of previously processed patches or to calculate an
average over all patch contributions to the computational node.

The resulting local MPSC method corresponds to a simple block-Jacobi
iteration for the mixed problem (4). Its robustness and efficiency can be easily
enhanced by computing the local defect vector (23) using the possibly updated

solution values rather than the old iterates u
(l)
|Ωi

and p
(l)
|Ωi

for the degrees of

freedom shared with other patches. This strategy is known as the block-Gauss-
Seidel method. Its performance is superior to that of the block–Jacobi scheme,
while the numerical effort is approximately the same (for a sequential code).
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It is common knowledge that block-iterative methods of Jacobi and Gauss-
Seidel type do a very good job as long as there are no strong mesh anisotropies.
However, the convergence rates deteriorate dramatically for irregular triangu-
lations which contain elements with high aspect ratios (for example, stretched
cells needed to resolve a boundary layer) and/or large differences between the
size of two neighboring elements. The use of ILU techniques alleviates this
problem but is impractical for strongly coupled systems of equations. A much
better remedy is to combine the mesh elements so as to ‘hide’ the detrimental
anisotropies inside of the patches which are supposed to have approximately
the same shape and size. Several adaptive blocking strategies for generation
of such isotropic subdomains are described in [41],[47].

The global convergence behavior will be satisfactory because only the local
subproblems are ill-conditioned. Moreover, the size of these local problems is
usually very small. Thus, the complete inverse of the matrix fits into RAM and
sometimes even into the cache so that the use of fast direct solvers is feasible.
Consequently, the convergence rates should be independent of grid distortions
and approach those for very regular structured meshes. If hardware–optimized
routines such as the BLAS libraries are employed, then the solution of small
subproblems can be performed very efficiently. Excellent convergence rates
and a high overall performance can be achieved if the code is properly tuned
and adapted to the processor architecture in each particular case.

6 Multilevel Solution Strategy

Pressure Schur complement schemes constitute viable solution techniques as
such but they are particularly useful as smoothers for a multilevel algorithm,
e.g., a geometric multigrid method. Let us start with explaining the typical
implementation of such a solver for an abstract linear system of the form

ANuN = fN . (26)

It is assumed that there exists a hierarchy of levels k = 1, . . . , N which may be
characterized, for instance, by the mesh size hk. On each of these levels, one
needs to assemble the matrix Ak and the right-hand side fk for the discrete
problem. We remark that only fN is available a priori, while the sequence of
residual vectors {fk} for k < N is generated during the multigrid run.

The main ingredients of a (linear) multigrid algorithm are

• matrix–vector multiplication routines for the operators Ak, k ≤ N
• an efficient smoother (basic iteration scheme) and a coarse grid solver
• prolongation Ik

k−1 and restriction Ik−1
k operators for grid transfer

Each k-level iteration MPSC(k, u0
k, fk) with initial guess u0

k represents a
multigrid cycle which yields an (approximate) solution of the linear system
Akuk = fk. On the first level, the number of unknowns is typically so small
that the auxiliary problem can be solved directly: MPSC(1, u0

1, f1) = A−1
1 f1.



Algebraic Flux Correction III 13

For all other levels (k > 1), the following algorithm is adopted [47]

Step 1. Presmoothing

Apply m smoothing steps (PSC iterations) to u0
k to obtain um

k .

Step 2. Coarse grid correction

Calculate fk−1 using the restriction operator Ik−1
k via

fk−1 = Ik−1
k (fk − Akum

k )

and let ui
k−1 (1 ≤ i ≤ p) be defined recursively by

ui
k−1 = MPSC(k − 1, ui−1

k−1, fk−1), u0
k−1 = 0 .

Step 3. Relaxation and update

Calculate um+1
k using the prolongation operator Ik

k−1 via

um+1
k = um

k + αkIk
k−1u

p
k−1 , (27)

where the relaxation parameter αk may be fixed or chosen adaptively
so as to minimize the error um+1

k − uk in an appropriate norm, for
instance, in the discrete energy norm

αk =
(fk − Akum

k , Ik
k−1u

p
k−1)k

(AkIk
k−1u

p
k−1, I

k
k−1u

p
k−1)k

.

Step 4. Postsmoothing

Apply n smoothing steps (PSC iterations) to um+1
k to obtain um+n+1

k .

After sufficiently many cycles on level N , the desired solution uN of the generic
problem (26) is recovered. In the framework of our multilevel pressure Schur
complement schemes, there are (at least) two possible scenarios:

Global MPSC approach Solve the discrete problem (26) with

AN := BT A−1B, uN := p, fN :=
1

∆t
BT A−1g.

The basic iteration is given by (19) and equivalent to a discrete projection cy-
cle, whereby the velocity field u is updated in a parallel manner (see above).
The bulk of CPU time is spent on matrix-vector multiplications with the
Schur complement operator S = BT A−1B which is needed for smoothing,
defect calculation, and adaptive coarse grid correction. Unlike standard multi-
grid methods for scalar problems, global MPSC schemes involve solutions of
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a viscous Burgers equation and a Poisson-like problem in each matrix-vector
multiplication step (to avoid matrix inversion). In the case of highly nonsta-
tionary flows, the overhead cost is insignificant but it becomes appreciable as
the Reynolds number decreases. Nevertheless, numerical tests indicate that
the resulting multigrid solvers are optimal in the sense that the convergence
rates are excellent and largely independent of mesh anisotropies.

Local MPSC approach Solve the discrete problem (26) with

AN :=

[

A ∆tB
BT 0

]

, uN :=

[

u
p

]

, fN :=

[

g
0

]

.

The basic iteration is given by (22) which corresponds to the block-Gauss-
Seidel/Jacobi method. The cost-intensive part is the smoothing step, as in
the case of standard multigrid techniques for convection-diffusion equations
and Poisson-like problems. Local MPSC schemes lead to very robust solvers
for coupled problems. This multilevel solution strategy is to be recommended
for incompressible flows at low and intermediate Reynolds numbers.

Further algorithmic details (adaptive coarse grid correction, grid transfer
operators, nonlinear iteration techniques, time step control, implementation
of boundary conditions) and a description of the high-performance software
package featflow based on MPSC solvers can be found in [47],[48]. Some
programming strategies, data structures, and guidelines for the development
of a hardware-oriented parallel code are presented in [49],[50],[51].

7 Coupling with Scalar Equations

Both global and local MPSC schemes are readily applicable to the Navier-
Stokes equations coupled with various turbulence models and/or scalar con-
servation laws for temperatures, concentrations, volume fractions, and other
scalar variables. In many cases, the quantities of interest must remain strictly
nonnegative for physical reasons, and the failure to enforce the positivity con-
straint for the numerical solution may have disastrous consequences. There-
fore, a positivity-preserving discretization of convective terms is indispensable
for such applications. This prerequisite is clearly satisfied by the algebraic
FEM-FCT and FEM-TVD schemes introduced in the previous chapters.

As a representative example of a two-way coupling between (2) and a scalar
transport equation, we consider the well-known Boussinesq approximation
for natural convection problems. The nondimensional form of the governing
equations for a buoyancy-driven incompressible flow reads [4]

∂u

∂t
+ u · ∇u + ∇p = ν∆u + Teg, (28)

∂T

∂t
+ u · ∇T = d∆T, ∇ · u = 0, (29)



Algebraic Flux Correction III 15

where u is the velocity, p is the deviation from hydrostatic pressure and T
is the temperature. The unit vector eg is directed ‘upward’ (opposite to the
gravitational force) and the nondimensional diffusion coefficients

ν =

√

Pr

Ra
, d =

√

1

RaPr

depend on the Rayleigh number Ra and the Prandtl number Pr. Details of
this model and parameter settings for the MIT benchmark problem (natural
convection in a differentially heated enclosure) can be found in [4].

7.1 Finite element discretization

After the discretization in space and time, we obtain a system of nonlinear
algebraic equations which can be written in matrix form as follows

Au(un+1)un+1 + ∆tMT Tn+1 + ∆tBpn+1 = fu, (30)

AT (un+1)Tn+1 = fT , BT un+1 = 0. (31)

Here and below the superscript n+1 refers to the time level, while subscripts
identify the origin of discrete operators (u for the momentum equation and T
for the heat conduction equation). Furthermore, the matrices Au and AT can
be decomposed into a reactive, convective, and diffusive part

Au(v) = αuMu + βuKu(v) + γuLu, (32)

AT (v) = αT MT + βT KT (v) + γT LT . (33)

Note that we have the freedom of using different finite element approximations
and discretization schemes for the velocity u and temperature T .

