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Abstract This chapter illustrates the use of algebraic flux correction in the context of
finite element methods for the incompressible Navier-Stokes equations and related
models. In the convection-dominated flow regime, nonlinear stability is enforced us-
ing algebraic flux correction. The numerical treatment of the incompressibility con-
straint is based on the ‘Multilevel Pressure Schur Complement’ (MPSC) approach.
This class of iterative methods for discrete saddle-point problems unites fractional-
step / operator-splitting methods and strongly coupled solution techniques. The im-
plementation of implicit high-resolution schemes for incompressible flow problems
requires the use of efficient Newton-like methods and optimized multigrid solvers
for linear systems. The coupling of the Navier-Stokes system with scalar conserva-
tion laws is also discussed in this chapter. The applications to be considered include
the Boussinesq model of natural convection, the k–ε turbulence model, population
balance equations for disperse two-phase flows, and level set methods for free inter-
faces. A brief description of the numerical algorithm is given for each problem.

1 Introduction

One of the most fundamental models in fluid mechanics is the incompressible
Navier-Stokes equations for the velocity u and pressure p of a Newtonian fluid

∂u
∂ t

+u ·∇u−ν∆u+∇p = f, (1)

∇·u = 0,

Stefan Turek
Institute of Applied Mathematics (LS III), TU Dortmund
Vogelpothsweg 87, D-44227, Dortmund, Germany
e-mail: stefan.turek@math.tu-dortmund.de

Dmitri Kuzmin
Applied Mathematics III, University Erlangen-Nuremberg
Cauerstr. 11, D-91058, Erlangen, Germany
e-mail: kuzmin@am.uni-erlangen.de

1



2 S. Turek, D. Kuzmin

where ν is the kinematic viscosity of the fluid and f is a given external force. In
contrast to compressible flow models, there is no equation of state. The constant
density ρ is “hidden” in the modified pressure p which adjusts itself instantaneously
so as to render the velocity field u divergence-free. The solution to (2) is sought in
a bounded domain Ω ⊂ Rd , d = 2,3 on a finite time interval (0,T ]. The choice of
initial and boundary conditions depends on the particular application.

The Navier-Stokes equations (NSE) describe an amazing variety of fluid flows
and represent a ‘grand challenge’ problem of profound importance to mathemati-
cians, physicists, and engineers. It is not surprising that the NSE were among the
seven Millennium Problems selected by the Clay Mathematics Institute in 2000.
The associated $1,000,000 prize is to be awarded for “substantial progress toward
a mathematical theory which will unlock the secrets hidden in the Navier-Stokes
equations.” During the first decade of the XXI century, no major breakthrough was
achieved on the theoretical side of this enterprise. However, a lot of progress has
been made in the development of numerical methods for the Navier-Stokes equa-
tions and their applications in Computational Fluid Dynamics (CFD).

Models based on the incompressible Navier-Stokes equations are widely used in
applied mathematics and engineering sciences. The nonlinearity of the convective
term, the incompressibility constraint, and the possible coupling of (2) with other
equations make the numerical implementation of such models rather challenging.
Numerical instabilities may be caused not only by the dominance of convective
terms at high Reynolds numbers but also by the velocity-pressure coupling or by the
numerical treatment of sources/sinks. In many applications, the flow is turbulent and
takes place in a domain of complex geometrical shape. Additional difficulties are
associated with the presence of moving boundaries, free interfaces, or unresolvable
small-scale features. All peculiarities of a given model must be taken into account
when it comes to the design of reliable and efficient numerical methods.

The performance of CFD software depends not only on the accuracy of the un-
derlying discretization techniques but also on the choice of iterative solvers, data
structures, and programming concepts. Explicit schemes are easy to implement and
parallelize but give rise to severe time step restrictions. In the case of an implicit
scheme, one has to solve sparse nonlinear systems for millions of unknowns at each
time step. The computational cost can be reduced by using optimal preconditioners,
multigrid solvers, local mesh refinement, and adaptive time step control. Last but
not least, parallelization of the code is a must for many real-life applications.