The discrete problem (30)–(31) admits the following representation




Au(un+1) ∆tMT ∆tB
0 AT (un+1) 0
BT 0 0









un+1

Tn+1

pn+1



 =





fu
fT

0



 (34)

and can be solved in the framework of a global or local MPSC method.

7.2 Global MPSC algorithm

Nonstationary flow configurations call for the use of operator splitting tools
for the coupled system (34). This straightforward approach consists in solv-
ing the Navier-Stokes equations for (u, p) and the energy equation for T in a
segregated manner. The decoupled subproblems are embedded into an outer
iteration loop and solved sequentially by a global MPSC method (discrete
projection) and an algebraic FCT/TVD scheme, respectively. For relatively
small time steps, this strategy works very well, and simulation software can be
developed in a modular way making use of optimized multigrid solvers. More-
over, it is possible to choose the time step individually for each subproblem.
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In the simplest case (just one outer iteration per time step), the sequence
of algorithmic steps to be performed is as follows [52]

1. Compute ũ from the momentum equation

Au(ũ)ũ = fu − ∆tMT Tn − ∆tBpn.

2. Solve the discrete Pressure-Poisson problem

BT M−1
L Bq =

1

∆t
BT ũ.

3. Correct the pressure and the velocity

pn+1 = pn + q, un+1 = ũ − ∆tM−1
L Bq.

4. Solve the convection-diffusion equation for T

AT (un+1)Tn+1 = fT .

Due to the nonlinearity of the discretized convective terms, iterative defect
correction or a Newton-like method must be invoked in steps 1 and 4. This
algorithm combined with the nonconforming FEM discretization appears to
provide an ‘optimal’ flow solver for unsteady natural convection problems.

7.3 Local MPSC algorithm

Alternatively, a fully coupled solution of the problem at hand can be obtained
following the local MPSC approach. To this end, a multigrid solver is applied
to the suitably linearized coupled system (34). Each outer iteration for the
nonlinearity corresponds to the following solution update [41],[52]





u(l+1)

T (l+1)

p(l+1



 =





u(l)

T (l)

p(l)



 − ω(l+1)[F (σ, l)]−1





δu(l)

δT (l)

δp(l)



 , (35)

where the global defect vector is given by the relation





δu(l)

δT (l)

δp(l)



 =





Au(u(l)) ∆tMT ∆tB
0 AT (u(l)) 0
BT 0 0









u(l)

T (l)

p(l)



 −





fu
fT

0



 (36)

and the matrix to be inverted corresponds to the (approximate) Fréchet
derivative of the underlying PDE system such that [41],[47]

F (σ, l) =





Au(u(l)) + σR(u(l)) ∆tMT ∆tB
σR(T (l)) AT (u(l)) 0
BT 0 0



 . (37)
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The nonlinearity of the governing equations gives rise to the ‘reactive’
contribution R which represents a solution-dependent mass matrix and may
cause severe convergence problems. This is why it is multiplied by the ad-
justable parameter σ. The Newton method is recovered for σ = 1, while the
value σ = 0 yields the fixed-point defect correction scheme. In either case, the
linearized problem is solved by a fully coupled multigrid solver equipped with
a local MPSC smoother of ‘Vanka’ type [41]. As before, the matrix F (σ, l) is
decomposed into small blocks Ci associated with individual patches Ωi. The
smoothing of the global residual vector is performed patchwise by solving the
corresponding local subproblems.

The size of the matrices to be inverted can be further reduced by resorting
to the Schur complement approach. For simplicity, consider the case σ = 0
(extension to σ > 0 is straightforward). It follows from (30)–(31) that

Tn+1 = A−1
T fT , un+1 = A−1

u [fu − ∆tMT Tn+1 − ∆tBpn+1] (38)

and the discretized continuity equation can be cast into the form

BT un+1 = BT A−1
u [fu − ∆tMT A−1

T fT − ∆tBpn+1] = 0 (39)

which corresponds to the pressure Schur complement equation

BT A−1
u Bpn+1 = BT A−1

u

[

1

∆t
fu − MT A−1

T fT

]

. (40)

Thus, highly efficient local preconditioners of the form (21) can be employed
instead of Ci. The converged solution pn+1 to the scalar subproblem (40) is
plugged into (38) to obtain the velocity un+1 and the temperature Tn+1.

The advantages of the seemingly complicated local MPSC strategy are as
follows. First of all, steady-state solutions can be obtained without resorting to
pseudo-time-stepping. Moreover, the fully coupled treatment of dynamic flows
makes it possible to use large time steps without any loss of robustness. On
the other hand, the convergence behavior of multigrid solvers for the Newton
linearization may turn out to be unsatisfactory and the computational cost
per outer iteration is rather high as compared to the global MPSC algorithm.
The performance of both solution techniques as applied to the MIT benchmark
problem is illustrated by the numerical results reported in [52].

8 Implementation of the k − ε Model

High-resolution schemes like FCT and TVD play an increasingly important
role in simulation of turbulent flows. Flow structures that cannot be resolved
on the computational mesh activate the flux limiter which curtails the raw an-
tidiffusion so as to filter out the small-scale fluctuations. Interestingly enough,
the residual artificial viscosity provides an excellent subgrid scale model for
monotonically integrated Large Eddy Simulation (MILES), see [2],[16].
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In spite of recent advances in the field of LES and DNS (direct numerical
simulation), simpler turbulence models based on Reynolds averaging (RANS)
still prevail in CFD software for simulation of industrial processes. In particu-
lar, the evolution of the turbulent kinetic energy k and of its dissipation rate
ε is governed by two convection-dominated transport equations

∂k

∂t
+ ∇ ·

(

ku − νT

σk
∇k

)

= Pk − ε, (41)

∂ε

∂t
+ ∇ ·

(

εu − νT

σε
∇ε

)

=
ε

k
(C1Pk − C2ε), (42)

where u denotes the averaged velocity, νT = Cµk2/ε is the turbulent eddy
viscosity and Pk = νT

2 |∇u + ∇uT |2 is the production term. For the standard
k − ε model, the default values of the involved parameters are as follows

Cµ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3.

The velocity field u is obtained from the incompressible Navier-Stokes equa-
tions with ∇ · (ν + νT )[∇u + (∇u)T ] instead of ν∆u.

We remark that the transport equations for k and ε are strongly cou-
pled and nonlinear so that their numerical solution is a very challenging task.
Moreover, the discretization scheme must be positivity-preserving because
negative values of the eddy viscosity are totally unacceptable. Unfortunately,
implementation details and employed ‘tricks’ are rarely reported in the liter-
ature, so that a novice to this area of CFD research often needs to reinvent
the wheel. Therefore, we deem it appropriate to discuss the implementation
of a FEM-TVD algorithm for the k − ε model in some detail.

8.1 Positivity-preserving linearization

The block-iterative algorithm proposed in [27],[28] consists of nested loops
so that the coupled PDE system is replaced by a sequence of linear sub-
problems. The solution-dependent coefficients are ‘frozen’ during each outer
iteration and updated as new values become available. The quasi-linear trans-
port equations can be solved by an implicit FEM-FCT or FEM-TVD scheme
but the linearization procedure must be tailored to the need to preserve the
positivity of k and ε in a numerical simulation. Due to the presence of sink
terms in the right-hand side of both equations, the positivity constraint may
be violated even if a high-resolution scheme is employed for the discretization
of convective terms. It can be proved that the exact solution to the k − ε
model remains nonnegative for positive initial data [32],[33] and it is essential
to guarantee that the numerical scheme will also possess this property.

Let us consider the following representation of the equations at hand [29]

∂k

∂t
+ ∇ · (ku − dk∇k) + γk = Pk, (43)

∂ε

∂t
+ ∇ · (εu − dε∇ε) + C2γε = C1Pk, (44)
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where the parameter γ = ε
k is proportional to the specific dissipation rate

(γ = Cµω). The turbulent dispersion coefficients are given by dk = νT

σk
and

dε = νT

σε
. By definition, the source terms in the right-hand side are nonnega-

tive. Furthermore, the parameters νT and γ must also be nonnegative for the
solution of the convection-reaction-diffusion equations to be well-behaved [5].
In our numerical algorithm, their values are taken from the previous iteration
and their positivity is secured as explained below. This linearization technique
was proposed by Lew et al. [29] who noticed that the positivity of the lagged
coefficients is even more important than that of the transported quantities and
can be readily enforced without violating the discrete conservation principle.