The development of improved numerical algorithms for the incompressible
Navier-Stokes equations has been actively pursued for more than 50 years. The num-
ber of publications on this topic is overwhelming. For a comprehensive overview,
the reader is referred to the book by Gresho et al. [21]. In many cases, numerical
solutions to the NSE are accurate enough to look realistic. The result of a 2D sim-
ulation for the laminar flow around a cylinder is shown in Fig. 1a. The snapshot
exhibits a remarkably good agreement with the experimental data in Fig. 1b. How-
ever, a quantitative comparison of drag and lift coefficients produced by different
codes reveals significant differences in their accuracy and efficiency [64].
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(a)

(b)

Fig. 1 Flow around a cylinder: (a) numerical simulation with FEATFLOW [79], (b) experimental
data (source: Van Dyke’s ‘Album of Fluid Motion’ [89]).

A current trend in CFD is to combine the ‘basic’ Navier-Stokes equations (2)
with more or less sophisticated engineering models for industrial applications. Ad-
ditional equations are included to describe turbulence, nonlinear fluids, combustion,
detonation, multiphase flow, free and moving boundaries, fluid-structure interaction,
weak compressibility, and other effects. Some of these extensions will be discussed
in the present chapter. All of them require a very careful choice of numerical ap-
proximations and iterative solution techniques. In summary, the main ingredients of
a ‘perfect’ CFD code for a generalized Navier-Stokes model are as follows:

• Discretization: adaptive high-resolution schemes, discrete maximum principles;
• Solvers: robust and efficient iterative methods for linear and nonlinear systems;
• Implementation: optimal data structures, hardware-specific code, parallelization.
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The availability and compatibility of these components would make it possible to
attain high accuracy with a relatively small number of unknowns. Alternatively, dis-
crete problems of the same size could be solved more efficiently. The marriage of
accurate numerical methods and fast iterative solvers would make it possible to ex-
ploit the potential of modern computers to the full extent and improve the MFLOP/s
rates of incompressible flow solvers by orders of magnitude. Hence, algorithmic
aspects play an increasingly important role in contemporary CFD research.

This chapter begins with a brief review of the Multilevel Pressure Schur Com-
plement (MPSC) approach to solving the incompressible Navier-Stokes equations
at high and low Reynolds numbers. Next, the coupling of the basic flow model with
additional transport equations is discussed in the context of the Boussinesq approx-
imation for natural convection problems. Algebraic flux correction is shown to be
a useful tool for enforcing positivity on unstructured meshes in 3D. In particular,
a positivity-preserving implementation of the standard k–ε turbulence model is de-
scribed. The application of the proposed algorithms to multiphase flow models is
illustrated by a case study for population balance equations and free surface flows.

2 Discretization of the Navier-Stokes Equations

The incompressible Navier–Stokes equations are an integral part of all mathematical
models to be considered in this chapter. First of all, we discretize (2) in space and
time. For our purposes, it is convenient to begin with the time discretization. As a
time-stepping method, we will use an implicit two-level θ -scheme (backward Euler
or Crank-Nicolson) or the fractional-step θ -scheme proposed by Glowinski.

Let ∆ t denote the time step for advancing the solution from the time level tn

to the time level tn+1 := tn +∆ t. The value of ∆ t may be chosen adaptively. The
semi-discrete version of (2) can be written in the following generic form [79]:

Given u(tn) find u = u(tn+1) and p = p(tn+1) such that

[I +θ∆ t(u ·∇−ν∆)]u+∆ t∇p = g, ∇ ·u = 0 in Ω , (2)

where

g = [I−θ1∆ t(u(tn) ·∇−ν∆)]u(tn)+θ2∆ tf(tn+1)+θ3∆ tf(tn). (3)

The values of the parameters θ and θi, i = 1,2,3 depend on the time-stepping
scheme. For example, θ = θ2 = 1, θ1 = θ3 = 0 for the backward Euler method.

Next, let us discretize the above problem in space using the finite element method
(FEM). The algorithms to be presented in this chapter are also applicable to finite
difference and finite volume approximations since the structure of the discrete prob-
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lems is the same. We favor the finite element approach because the applications we
have in mind require the use of high-order discretizations on unstructured meshes.
Moreover, the FEM is backed by a solid mathematical theory that makes it possible
to obtain rigorous a posteriori error estimates for adaptation in space and time.

The Galerkin finite element approximation to (2) is derived from a variational
form of the semi-discretized Navier-Stokes equations. The discretization in space
begins with the generation of a computational mesh Th for the domain Ω . As usual,
the subscript h refers to the local size of mesh cells (triangles or quadrilaterals in 2D,
tetrahedra or hexahedra in 3D). Inside each cell, the numerical solution is defined in
terms of polynomial basis functions. Let Vh and Qh denote the finite-dimensional
spaces for the velocity and pressure approximations, respectively. The discretization
of (2) is stable if Vh and Qh satisfy the Babuška–Brezzi (BB) condition [19]

min
qh∈Qh

max
vh∈Vh

(qh,∇·vh)

‖qh‖0 ‖∇vh‖0
≥ γ > 0 (4)

with a mesh–independent constant γ . If the use of equal-order interpolations is de-
sired, additional stabilization terms must be included (see, e.g., [27]).

The lowest-order finite element approximations satisfying the above inf-sup
condition are the nonconforming Crouzeix-Raviart (P̃1/P0) and Rannacher-Turek
(Q̃1/Q0) elements [11, 63]. In either case, the degrees of freedom for the velocity
are associated with edge/face mean values, whereas the pressure is approximated in
terms of cell mean values. A sketch of the nodal points for a quadrilateral Q̃1/Q0
element is shown in Fig. 2. The benefits of using low-order nonconforming approx-
imations include a relatively small number of unknowns and the availability of effi-
cient multigrid solvers which are sufficiently robust in the whole range of Reynolds
numbers, even on nonuniform and highly anisotropic meshes [65, 79]. Last but not
least, algebraic flux correction is readily applicable to P̃1 and Q̃1 elements [40].

p

u,v

u,v

u,v

u,v

Fig. 2 Nodal points of the nonconforming finite element pair Q̃1/Q0 in 2D.

The most popular inf-sup stable approximation of higher order is the Taylor-
Hood (P2/P1 or Q2/Q1) element. In our experience, the Q2/P1 element is a better
choice for non-simplex meshes [12]. Since no algebraic flux correction schemes are
currently available for higher-order finite elements, the Q2/P1 version of our Navier-
Stokes solver is stabilized using continuous interior penalty techniques [55, 87].
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The vectors of discrete nodal values for the velocity and pressure will also be
denoted by u and p. The nonlinear discrete problem is formulated as follows:

Given un find u = un+1 and p = pn+1 such that

Au+∆ tBp = g , BT u = 0, (5)

where
g = [M−θ1∆ tN(un)]un +θ2∆ tfn+1 +θ3∆ tfn . (6)

Here M is the (consistent or lumped) mass matrix, B is the discrete gradient
operator, and −BT is the discrete divergence operator. The matrix A is given by

A = M−θ∆ tN(u), (7)

where
N(u) = K(u)+νL,

K(u) is the discrete transport operator and L is the viscous part of the stiffness
matrix. The nonlinear operator N(u) may also include artificial diffusion due to
algebraic flux correction or other stabilization / shock-capturing techniques.

The discretization of the stationary Navier-Stokes equations also leads to a
nonlinear system of the form (5). To use the same notation for steady and time-
dependent flow problems, we replace (7) with the more general definition

A = αM−θ∆ tN(u). (8)

The discrete evolution operator given by (7) corresponds to α = 1. The steady-state
approximation is defined by the parameter settings α = 0, θ = 1, ∆ t = 1.