Applying an implicit FCT/TVD scheme to the above equations, we obtain
two nonlinear algebraic systems which can be written in the generic form

A(u(l+1))u(l+1) = B(u(l))u(l) + q(k), l = 0, 1, 2, . . . (45)

Here k is the index of the outermost loop in which the velocity u and the
source term Pk are updated. The index l refers to the outer iteration for the
k − ε model, while the index m is reserved for inner flux/defect correction
loops. The structure of the matrices A and B is as follows:

A(u) = ML − θ∆t(K∗(u) + T ), (46)

B(u) = ML + (1 − θ)∆t(K∗(u) + T ), (47)

where K∗(u) is the LED transport operator incorporating nonlinear anti-
diffusion and T denotes the standard reaction-diffusion operator which is a
symmetric positive-definite matrix with nonnegative off-diagonal entries. It is
obvious that the discretized production terms q(k) are also nonnegative. Thus,
the positivity of u(l) is inherited by the new iterate u(l+1) = A−1(Bu(l) +q(k))
provided that θ = 1 (backward Euler) or the time step is sufficiently small.

8.2 Positivity of coefficients

The predicted values k(l+1) and ε(l+1) are used to recompute the parameter

γ(l+1) for the next outer iteration (if any). The turbulent eddy viscosity ν
(k)
T is

updated in the outermost loop. In the turbulent flow regime νT ≫ ν and the
laminar viscosity ν can be neglected. Hence, we set νeff = νT , where the eddy
viscosity νT is bounded from below by ν and from above by the maximum
admissible mixing length lmax (e.g. the width of the computational domain).
Specifically, we define the limited mixing length l∗ as

l∗ =

{

α
ε if ε > α

lmax

lmax otherwise
, where α = Cµk3/2 (48)

and use it to update the turbulent eddy viscosity νT in the outermost loop:

νT = max{ν, l∗
√

k} (49)
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as well as the parameter γ in each outer iteration for the k − ε model:

γ = Cµ
k

ν∗
, where ν∗ = max{ν, l∗

√
k}. (50)

In the case of a FEM-TVD method, the positivity proof is only valid for the
converged solution to (45) while intermediate solution values may be negative.
Since it is impractical to perform many defect correction steps in each outer
iteration, it is worthwhile to substitute k∗ = max{0, k} for k in formulae
(48)–(50) so as to to prevent taking the square root of a negative number.
Upon convergence, this safeguard will not make any difference, since k will be
nonnegative from the outset. The above representation of νT and γ makes it
possible to preclude division by zero and obtain bounded coefficients without
making any ad hoc assumptions and affecting the actual values of k and ε.

8.3 Initial conditions

Another important issue which is seldom addressed in the CFD literature is
the initialization of data for the k − ε model. As a rule, it is rather difficult
to devise a reasonable initial guess for a steady-state simulation or proper
initial conditions for a dynamic one. The laminar Navier-Stokes equations (2)
remain valid until the flow gains enough momentum for the turbulent effects
to become pronounced. Therefore, the k − ε model should be activated at a
certain time t∗ > 0 after the startup.

During the ‘laminar’ initial phase (t ≤ t∗), a constant effective viscosity
ν0 is prescribed. The values to be assigned to k and ε at t = t∗ are uniquely
defined by the choice of ν0 and of the default mixing length l0 ∈ [lmin, lmax]
where lmin corresponds to the size of the smallest admissible eddies:

k0 =

(

ν0

l0

)2

, ε0 = Cµ
k

3/2
0

l0
at t ≤ t∗. (51)

This strategy was adopted because the effective viscosity ν0 and the mixing
length l0 are somewhat easier to estimate (at least for a CFD practitioner)
than k0 and ε0. In any case, long-term simulation results are typically not
very sensitive to the choice of initial data.

8.4 Boundary conditions

At the inlet Γin, all velocity components and the values of k and ε are given:

u = g, k = cbc|u|2, ε = Cµ
k3/2

l0
on Γin, (52)

where cbc ∈ [0.001, 0.01] is an empirical constant [5] and |u| =
√

u · u is the
Euclidean norm of the velocity. At the outlet Γout, the normal gradients of
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all scalar variables are required to vanish, and the ‘do-nothing’ [47] boundary
conditions are prescribed:

n · S(u) = 0, n · ∇k = 0, n · ∇ε = 0 on Γout. (53)

Here S(u) = −
(

p + 2
3k

)

I +(ν +νT )[∇u+(∇u)T ] denotes the effective stress
tensor. The numerical treatment of inflow and outflow boundary conditions
does not present any difficulty. In the finite element framework, relations (53)
imply that the surface integrals resulting from integration by parts vanish and
do not need to be assembled.

At an impervious solid wall Γw, the normal component of the velocity must
vanish, whereas tangential slip is permitted in turbulent flow simulations. The
implementation of the no-penetration (free slip) boundary condition

n · u = 0 on Γw (54)

is nontrivial if the boundary of the computational domain is not aligned with
the axes of the Cartesian coordinate system. In this case, condition (54)
is imposed on a linear combination of several velocity components whereas
their boundary values are unknown. Therefore, standard implementation tech-
niques for Dirichlet boundary conditions based on a modification of the cor-
responding matrix rows [47] cannot be used.

In order to set the normal velocity component equal to zero, we nullify

the off-diagonal entries of the preconditioner A(u(m)) = {a(m)
ij } in the defect

correction loop. This enables us to compute the boundary values of u explicitly
before solving a sequence of linear systems for the velocity components:

a
(m)
ij := 0, ∀j 6= i, u∗

i := u
(m)
i + r

(m)
i /a

(m)
ii for xi ∈ Γw. (55)

Next, we project the predicted values u∗
i onto the tangent vector/plane and

constrain the corresponding entry of the defect vector r
(m)
i to be zero

u
(m)
i := u∗

i − (ni · u∗
i )ni, r

(m)
i := 0 for xi ∈ Γw. (56)

After this manipulation, the corrected values u
(m)
i act as Dirichlet boundary

conditions for the solution u
(m+1)
i at the end of the defect correction step.

As an alternative to the implementation technique of predictor-corrector
type, the projection can be applied to the residual vector rather than to the
nodal values of the velocity:

a
(m)
ij := 0, ∀j 6= i, r

(m)
i := r

(m)
i − (ni · r(m)

i )ni for xi ∈ Γw. (57)

For Cartesian geometries, the algebraic manipulations to be performed affect
just the normal velocity component. Note that virtually no extra programming
effort is required, which is a significant advantage as compared to another
feasible implementation based on local coordinate transformations during the
element-by-element matrix assembly [9].
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8.5 Wall functions

To complete the problem statement, we still need to prescribe the tangential
stress as well as the boundary values of k and ε on Γw. Note that the equations
of the k − ε model are invalid in the vicinity of the wall where the Reynolds
number is rather low and viscous effects are dominant. In order to avoid
the need for resolution of strong velocity gradients, wall functions can be
derived using the boundary layer theory and applied at an internal boundary
Γδ located at a distance δ from the solid wall Γw [31],[32],[33].

In essence, a boundary layer of width δ is removed from the actual com-
putational domain Ω and the equations are solved in the reduced domain Ωδ

subject to the following empirical boundary conditions:

n · D(u) · t = −u2
τ

u

|u| , k =
u2

τ
√

Cµ

, ε =
u3

τ

κδ
on Γδ. (58)

Here D(u) = (ν +νT )[∇u+(∇u)T ] is the viscous part of the stress tensor, the
unit vector t refers to the tangential direction, κ = 0.41 is the von Kármán
constant and uτ is the friction velocity which is assumed to satisfy

g(uτ ) = |u| − uτ

(

1

κ
log y+ + 5.5

)

= 0 (59)

in the logarithmic layer, where the local Reynolds number y+ = uτ δ
ν is in the

range 20 ≤ y+ ≤ 100, and be a linear function of y+ in the viscous sublayer,
where y+ < 20. Note that u represents the tangential velocity as long as the
no-penetration condition (54) is imposed on Γδ.

Equation (59) can be solved iteratively, e.g., by Newton’s method [31]:

ul+1
τ = ul

τ − g(ul
τ )

g′(ul
τ )

= ul
τ +

|u| − uτf(ul
τ )

1/κ + f(ul
τ )

, l = 0, 1, 2, . . . (60)

where the auxiliary function f is given by

f(uτ ) =
1

κ
log y+

∗ + 5.5, y+
∗ = max

{

20,
uτδ

ν

}

.

The friction velocity is initialized by the approximation

u0
τ =

√

ν|u|
δ

and no iterations are performed if it turns out that y+ =
u0

τ δ
ν < 20. In other

words, uτ = u0
τ in the viscous sublayer. Moreover, we use y+

∗ = max{20, y+}
in the Newton iteration to guarantee that the approximate solution belongs
to the logarithmic layer and remains bounded for y+ → 0.
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The friction velocity uτ is plugged into (58) to compute the tangential
stress, which yields a natural boundary condition for the velocity. Integration
by parts in the weak form of the Navier-Stokes equations gives rise to a surface
integral over the internal boundary Γδ which contains the prescribed traction:

∫

Γδ

[n · D(u) · t] · v ds = −
∫

Γδ

u2
τ

u

|u| · v ds. (61)

The free slip condition (54) overrides the normal stress, and Dirichlet bound-
ary conditions for k and ε are imposed in the strong sense. For further details
regarding the implementation of wall laws we refer to [31],[32],[33].

8.6 Underrelaxation for outer iterations

Due to the intricate coupling of the governing equations, it is sometimes
worthwhile to use a suitable underrelaxation technique in order to prevent
the growth of numerical instabilities and secure the convergence of outer it-
erations. This task can be accomplished by limiting the computed solution
increments before applying them to the last iterate:

u(m+1) := u(m) + ω(m)(u(m+1) − u(m)), where 0 ≤ ω(m) ≤ 1. (62)

The damping factor ω(m) may be chosen adaptively so as to accelerate con-
vergence and minimize the error in a certain norm [47]. However, fixed values
(for example, ω = 0.8) usually suffice for practical purposes. The sort of un-
derrelaxation can be used in all loops (indexed by k, l and m) and applied to
selected dependent variables like k, ε or νT .

In addition, an implicit underrelaxation can be performed in m-loops by
increasing the diagonal dominance of the preconditioner [10],[34]

a
(m)
ii := a

(m)
ii /α(m), where 0 ≤ α(m) ≤ 1. (63)

Of course, the scaling of the diagonal entries does not affect the converged
solution. This strategy proves more robust than an explicit underrelaxation of
the form (62). On the other hand, no underrelaxation whatsoever is needed
for moderate time steps which are typically used in dynamic simulations.

9 Adaptive Time Step Control

A remark is in order regarding the time step selection for implicit schemes.
Unlike their explicit counterparts, they are unconditionally stable so that
the time step is limited only by accuracy considerations (for nonstationary
problems). Thus, it should be chosen adaptively so as to obtain a sufficiently
good approximation at the least possible cost. Many adaptive time stepping
techniques have been proposed in the literature. Most of them were originally
developed in the ODE context and are based on an estimate of the local
truncation error which provides a usable indicator for the step size control.
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The ‘optimal’ value of ∆t should guarantee that the deviation of a user-
defined functional J (pointwise solution values or certain integral quantities
like lift and drag) from its exact value does not exceed a given tolerance

|J(u) − J(u∆t)| ≈ TOL. (64)

Assuming that the error at the time level tn is equal to zero, a heuristic error
indicator can be derived from asymptotic expansions for the numerical values
of J computed using two different time steps. For instance, consider

J(u∆t) = J(u) + ∆t2e(u) + O(∆t)4,

J(um∆t) = J(u) + m2∆t2e(u) + O(∆t)4,

where m > 1 is an integer number (m = 2, 3). The error term e(v) is supposed
to be independent of the time step and can be estimated as follows

e(u) ≈ J(um∆t) − J(u∆t)

(m2 − 1)∆t2
.

For the relative error to approach the prescribed tolerance TOL as required
by (64), the new time step ∆t∗ should be chosen so that

|J(u) − J(u∆t∗)| ≈
(

∆t∗
∆t

)2 |J(u∆t) − J(um∆t)|
m2 − 1

= TOL.

The required adjustment of the time step is given by the formula

∆t2∗ = TOL
(m2 − 1)∆t2

|J(u∆t) − J(um∆t)|
.

Furthermore, the solution accuracy can be enhanced by resorting to Richard-
son’s extrapolation (see any textbook on numerical methods for ODEs).

The above considerations may lack some mathematical rigor but never-
theless lead to a very good algorithm for automatic time step control [47]

1. Make one large time step of size m∆t to compute um∆t.
2. Make m small substeps of size ∆t to compute u∆t.
3. Evaluate the relative changes, i. e., |J(u∆t) − J(um∆t)|.
4. Calculate the ‘optimal’ value ∆t∗ for the next time step.
5. If ∆t∗ ≪ ∆t, reject the solution and go back to step 1.
6. Assign u := u∆t or perform Richardson’s extrapolation.

Note that the computational cost per time step increases significantly since the
solution um∆t may be as expensive to obtain as u∆t (due to slow convergence).
On the other hand, adaptive time stepping contributes to the robustness of the
code and improves its overall efficiency as well as the credibility of simulation
results. Further algorithmic details for this approach can be found in [47].
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Another simple strategy for adaptive time step control was introduced by
Valli et al. [53],[54]. Their PID controller is based on the relative changes of
a suitable indicator variable (temperature distribution, concentration fields,
kinetic energy, eddy viscosity etc.) and can be summarized as follows

1. Compute the relative changes of the chosen indicator variable u

en =
||un+1 − un||

||un+1|| .

2. If they are too large (en > δ), reject un+1 and recompute it using

∆t∗ =
δ

en
∆tn.

3. Adjust the time step smoothly so as to approach the prescribed
tolerance TOL for the relative changes

∆tn+1 =

(

en−1

en

)kP
(

TOL

en

)kI
(

e2
n−1

enen−2

)kD

∆tn.

4. Limit the growth and reduction of the time step so that

∆tmin ≤ ∆tn+1 ≤ ∆tmax, m ≤ ∆tn+1

∆tn
≤ M.

The default values of the PID parameters as proposed by Valli et al. [54] are
kP = 0.075, kI = 0.175 and kD = 0.01. Unlike in the case of adaptive time-
stepping techniques based on the local truncation error, there is no need for
computing an extra solution with a different time step. Therefore, the cost of
the feedback mechanism is negligible. Our own numerical studies [28] confirm
that this heuristic control strategy is very robust and efficient.

10 Numerical Examples

Flow around a cylinder. The first incompressible flow problem to be dealt
with is the well-known benchmark Flow around a cylinder developed in 1995
for the priority research program “Flow simulation on high-performance com-
puters” under the auspices of DFG, the German Research Association [40].
This project was intended to facilitate the evaluation of various numerical al-
gorithms for the incompressible Navier-Stokes equations in the laminar flow
regime. A quantitative comparison of simulation results is possible on the ba-
sis of relevant flow characteristics such as drag and lift coefficients, for which
sufficiently accurate reference values are available. Moreover, the efficiency of
different solution techniques can be assessed in an objective manner.
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Consider the steady incompressible flow around a cylinder with circular
cross-section. An in-depth description of the geometrical details and bound-
ary conditions for the 2D/3D case can be found in references [40],[47] which
contain all relevant information regarding this benchmark configuration. The
flow at Re = 20 is actually dominated by diffusion and could be simulated by
the standard Galerkin method without any extra stabilization (as far as the
discretization is concerned; the iterative solver may require using a stabilized
preconditioner). Ironically, it was this ‘trivial’ steady-state problem that has
led us to devise the multidimensional flux limiter of TVD type [24]. Both FCT
schemes and slope limiter methods based on stencil reconstruction failed to
converge, so the need for a different limiting strategy was apparent.

Furthermore, it is instructive to study the interplay of finite element dis-
cretizations for the convective and diffusive terms. As a matter of fact, dis-
crete upwinding can be performed for the cumulative transport operator or
just for the convective part. In the case of the nonconforming Q̃1-elements,
the discrete Laplacian operator originating from the Galerkin approximation
of viscous terms is a positive-definite matrix but some of its off-diagonal coef-
ficients are negative. Our numerical experiments indicate that it is worthwhile
to leave it unchanged and start with a FEM-TVD discretization of the con-
vective term. Physical diffusion can probably be taken into account after
algebraic flux correction but the sums of upstream and downstream edge con-
tributions Q± and P± for the node-oriented TVD limiter should be evaluated
using the coefficients of the (antisymmetric) convective operator.

To generate hierarchical data structures for the MPSC algorithms imple-
mented in the software package featflow [48], we introduce a sequence of
successively refined quadrilateral meshes. The elements of the coarse mesh
shown in Fig. 3 are subdivided into four subelements at each refinement level,
and the 2D mesh is extended into the third dimension for a 3D simulation.
The two-dimensional results produced by a global MPSC (discrete projection)
method with a FEM-TVD discretization of the convective terms are presented
in Table 1. The computational mesh for multigrid level NLEV contains NMT
midpoints and NEL elements. For the employed Q̃1/Q0 finite element pair,
NMT represents the number of unknowns for each velocity component, while
NEL is the number of degrees of freedom for the pressure. It can be seen that
the drag and lift coefficients approach the reference values CD ≈ 5.5795 and
CL ≈ 0.01061 as the mesh is refined. The same outcome can be obtained in
the local MPSC framework without resorting to pseudo-time-stepping.