The design of efficient iterative methods for the above discrete problem involves
a linearization of N(u) or iterative solution of the nonlinear system using fixed-
point defect correction or Newton-like methods. Special techniques (explicit or im-
plicit underrelaxation, line search, Anderson acceleration) may be implemented to
achieve and speed up convergence. When it comes to the numerical treatment of the
incompressibility constraint, one has a choice between a strongly coupled approach
(simultaneous computation of u and p) and fractional-step algorithms (projection
schemes [8, 91], pressure correction methods [15, 57]). The abundance of choices
has generated a great variety of incompressible flow solvers that exhibit consider-
able differences in terms of their complexity, robustness, and efficiency.

The Multilevel Pressure Schur Complement (MPSC) formulation to be presented
below makes it possible to put many existing solution algorithms into a common
framework and combine their advantages. In particular, the iterative solver may be
configured in an adaptive manner so as to achieve the best run-time characteristics
for a given problem. For a more detailed presentation of the MPSC paradigm and
additional numerical examples, we refer to the monograph by Turek [79].
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3 Pressure Schur Complement Solvers

The linearized form of the fully discrete problem (5), as well as the linear systems
to be solved at each iteration of a nonlinear scheme, can be written as[

A ∆ tB
BT 0

][
u
p

]
=

[
g
0

]
. (9)

This is a typical saddle point problem in which the pressure p acts as the Lagrange
multiplier for the discretized incompressibility constraint.

The Schur complement equation for the pressure can be derived using a formal
elimination of the velocity unknowns. The discrete form of ∇·u = 0 is

BT u = 0, (10)

where u is the solution to the discretized momentum equation, that is,

u = A−1(g−∆ tBp). (11)

Thus, an equivalent formulation of the discrete saddle-point problem (9) reads:

Au = g−∆ tBp, (12)

BT A−1Bp =
1

∆ t
BT A−1g. (13)

Since the right-hand side of equation (12) depends on the solution to (13), the
two subproblems should actually be solved in the reverse order:

1. Solve the pressure Schur complement (PSC) equation (13) for p.

2. Substitute p into the momentum equation (12) and compute u.

In the fully nonlinear version, the Schur complement operator S :=BT A−1B depends
on the solution to (12), so a number of outer iterations are performed.

The practical implementation of the two-step algorithm also requires a number
of inner iterations. Since the matrix A−1 is full, the assembly and storage of S would
be prohibitively expensive in terms of CPU time and memory requirements. Thus,
it is imperative to solve the PSC equation in an iterative way. For instance, consider
a preconditioned Richardson’s method based on the following basic iteration

p(l) = p(l−1)+C−1
[

1
∆ t

BT A−1g−Sp(l−1)
]
, (14)

where l = 1,2, . . . ,L is the iteration counter, C−1 is a suitable approximation to S−1,
and the expression in the brackets is the residual of the PSC equation.

By definition of S, an equivalent form of the pressure correction equation (15) is

p(l) = p(l−1)+C−1 1
∆ t

BT A−1
[
g−∆ tBp(l−1)

]
. (15)
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In practice, the matrices A and C are “inverted” by solving a linear system. Thus,
the implementation of (15) can be split into the following basic tasks:

1. Given the pressure p(l−1), solve the discrete momentum equation

Au(l) = g−∆ tBp(l−1). (16)

2. Given the velocity u(l), solve the pressure correction equation

Cq(l) =
1

∆ t
BT u(l). (17)

3. Add the pressure increment q(l) to the current approximation

p(l) = p(l−1)+q(l). (18)

The number of pressure correction cycles L can be fixed or variable. The iterative
process may be terminated when the increments and residuals become small enough.
Using C := S, one obtains the solution to (9) in one step (L = 1). The assembly of C
can be avoided using a GMRES-like iterative solver that operates with matrix-vector
products. The evaluation of Cy = BT A−1By would involve an iterative solution of
the linear system Ax = By followed by the matrix-vector multiplication Cy := BT y.
This procedure must be repeated as many times as necessary to reach the prescribed
tolerance for the residual of the PSC equation. Hence, the computational cost per
time step is likely to be very high even if multigrid acceleration is employed.