Fig. 3. Coarse mesh (2D) for the DFG benchmark ‘Flow around a cylinder’.
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Originally, stabilization of convective terms in the featflow package was
performed using streamline diffusion or Samarski’s upwind scheme, whereby
the amount of artificial viscosity depends on the local Reynolds number and
on the value of the user-defined parameter UPSAM as explained in [47],[48].
Table 2 illustrates that drag and lift for UPSAM=0.1 and UPSAM=1.0 differ
appreciably, especially on coarse meshes. In the former case, both quantities
tend to be underestimated, while the latter parameter setting results in an
unstable convergence behavior. Note that CL is negative (!) for NLEV=3.

Since the optimal value of the free parameter is highly problem-dependent,
it is impossible to find from a priori considerations. In addition, Samarski’s
hybrid method is only suitable for intermediate and low Reynolds numbers, as
it becomes increasingly diffusive and degenerates into the first-order upwind
scheme in the limit of inviscid flow. By contrast, the accuracy of our FEM-
TVD discretization does not degrade as Re → ∞. However, it does depend
on the choice of the flux limiter (MC was employed in the above example)
so the method is – arguably – not completely “parameter-free”. Moreover,
the results are influenced by the type of Q̃1 basis functions (parametric or
non-parametric, with midpoint- or mean-value based degrees of freedom) as
well as by the approximations involved in the evaluation of CD and CL.

NLEV NMT NEL CD CL

3 4264 2080 5.5504 0.8708 · 10−2

4 16848 8320 5.5346 0.9939 · 10−2

5 66976 33280 5.5484 0.1043 · 10−1

6 267072 133120 5.5616 0.1056 · 10−1

7 1066624 532480 5.5707 0.1054 · 10−1

8 4263168 2129920 5.5793 0.1063 · 10−1

Table 1. Global MPSC method / TVD (MC limiter).

UPSAM=0.1 UPSAM=1.0

NLEV CD CL CD CL

3 5.4860 0.5302 · 10−2 5.9222 −0.3475 · 10−2

4 5.5076 0.9548 · 10−2 5.6525 0.6584 · 10−2

5 5.5386 0.1025 · 10−1 5.5736 0.1007 · 10−1

6 5.5581 0.1044 · 10−1 5.5658 0.1048 · 10−1

7 5.5692 0.1047 · 10−1 5.5718 0.1042 · 10−1

Table 2. Global MPSC method / Samarski’s upwind.

In Table 3, we present the drag and lift coefficients for a three-dimensional
simulation of the flow around the cylinder. The hexahedral mesh for NLEV=4
consists of 49,152 elements, which corresponds to 151,808 unknowns for each
velocity component. In order to evaluate the performance of the global MPSC
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solver and verify grid convergence, we compare the results to those obtained
on a coarser and a finer mesh. All numerical solutions were marched to the
steady state by the fully implicit backward Euler method. The discretization
of convective terms was performed using (i) finite volume upwinding (UPW),
(ii) Samarski’s hybrid scheme (SAM), (iii) streamline diffusion stabilization
(SD), and (iv) algebraic flux correction (TVD). This numerical study confirms
that standard artificial viscosity methods are rather sensitive to the values of
the empirical constants, whereas FEM-TVD performs remarkably well. The
reference values CD ≈ 6.1853 and CL ≈ 0.95 · 10−2 for this 3D configuration
were calculated in [20] by an isoparametric high-order FEM.

NLEV UPW-1st SAM-1.0 SD-0.25 SD-0.5 TVD/MC

3 6.08/ 1.01 5.72/ 0.28 5.78/-0.44 5.98/-0.52 5.80/ 0.36

4 6.32/ 1.20 6.07/ 0.62 6.13/ 0.26 6.26/ 0.18 6.14/ 0.46

5 6.30/ 1.20 6.14/ 0.83 6.17/ 0.70 6.23/ 0.64 6.18/ 0.80

Table 3. Global MPSC method: 3D simulation, CD/(CL · 100).

Backward facing step. Let us proceed to a three-dimensional test problem
which deals with a turbulent flow over a backward facing step at Re = 44, 000,
see [31] for details. Our objective is to validate the implementation of the
k − ε model as described above. As before, the incompressible Navier-Stokes
equations are discretized in space using the BB-stable nonconforming Q̃1/Q0

finite element pair, while conforming Q1 (trilinear) elements are employed
for the turbulent kinetic energy and its dissipation rate. All convective terms
are handled by the fully implicit FEM-TVD method. The velocity-pressure
coupling is enforced in the framework of a global MPSC formulation.

Standard wall laws are applied on the boundary except for the inlet and
outlet. The stationary distribution of k and ε in the middle cross-section
(z = 0.5) is displayed in Fig. 4. The variation of the friction coefficient

cf =
2τw

ρ∞u2
∞

=
2u2

τ

u2
∞

=
2k

u2
∞

√

Cµ

along the bottom wall is presented in Fig. 5 (left). The main recirculation
length L ≈ 6.8 is in a good agreement with the numerical results reported in
the literature [31]. Moreover, the horizontal velocity component (see Fig. 5,
right) assumes positive values at the bottom of the step, which means that
the weak secondary vortex is captured as well. The parameter settings for this
three-dimensional simulation were as follows

δ = 0.05, cbc = 0.0025, ν0 = 10−3, l0 = 0.02, lmax = 1.0.

The computational mesh shown in Fig. 6 contains 57,344 hexahedral cells
(pressure unknowns), which corresponds to 178,560 faces (degrees of freedom
for each velocity component) and 64,073 vertices (nodes for k and ε).
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Distribution of k in the cutplane z = 0.5

Distribution of ε in the cutplane z = 0.5

Fig. 4. Backward facing step: stationary FEM-TVD solution, Re = 44, 000.
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Fig. 5. Distribution of cf (left) and ux (right) along the bottom wall.

Fig. 6. Hexahedral computational mesh for the 3D simulation.



30 Stefan Turek and Dmitri Kuzmin

11 Application to More Complex Flow Models

In this section, we discuss several incompressible flow models which call for
the use of algebraic flux correction (FCT or TVD techniques). Specifically, let
us consider generalized Navier-Stokes problems of the form

ρ

(

∂u

∂t
+ u · ∇u

)

= f + µ∆u −∇p , ∇ · u = 0 (65)

complemented by additional PDEs which describe physical processes like

1. Heat transfer in complex geometries
→ Ceramic plate heat exchanger

2. Multiphase flow with chemical reaction
→ Gas-liquid reactors

3. Nonlinear fluids/granular flow
→ Sand motion in silos

4. Free and moving boundaries
→ Level set FEM methods

Although these typical flow configurations (to be presented below) differ in
their complexity and cover a wide range of Reynolds numbers, all of them
require an accurate treatment of convective transport. Numerical artifacts
such as small-scale oscillations/ripples may cause an abnormal termination of
the simulation run due to division by zero, floating point overflow etc. How-
ever, in the worst case they can be misinterpreted as physical phenomena and
eventually result in making wrong decisions for the design of industrial equip-
ment. Therefore, nonphysical solution behavior should be avoided at any cost,
and the use of FEM-FCT/TVD or similar high-resolution schemes is recom-
mendable. Moreover, simulation results must be validated by comparison with
experimental data and/or numerical solutions computed on a finer mesh.

11.1 Heat Transfer in ‘Plate Heat Exchangers’

The first example deals with the development of optimization tools for a con-
stellation described by ‘coupled stacks’ with different layers (see Fig. 7). This
example is quite typical for a complex flow model in the laminar regime. On
the one hand, the Reynolds number is rather small due to slow fluid veloci-
ties and very small diameters. On the other hand, an unstructured grid FEM
approach is required to resolve the small-scale geometrical details. Moreover,
the problem at hand is coupled with additional tracer equations of convection-
diffusion type. As a rule, the involved diffusion coefficients are small or equal
to zero, so that the problem is transport-dominated. Hence, the key elements
of an accurate and efficient solution strategy are an appropriate treatment of
convective terms on unstructured meshes as well as an unconditionally sta-
ble implicit time discretization (the underlying flow field is quasi-stationary).
These critical aspects will be exemplarily illustrated in what follows.
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a) b) c)

Fig. 7. Plate heat exchanger: a) geometric configuration; b) typical flow pattern;
c) velocity field for an ‘optimal’ distribution of internal objects.

The aim of the underlying numerical study in this section is the under-
standing and improvement of the

• internal flow characteristics
• heat transfer characteristics

in the shown configuration which can be described by a Boussinesq model.
Restricted to one stack only, the internal geometry between ‘inflow’ and ‘out-
flow’ holes has to be analyzed and channel-like structures or many internal
‘objects’ have to be placed to achieve a homogeneous flow field and, corre-
spondingly, a homogeneous distribution of tracer substances in the interior. In
order to determine the optimal shape and distribution of internal obstacles,
the simulation software to be developed must be capable of resolving all small-
scale details. Therefore, the underlying numerical algorithm must be highly
accurate and, moreover, sufficiently flexible and robust. Algebraic FCT/TVD
schemes belong to the few discretization techniques that do meet these require-
ments. Some preliminary results based on the incompressible Navier-Stokes
equations for velocity and pressure only are presented in Fig. 7.

The following step beyond ‘manual optimization’ shall be a fully automatic
optimization of shape, number, and distribution of the internal objects. Fur-
thermore, the temperature equations are to be solved for each stack as well as
for the whole system taking into account heat transfer both in the flow field
and between the walls. In addition, chemical reaction models should be in-
cluded, which gives rise to another set of coupled convection-reaction-diffusion
equations. Last but not least, algebraic flux correction is to be employed at
the postprocessing step, whereby the ‘residence time distribution’ inside each
stack is measured by solving a pure transport equation for passive tracers.
Since the flow field is almost stationary and allows large time steps due to the
large viscosity parameters, the nonlinear transport equation has to be treated
in an implicit way which is a quite typical requirement for the accurate and
efficient treatment for such type of flow problems.
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11.2 Bubbly Flow in Gas-Liquid Reactors

Bubble columns and airlift loop reactors are widely used in industry as con-
tacting devices which enable gaseous and liquid species to engage in chemical
reactions. The liquid is supplied continuously or in a batch mode and agitated
by bubbles fed at the bottom of the reactor. As the bubbles rise, the gaseous
component is gradually absorbed into the bulk liquid where it may react with
other species. The geometric simplicity of bubble columns makes them rather
easy to build, operate and maintain. At the same time, the prevailing flow
patterns are very complex and unpredictable, which represents a major bot-
tleneck for the design of industrial units. By insertion of internal parts, bubble
columns can be transformed into airlift loop reactors which exhibit a stable
circulation pattern with pronounced riser and downcomer zones (see Fig. 8).
Hence, shape optimization appears to be a promising way to improve the
reactor performance by adjusting the geometry of the internals.
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Fig. 8. Bubble columns (left) and airlift loop reactors (right).

In the present chapter, we adopt a simplified two-fluid model which is
based on an analog of the Boussinesq approximation (29) for natural convec-
tion problems. At moderate gas holdups, the gas-liquid mixture behaves as
a weakly compressible fluid which is driven by the bubble-induced buoyancy.
Following Sokolichin et al. [44],[45] we assume the velocity uL of the liquid
phase to be divergence-free. The dependence of the effective density ρ̃L on the
local gas holdup ǫ is taken into account only in the gravity force, which is a
common practice for single-phase flows induced by temperature gradients.
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This leads to the following generalization of the Navier-Stokes equations

∂uL

∂t
+ uL · ∇uL = −∇p∗ + ∇ ·

(

νT [∇uL + ∇uT
L]

)

− ǫg,

∇ · uL = 0, p∗ =
p − patm

ρL
+ g · eg − gh, (66)

where the eddy viscosity νT = Cµk2/ε is a function of the turbulent kinetic
energy k and its dissipation rate ε (see above). Recall that the evolution of
these quantities is described by two scalar transport equations

∂k

∂t
+ ∇ ·

(

kuL − νT

σk
∇k

)

= Pk + Sk − ε, (67)

∂ε

∂t
+ ∇ ·

(

εuL − νT

σε
∇ε

)

=
ε

k
(C1Pk + CεSk − C2ε), (68)

where the extra source terms are due to the bubble-induced turbulence

Pk =
νT

2
|∇u + ∇uT |2, (69)

Sk = −Ckǫ∇p · uslip. (70)

The involved slip velocity uslip is proportional to the pressure gradient

uslip = − ∇p

CW

and the ‘drag’ coefficient CW ≈ 5 · 104 kg
m3s is determined from empirical

correlations for the rise velocity of a single bubble in a stagnant liquid [44].

The gas density ρG is related to the common pressure p by the ideal gas
law p = ρG

R
η T , which enables us to express the local gas holdup ǫ and the

interfacial area aS per unit volume as follows [26],[28]

ǫ =
ρ̃GRT

pη
, aS = (4πn)1/3(3ǫ)2/3.

The effective density ρ̃G = ǫρG and the number density n (number of bubbles
per unit volume) satisfy the following continuity equations

∂ρ̃G

∂t
+ ∇ · (ρ̃GuG) = −mint, (71)

∂n

∂t
+ ∇ · (nuG) = 0. (72)

The interphase momentum transfer is typically dominated by the drag
force and the density of gas is much smaller than that of liquid, so that the
inertia and gravity terms in the momentum equation for the gas phase can be
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neglected [44],[45]. Under these (quite realistic) simplifying assumptions, the
gas phase velocity uG can be computed from the algebraic slip relation

uG = uL + uslip + udrift, udrift = −dG
∇n

n
,

where the drift velocity udrift is introduced to model the bubble path disper-
sion by turbulent eddies. It is usually assumed that dG = νT /σG, where the
Schmidt number σG equals unity. Substitution into (71)–(72) yields

∂ρ̃G

∂t
+ ∇ · (ρ̃G(uL + uslip) − νT∇ρ̃G) = −mint, (73)

∂n

∂t
+ ∇ · (n(uL + uslip) − νT∇n) = 0. (74)

Note that the contribution of udrift gives rise to diffusive terms in both equa-
tions and it is implied that ρ̃G∇n/n = ∇ρ̃G. Strictly speaking, this relation
is valid only for an (almost) constant bubble mass m = ρ̃G/n but can also
be used in the framework of ‘operator splitting’, whereby convection-diffusion
and reaction-absorption processes are decoupled from one another.

The sink term mint in equations (71) and (73) is due to the reaction-
enhanced mass transfer. It is proportional to the interfacial area aS and can
be modeled in accordance with the standard two-film theory. The effective con-
centrations of all species in the liquid phase are described by extra convection-
reaction-diffusion equations [23],[25],[26],[28]. If the coalescence and breakup
of bubbles cannot be neglected, equation (72) should be replaced by a detailed
population balance model for the bubble size distribution [11]. In any case, we
end up with a very large system of convection-dominated PDEs which are
strongly coupled and extremely sensitive to nonphysical phenomena that may
result from an improper discretization of the convective terms.

In order to implement the above drift-flux model in a finite element code,
we need to collect all the numerical tools presented so far

• algebraic flux correction schemes for the convective terms
• MPSC solvers for the incompressible Navier-Stokes equations
• block-iterative coupling mechanisms (Boussinesq approximation)
• implementation techniques for the k − ε turbulence model
• adaptive time-stepping (PID control of the local gas holdup)

The segregated algorithm proposed in [28] consists of nested loops for the
intimately coupled subproblems which are solved sequentially using solu-
tion values from the previous outer iteration to evaluate the coefficients and
source/sink terms. In each time step, the outermost loop is responsible for the
coupling of all relevant equation blocks and contains another outer iteration
loop for the equations of the k− ε turbulence model which are closely related
to one another and must be solved in a coupled fashion. The buoyancy force
in the Navier-Stokes equations is evaluated using the gas holdup from the
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previous outer iteration and fixed-point defect correction is employed for all
nonlinear convective terms, which gives rise to another sequence of outer iter-
ations. The iterative process is repeated until the residual of the momentum
equation and/or the relative changes of all variables become small enough.

Operator splitting tools are employed to separate convection-diffusion and
absorption-reaction processes at each time step. First, all scalar quantities are
transported without taking the sources/sinks into account. The homogeneous
equations are decoupled and can be processed in parallel. An implicit time
discretization of Crank-Nicolson or backward Euler type is performed for all
equations. The value of the implicitness parameter θ and of the local time
step can be selected individually for each subproblem so as to maximize ac-
curacy and/or stability. The communication between the subproblem blocks
takes place at the end of the common macro time step ∆tn which is chosen
adaptively so as to control the changes of the gas holdup distribution.

The flow chart of algorithmic steps to be performed is as follows [28]

1. Recover the pressure gradient ∇p via L2-projection.

2. Compute the associated slip velocity uslip = − ∇p
CW

.