In many cases, the matrix-free ‘inversion’ of C := S is impractical. In particular,
the cost per time step is always the same, although a good initial guess is available
when the time steps are small. In this case, the discrete evolution operator

A = M−θ∆ tN(u)≈M+O(∆ t) (19)

represents a well-conditioned perturbation of the symmetric positive-definite mass
matrix M. Hence, the discrete momentum equation can be solved efficiently for
small ∆ t. However, the condition number of the PSC operator is given by

cond(S) = cond(BT [M+O(∆ t)]−1B)≈ cond(L) = O(h−2) (20)

and does not improve when the time step is refined. The invariably high cost of
solving the “elliptic” pressure Schur complement equation makes C := S a poor
choice when it comes to simulation of unsteady flows with small time steps.

A computationally efficient Schur complement preconditioner for time-dependent
flow problems can be designed using approximations of the form

C := BT Ã−1B, (21)
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where Ã ≈ A is a matrix that can be ‘inverted’ in an efficient way. By (20), the
condition number of the PSC operator is dominated by the elliptic part. Thus, the
preconditioner can be defined using the symmetric positive definite matrix

Ã := M−θ∆ tνL. (22)

By (19), a usable preconditioner for high Reynolds number flows is given by

Ã := M. (23)

Replacing M with a lumped mass matrix ML, one obtains a sparse approximation to
the Schur complement operator. Another simple choice is the diagonal matrix

Ã := diag(A). (24)

In general, the formula for Ã should be as simple as possible but not simpler. Sparse
approximations like C :=BT M−1

L B or C :=BT diag(A)−1B rely on the diagonal dom-
inance of A. The total number of iterations increases at large time steps, and conver-
gence may fail if the off-diagonal part of A can no longer be neglected.

The preconditioning of (15) by a global matrix of the form (21) is called the
global pressure Schur complement approach [79]. A typical implementation is based
on the fractional-step algorithm (16)–(18). The well-known representatives of such
segregated incompressible flow solvers include discrete projection schemes [14, 22,
61, 78], various modifications of the SIMPLE method, and Uzawa-like algorithms.
For an overview of segregated methods, we refer to [15] and references therein.

An alternative to the sequential update of the velocity and pressure unknowns is
the solution of small coupled subproblems. This solution strategy is recommended
for steady-state computations and low Reynolds number flows. It should also be
considered if the Navier-Stokes system is coupled with a RANS turbulence model
or another set of convection-diffusion equations. If the variables are updated in a
segregated manner, strong two-way coupling may result in slow convergence. In
this case, it is worthwhile to replace (21) with a sum of local preconditioners

C−1 := ∑
i

PT
i S−1

i Pi, (25)

where Si := BT
i A−1

i Bi is the Schur complement matrix for a local subproblem that
corresponds to a small subdomain (a single element or a patch of elements) Ωi.
The multiplication by the transformation matrix Pi picks out the degrees of freedom
associated with Ωi, whereas the multiplication by PT

i locates the global degrees of
freedom to be updated after solving a local subproblem of the form Sixi = Piy.

The basic iteration (15) preconditioned by (25) is called the local pressure Schur
complement method [79]. The embedding of “local solvers” into an outer iteration
loop of Jacobi or Gauss–Seidel type has a lot in common with domain decomposi-
tion methods but multilevel PSC preconditioners of the form (25) do not require a
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special treatment of interface conditions. A typical representative of such schemes
is the Vanka smoother [90] which is widely used in the multigrid community.

As a matter of fact, it is possible to combine global PSC (“operator splitting”)
and local PSC (“domain decomposition”) methods in a general-purpose CFD code.
This can be accomplished by using additive preconditioners of the form

C−1 := ∑
i

αiC−1
i .

In what follows, we briefly discuss the design of such preconditioners and present
the resulting algorithms. The convergence of these basic iteration schemes can be
accelerated by using them as preconditioners for Krylov subspace methods (CG,
BiCGStab, GMRES) or smoothers for a multigrid solver. The latter approach leads
to a family of Multilevel pressure Schur complement (MPSC) methods that prove
robust and efficient, as demonstrated by the benchmark computations in [64].

4 Global MPSC Approach

The construction of globally defined additive preconditioners for the Schur comple-
ment operator S = BT A−1B is motivated by the following algebraic splitting

A = αM+βK(u)+ γL, (26)

where β = −θ∆ t and γ = νβ . Consider C := BT Ã−1B, where Ã is an approxima-
tion to A. The above decomposition of A into the reactive (M), convective (K), and
viscous (L) part suggests the use of a similar splitting for C−1. Let

CM be an approximation to the reactive part BT M−1B,

CK be an approximation to the convective part BT K−1B,

CL be an approximation to the viscous part BT L−1B.

The preconditioner CM is well-suited for computations with small time steps. CK is
optimal for steady flows at high Reynolds numbers, and CL is optimal for steady
flows at low Reynolds numbers. Hence, a general-purpose PSC preconditioner can
be defined as a suitable combination of the above. In particular, we consider

C−1 := α
′C−1

M +β
′C−1

K + γ
′C−1

L , (27)

where α ′ ∈ [0,α], β ′ ∈ [0,β ], γ ′ ∈ [0,γ] are parameters that can be used to activate,
deactivate, and blend partial preconditioners depending on the flow regime.

To achieve the best overall performance, the meaning of ‘optimality’ has to be
defined more precisely. Clearly, the most accurate preconditioner for each subprob-
lem is the one that does not involve any approximations. In principle, even a full
matrix of the form BT Ã−1B can be “inverted” using a matrix-free iterative solver
(see above). However, simpler partial preconditioners are likely be more efficient
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smoothers in the context of a multigrid method. The MPSC solver is well-designed
if each subproblem can be solved efficiently and the convergence rates are not sen-
sitive to the parameter settings and geometric properties of the mesh. Optimal pre-
conditioners satisfying these criteria are introduced and analyzed in [79].

At high Reynolds numbers, the use of small time steps is dictated by the physical
scales of flow motion. Thus, the lumped mass matrix ML is a reasonable approxi-
mation to A, and the sparse matrix C := BT M−1

L B may be used as a preconditioner
for the basic iteration (15). The practical implementation of the PSC cycle

p(l) = p(l−1)+[BT M−1
L B]−1 1

∆ t
BT A−1

[
g−∆ tBp(l−1)

]
(28)

is based on the fractional-step algorithm (16)–(18) and can be interpreted as a dis-
crete projection scheme [14, 22, 61, 78]. An additional step is included to enforce
the incompressibility constraint after the last iteration. The algorithm becomes:

1. Given the pressure p(l−1), solve the “viscous Burgers” equation

Au(l) = g−∆ tBp(l−1). (29)

2. Given the velocity u(l), solve the “pressure Poisson” equation

BT M−1
L Bq(l) =

1
∆ t

BT u(l). (30)

3. Add the pressure increment q(l) to the current approximation

p(l) = p(l−1)+q(l). (31)

To enforce BT u = 0, perform the divergence-free L2 projection

u = u(l)−∆ tM−1
L Bq(l). (32)

The projection step is included because the intermediate velocity u(l) is cal-
culated using an approximate pressure p(l−1) and is generally not (discretely)
divergence-free. Multiplying (32) by BT and using (30), we obtain

BT u = BT u(l)−∆ tBT M−1
L Bq(l) = 0. (33)