3. Solve the homogeneous continuity equation for ρ̃G.

4. Update the number density n according to (74).
5. Convert ρ̃G and n into ǫ and aS ; evaluate mint.

6. Solve the transport equations for concentrations.

7. Solve the ODE systems for absorption-reaction.

8. Enter the inner loop for the k − ε model (67)–(68).

9. Compute the turbulent eddy viscosity νT = Cµ
k2

ε .

10. Insert νT and ǫ into (66) and evaluate the residual.

11. If converged, then proceed to the next time step.

12. Solve the Navier-Stokes equations and go to 1.

The first example deals with the locally aerated bubble column that was
investigated in detail by Becker et al. [1]. The snapshots of the meandering
bubble swarm displayed in Fig. 9 are in a good agreement with experimental
data. The evolution of the gas holdup in the middle cross section of a prototyp-
ical airlift loop reactor is shown in Fig. 10. Aeration takes place at the bottom
of the riser section where both phases flow upward. At the upper surface, the
bubbles escape, while the liquid is diverted into the gas-free downcomer so as
to form a closed loop. The two-phase flow reaches a steady state within a few
seconds after the startup (see the right diagram). Computational results for
the reaction-enhanced absorption of CO2 in a locally aerated bubble column
filled with an aqueous solution of NaOH are presented in [25],[28].
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Fig. 9. Gas holdup distribution in a flat bubble column.
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Fig. 10. Gas holdup distribution in an airlift loop reactor.

11.3 Nonlinear (Granular) Flow

Another interesting example for the (non-standard) use of TVD techniques for
convective operators is the numerical simulation of nonlinear incompressible
fluids governed by the Navier-Stokes equations

∂u

∂t
+ u · ∇u −∇ · T + ∇p = f , ∇ · u = 0 (75)

where T is the stress tensor. Furthermore, the deformation rate tensor D and
the spin tensor W depend on the velocity gradients as follows

D =
1

2
(∇u + ∇uT ) , W =

1

2
(∇u −∇uT ) (76)
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In the case of Newtonian fluids, the stress tensor in (75) is given by

T = 2νD = ν(∇u + ∇uT ). (77)

The most popular representatives of nonlinear fluids are described by
power law models, whereby the viscosity ν in the constitutive relation (77)
depends on D = D(u) in a nonlinear way

T = 2ν(D)D , ν(D) = ν0(ǫ1 + ǫ2|D|)α (78)

with certain parameters ν0, ǫ1, ǫ2 and α. Fluids with α > 0 correspond to
shear thickening, in contrast to the case α < 0 (shear thinning), both of which
lead to numerical challenges. Such differential type models — see also Bingham
or Reiner-Rivlin fluids [30],[38] — do not require implicit calculations of T
since the tensor T can be represented as a (nonlinear) function of D(u). Only
modifications of existing Navier-Stokes solvers have to be performed, without
an additional discretization of equations for T.

This is in contrast to the more general class of rate type models which
couple (nonlinear) evaluations and derivatives of T with functional evaluations
and derivatives of u and D in space and time. Examples are Rivlin-Ericksen
and second grade fluids [21],[30] and particularly Oldroyd models [13],[38].
Defining the objective time derivative of the tensor T as

DaT

Dt
=

∂T

∂t
+ u · ∇T + TW + (TW)T − a[TD + (TD)T ] , (79)

where −1 ≤ a ≤ 1, a general description for Oldroyd models [18],[37] reads

λ1
DaT

Dt
+ T + γ(T,D) = 2µ

(

λ2
DaD

Dt
+ D

)

. (80)

The relaxation time λ1, retardation time λ2 and viscosity parameter µ may
additionally depend on D. In variants with γ(T,D) 6= 0 (Oldroyd 8 constants
model, Larson model, Phan-Thien-Tanner model), there is another nonlinear
relationship between T and D, while in the following we will concentrate on
the case γ(T,D) = 0 including the so-called Jeffrey models, resp., the Maxwell
fluids. Examples of numerical simulations can be found in papers by Joseph
[21], Glowinski [13] and Hron [18]. Consider the following equation for T

T = 2µvD + S , λ
DaS

Dt
+ S = 2µeD, (81)

where λ = λ1, µv = µλ2

λ1

and µe = µ − µv. Then, we can rewrite the Navier-
Stokes model in (75) as

Re

[

∂u

∂t
+ u · ∇u

]

+ ∇p − (1 − α)∆u −∇ · S = f , ∇ · u = 0 (82)

We

[

∂S

∂t
+ u · ∇S + βa(S,D)

]

+ S = 2αD. (83)
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Given −1 ≤ a ≤ 1, let us introduce the following definitions

βa(S,D) = SW + (SW)T − a[SD + (SD)T ] (84)

α =
µe

µe + µv
, Re =

LVρ

µe + µv
, We =

Vλ

L
, (85)

where L stands for a characteristic length and V is the velocity.
As a result, we end up with a coupled Navier-Stokes-like system (82) for

the variables (u, p) with an additional term ∇·S. Furthermore, there is a non-
linear nonstationary tensor-valued transport-reaction equation in (83) which
involves both S and D(u). To solve this highly complex system, appropriate
discretization techniques in space and time (implicit Euler, Crank-Nicolson or
the fractional step method in conjunction with BB-stable FEM approxima-
tions) should be employed. In particular, the algebraic TVD techniques are to
be recommended for the tensor-valued transport problems since there is an ob-
vious need for a monotone, oscillation-free and highly accurate discretization
of the tensor T. Moreover, the above-mentioned MPSC approach to solving
discrete saddle point problems and providing a proper coupling between the
equations at hand turns out very handy for this kind of applications.

Finally, we mention the hypoplastic model proposed by Kolymbas [22] for
the numerical simulation of dry cohesionless granular materials, for instance
for the flow of sand in silos. This approach contains components from rate type
as well as from differential type models such that the relation to the previously
described Oldroyd model becomes evident:

Re

[

∂u

∂t
+ u · ∇u

]

= −∇p + ∇ · T + f , ∇ · u = 0 (86)

∂T

∂t
+ (u · ∇)T = − [TW − WT] (87)

+C1
1

2
(TD − DT) + C2tr(TD) · I

+C3

√
trD2T + C4

√
trD2

trT
T2

+ ν(D)

[

∂D

∂t
+ u · ∇D + DW − WD

]

.

Here, I denotes the unit matrix, ν(D) a nonlinear (tensorial) function of
power law type, and Ci are specific material constants. Again, the robust and
accurate treatment of the convective terms in the absence of any second order
elliptic diffusive term is a very important aspect for numerical simulations so
the use of FEM-TVD techniques appears to be especially promising.
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11.4 Free Surface/Interface Flows

Our last example is intended to illustrate the need for implicit TVD-type
discretizations in the case of (laminar) incompressible flow problems which
involve free surfaces, resp., free interfaces. The governing equations read

ρi

(

∂v

∂t
+ v · ∇v

)

−∇ · (2µiS) + ∇p = ρig , (88)

∇ · v = 0 in Ωi , i = 1, 2, . . . (89)

where S = 1
2

(

∇v + ∇vT
)

is the deformation tensor, g is the gravity and
the computational domain Ω = Ω1 ∪ Ω2 with boundary Σ is shared by two
immiscible fluids separated by the interface Γ = Ω̄1 ∩ Ω̄2. The density and
(dynamic) viscosity of the i-th fluid are denoted by ρi and µi, respectively.

Fig. 11. Free boundary problem.

Ω1

Ω2

Γ

Σ

This PDE system is complemented by the boundary condition

v = b on Σ , (90)

and the following initial values are prescribed at t = 0

v|t=0 = v0 in Ω ; Γ |t=0 = Γ 0 . (91)

Moreover, two extra conditions can be inferred from the conservation of mass
and momentum at the free/moving interface. Specifically, we have

1. Mass balance. If there is no mass transfer between the two fluids, then
the interface Γ moves with the flow in the normal direction at velocity

V = v1 · n = v2 · n, (92)

where n is the normal to Γ and vi denotes the velocity of the i-th fluid.
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2. Momentum balance. The interfacial stresses Ti = −pI + 2µiS, i = 1, 2
are related by the following jump condition

(T1 − T2) · n = κσn, (93)

where σ is the surface tension coefficient and κ is twice the mean curvature
of the interface.

Thus, the following relations should hold on the internal boundary Γ

[v] |Γ · n = 0 , − [−pI + 2µ(x)S] |Γ · n = κσn , (94)

where [·]|Γ = limx∈Ω2→Γ (·) − limx∈Ω1→Γ (·) and it is implied that

ρ(x) =

{

ρ1, ∀x ∈ Ω1,
ρ2, ∀x ∈ Ω2,

, µ(x) =

{

µ1, ∀x ∈ Ω1,
µ2, ∀x ∈ Ω2.