It can be shown that BT M−1
L B corresponds to a mixed discretization of the Laplacian

operator [22]. If just one basic iteration is performed, algorithm (29)–(32) has the
structure of a classical projection scheme for the time-dependent incompressible
Navier-Stokes equations. In particular, a discrete counterpart of Chorin’s method
[8] is obtained with the trivial initial guess p(0) = 0. The choice p(0) = p(tn) leads
to the discrete version of the second-order accurate van Kan scheme [91].
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The derivation of continuous projection methods involves the use of operator
splitting and the Helmholz decomposition of the intermediate velocity [20, 61].
Replacing differential operators with matrices, one obtains a discrete projection
scheme of the form (29)–(32). The advantages of the algebraic approach include

• applicability to discontinuous pressure approximations,
• consistent treatment of boundary conditions (no splitting),
• alleviation of spurious boundary layers for the pressure,
• convergence to the fully coupled solution as l increases,
• possibility of using other global PSC preconditioners.

On the negative side, discrete projection schemes lack inherent stabilization
mechanisms, whereas the continuous Chorin and van Kan methods may be used
with equal-order (P1/P1) interpolations if the time step is not too small [60].

The vectorizable global MPSC schemes are more efficient than coupled solvers
in the high Reynolds number regime. If the discrete evolution operator A is domi-
nated by the reactive part, it is sufficient to perform just one pressure Schur comple-
ment iteration per time step. The number of inner iterations for the viscous Burgers
equation (29) can also be as small as 1 since u(tn) is a good initial guess.

If an optimized multigrid method is used to solve the pressure Poisson problem
(29), the total cost per time step is just a small fraction of that for a coupled solver.
However, the sparse matrix BT M−1

L B may become a poor approximation to BT A−1B
at large time steps. Therefore, the local MPSC approach presented in the next section
is a better choice for low Reynolds number flows and steady-state computations.

5 Local MPSC Approach

In contrast to the global MPSC approach, local Schur complement preconditioners
make it possible to update the velocity and pressure in a strongly coupled fashion.
In this section, we explain the underlying design philosophy and practical imple-
mentation. As already mentioned, the basic idea is to solve small coupled subprob-
lems associated with patches of degrees of freedom. We define a patch as a small
subset of the vector of unknowns. The solutions to the local subproblems are used
to correct the corresponding subsets of the global solution vector. The so-defined
block-Jacobi or block-Gauß-Seidel iteration provides a very robust smoother for a
multilevel solution strategy [13]. The local MPSC algorithm is amenable to a paral-
lel implementation that exploits the fast cache of modern processors.

The coefficients of local subproblems for the multilevel “domain decomposition”
method are extracted from the global matrices using a restriction matrix Pi that picks
out the degrees of freedom associated with the i-th patch. We define[

Ai ∆ tBi
BT

i 0

]
:= Pi

[
A ∆ tB
BT 0

]
PT

i . (34)
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Thus, the ‘boundary conditions’ for subdomains are also taken from the global ma-
trices. The local Schur complement matrix for the i-th subproblem is given by

Si = BT
i A−1

i Bi. (35)

The block-Jacobi version of the local PSC method can be formulated as follows:

Given u(l−1) and p(l−1), assemble the defect of the discrete problem (9)[
r(l−1)

s(l−1)

]
=

[
g
0

]
−
[

A ∆ tB
BT 0

][
u(l−1)

p(l−1)

]
(36)

and perform one basic iteration with the additive PSC preconditioner[
u(l)

p(l)

]
=

[
u(l−1)

p(l−1)

]
+ω

(l)
∑

i
PT

i

[
Ãi ∆ tBi
BT

i 0

]−1

Pi

[
r(l−1)

s(l−1)
i

]
. (37)

The local stiffness matrix Ãi matrix is chosen to be an approximation to Ai. The
default is Ãi := Ai. The relaxation parameter ω(l) can be fixed or chosen adaptively.