Unlike classical front tracking methods, the level-set approach is based
on an (implicit) reconstruction of free interfaces via an ‘indicator function’ ϕ
which is equal to zero directly at the interface. In contrast to the well-known
volume of fluid (VOF) method [17], which uses a discontinuous indicator func-
tion, the level set function ϕ is smooth and amenable to numerical treatment.
In either case, the position of the free interface can be determined by solving
a pure transport equation for the corresponding indicator function

∂ϕ

∂t
+ v · ∇ϕ = 0. (95)

In what follows, we adopt the level set formulation and opt to discretize all
convective terms by a high-resolution finite element scheme of TVD type.

Fig. 12. Rising bubble simulation by the level-set method.

It is common practice to define ϕ as the ‘signed distance’ function which
is positive in one fluid and negative in the other. By definition, we have

|∇ϕ| = 1, ϕ > 0 in Ω1, ϕ < 0 in Ω2.

As a rule, the initialization of ϕ does not present any difficulty but it is not
trivial to preserve the ‘signed distance’ property in the course of a numerical
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simulation. Therefore, it is advisable to ‘reinitialize’ ϕ once in a while so as
to provide an accurate representation of the free interface.

Given the numerical solution ϕold of the pure transport problem (95) after
a certain number of time steps, we seek a signed distance function ϕ which
has the same zero level set as ϕold. It can be recovered as the steady-state
solution of another (nonlinear) transport equation which reads

∂ϕ

∂t
= sign(ϕold)(1 − |∇ϕ|). (96)

This auxiliary problem for the reinitialization step can be cast in the form

∂ϕ

∂t
+ w · ∇ϕ = sign(ϕold), w = sign(ϕold)

∇ϕ

|∇ϕ| (97)

and solved by a suitable pseudo-time-stepping method. In particular, this
can be accomplished in the framework of an implicit TVD-like discretization
which is guaranteed to produce nonoscillatory and highly accurate results.
Numerical studies indicate that a proper treatment of the level set function ϕ
is crucial to the quality of the interface reconstruction so that the convective
terms in equations (95) and (97) should be handled with extreme care.

12 Conclusions

Even for laminar flow models, there is still a strong need for better mathe-
matical approaches as far as the discretization and solution aspects are con-
cerned. The accuracy, flexibility, robustness and, particularly, overall efficiency
of many currently available simulation tools leave a lot to be desired. The next
laborious step is to develop professional CFD software for grand-challenge
industrial problems. However, benchmark computations and other numeri-
cal studies demonstrate that one must make every effort to hone and refine
the ‘basic tools’ before proceeding to more complex simulations! Otherwise,
there might be no chance to succeed in tackling many challenging applications
and to achieve not only qualitatively, but also quantitatively accurate results.
Hence, the list of topics to be addressed in the near future is as follows:

• Higher order FEM spaces: Preliminary investigations performed by
our group and others show that polynomial approximations of higher or-
der accuracy might be preferable. Even for the Q2/P1 finite element pair
(biquadratic velocity, piecewise linear pressure), the efficiency gains can be
enormous. However, it is currently not clear how high-order finite elements
would behave for nonsmooth solutions which exhibit strong gradients. In
particular, an appropriate stabilization of the convective terms is necessary
at high Reynolds numbers. Algebraic flux correction of FCT/TVD type
seems to be feasible but its extension to the Q2 elements is not obvious.
Another primary goal is the development of hierarchical multigrid solvers
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which should ensure that the potential advantages of using higher-order
FEM approximations can be realized in practice.

• Nonlinear solvers: Since TVD-like discretization techniques are per se
nonlinear, appropriate Newton-like methods are to be applied if an im-
plicit treatment of the convective terms is adopted, e.g., for the ‘tracer
transport’ in a low Reynolds number flow or at the ‘reinitialization step’
for the level set function. However, due to the fully discrete and inherently
discontinuous nature of algebraic flux correction schemes, the derivation
of the (approximate) Jacobian matrices poses a formidable problem which
is still largely unsolved and calls for further research.

• Multigrid solvers: In a similar vein, the numerical behavior of standard
(geometric) multigrid solvers for the resulting linear subproblems has not
yet been investigated and requires further in-depth studies.

• Tensor-valued transport operators: As described for nonlinear flu-
ids, additional hyperbolic problems with tensor-valued transport operators
may need to be dealt with. An extension of our algebraic high-resolution
schemes, which were originally developed for scalar quantities, to such ap-
plications should be undertaken in the near future.

• A posteriori error control: Since the proposed flux correction tech-
niques are applicable to finite element methods, appropriate a posteriori
error control mechanisms for Galerkin-type discretizations can be incorpo-
rated. To be more specific, residual-based error estimation via dual prob-
lems for user-specified quantities in the spirit of Rannacher and his col-
laborators is to be examined. Its generalization to an unstructured grid
FEM equipped with algebraic flux limiters would make it possible to gain
‘optimal’ control over the local mesh refinement and/or coarsening.

Apart from all these mathematical challenges, the results of recent compu-
tational studies (see [49] for a critical discussion) reveal that memory access,
not data processing is costly on modern computers. This is the major reason
why traditional numerical approaches for PDEs and their realization as CFD
software have massive problems with achieving a significant percentage of the
possible peak performance. On the other hand, the Numerical Linear Algebra
tools for the solution of sparse linear systems with millions of unknowns can
be significantly improved. This can be accomplished, for instance, by resorting
to cache-based implementation techniques and exploiting the local structure
of data sets for block-structured grids. Such a hardware-oriented approach
may yield an overall speed-up factor of as much as 10 – 1000 even on a sin-
gle processor. In addition, the use of optimal parallelization strategies may
increase the performance of the code by further orders of magnitude.

To realize these ambitious goals, modern numerical methods and program-
ming concepts are to be incorporated into CFD simulation tools. Some of the
latest trends are adaptive meshing and a posteriori error control as well as
generalized multigrid/domain decomposition solvers. Furthermore, the same
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philosophy applies to fully implicit Navier-Stokes solvers of MPSC type which
should also be optimized so as to shift the distribution of CPU times away from
expensive memory access tasks (assembly of stiffness matrices, defects and
residuals, modifications of the mesh) toward more arithmetic-intensive com-
putational work (iterative solution of linear systems by multigrid or Krylov-
space methods). It is obvious that the design and implementation of such
advanced software concepts is not an easy job. However, the foundations have
already been laid in the framework of the ongoing FEAST project (see [50])
aimed at the development of such strategies. Iterative solvers based on the
above-mentioned data structures are already available and prove remarkably
efficient as compared to conventional implementation techniques.

In fact, current technological trends indicate that the demand for high-
performance CFD software will continue to increase. Although the develop-
ment and optimization of such advanced software products may take a very
long time and consume a lot of resources, this investment is certain to yield
huge gains in the long run. Indeed, numerical simulation of many ‘real life’
problems (e.g., turbulent and/or multiphase flows in complex 3D geometries)
is still prohibitively expensive. In order to exploit the available computing
power to the full extent, software engineering aspects must be accompanied
by corresponding efforts in the design of optimal numerical algorithms. More-
over, the peculiarities of modern hardware architecture should be taken into
account. Otherwise, many ‘nice’ mathematical developments may end up be-
ing impractical as long as just a small fraction (less than one percent is not
unusual) of the potential peak performance can be achieved in practice.
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40. M. Schäfer and S. Turek (with support of F. Durst, E. Krause, R. Rannacher),
Benchmark computations of laminar flow around cylinder, In E.H. Hirschel (ed.),
Flow Simulation with High-Performance Computers II, Vol. 52 von Notes on
Numerical Fluid Mechanics, Vieweg, 1996, 547–566.

41. R. Schmachtel, Robuste lineare und nichtlineare Lösungsverfahren für die inkom-
pressiblen Navier-Stokes-Gleichungen. PhD thesis, University of Dortmund,
2003.

42. P. Schreiber, A new finite element solver for the nonstationary incompressible
Navier–Stokes equations in three dimensions, PhD Thesis, University of Heidel-
berg, 1996.

43. P. Schreiber and S. Turek, An efficient finite element solver for the nonstation-
ary incompressible Navier–Stokes equations in two and three dimensions, Proc.
Workshop Numerical Methods for the Navier–Stokes Equations, Heidelberg, Oct.
25–28, 1993, Vieweg.



46 Stefan Turek and Dmitri Kuzmin

44. A. Sokolichin, Mathematische Modellbildung und numerische Simulation von
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