The practical implementation of (37) begins with the solution of local problems[
Ãi ∆ tBi
BT

i 0

][
v(l)i

q(l)i

]
= Pi

[
r(l−1)

s(l−1)

]
. (38)

Next, the calculated local increments are inserted into the global vectors[
v(l)

q(l)

]
= ∑

i
PT

i

[
v(l)i

q(l)i

]
. (39)

Finally, the velocity and pressure approximations are updated thus:[
u(l)

p(l)

]
=

[
u(l−1)

p(l−1)

]
+ω

(l)
[

v(l)

q(l)

]
. (40)

If some degrees of freedom are shared by two or more patches, a weighted av-
erage of the corresponding local increments is inserted into the global vector. The
simplest strategy is to overwrite the contributions of previously processed patches
or to calculate the arithmetic mean over all patch contributions.

The local subproblems (38) are so small that they can be solved using Gaussian
elimination. A further reduction in the size of the linear system is offered by the
Schur complement formulation of the local subproblem. The preconditioner

C−1
i := [BiÃ−1

i Bi]
−1 (41)
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is a full matrix but its size depends on the number of pressure unknowns only. If
the patch Ωi contains just a moderate number of degrees of freedom, then the small
matrix Ci is likely to fit into the processor cache. The local PSC problem can be
solved very efficiently making use of hardware–optimized BLAS libraries. The cor-
responding velocity increment can be recovered as explained in Section 3.

In a sequential code, the block-Jacobi form of the basic iteration may be re-
placed with a block–Gauß-Seidel relaxation that calculates the local residuals us-
ing the latest solution values. Both versions are likely to perform well as long as
there are no strong mesh anisotropies. However, severe convergence problems may
occur on meshes with sharp angles and/or large aspect ratios. The local MPSC ap-
proach makes it possible to avoid the potential troubles by “hiding” the anisotropic
mesh cells inside macroelements that have a regular shape. Several adaptive block-
ing strategies for generation of such macromeshes are described in [65, 79].

6 Multilevel Solution Strategy

The presented PSC schemes are particularly efficient if a multilevel solution strategy
is adopted. To begin with, consider an abstract linear system of the form

ANuN = fN . (42)

The subscript N refers to the number of approximation levels. In geometric multi-
grid methods, these levels are characterized by the mesh size h. Let Ak and fk denote
the matrix and the right-hand side for the level number k = 1, . . . ,N−1. The conver-
gence of a basic iteration scheme on finer levels can be significantly accelerated by a
few iterations on coarser levels. The multilevel solution algorithm can be interpreted
as a hierarchical preconditioner for the slowly converging basic solver.

The main ingredients of a (geometric) multigrid method for solving (42) are:

• matrix–vector multiplication routines for the operators Ak, k = 1, . . . ,N,

• an inexpensive smoother (basic iteration scheme) and a coarse grid solver,
• prolongation Ik

k−1 and restriction Ik−1
k operators for grid transfer.

Let u0
k denote the initial guess for the k-level iteration MPSC(k,u0

k , fk). The so-
defined multigrid cycle yields an approximate solution to the linear system

Akuk = fk.

On the coarsest level, the number of unknowns is typically so small that the
discrete problem A1u1 = f1 can be solved directly. The result is

MPSC(1,u0
1, f1) = A−1

1 f1.
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For all other levels of approximation (k > 1), the following algorithm is used [79]:

1. Presmoothing

Given u0
k , perform m basic iterations (smoothing steps) to obtain um

k .

2. Coarse grid correction

Restrict the residual of the discrete problem to the coarse grid

fk−1 = Ik−1
k ( fk−Akum

k ).

Set u0
k−1 = 0 and calculate ui

k−1 recursively for i = 1, . . . , p

ui
k−1 = MPSC(k−1,ui−1

k−1, fk−1).

3. Relaxation and update

Correct um
k using a prolongation of the coarse grid solution

um+1
k = um

k +αkIk
k−1up

k−1.

4. Postsmoothing

Given um+1
k , perform m smoothing steps to obtain um+1+n

k .

The relaxation parameter αk may be fixed or chosen adaptively so as to minimize
the error in a certain norm. Using the discrete energy norm, one obtains

αk =
( fk−Akum

k , I
k
k−1up

k−1)k

(AkIk
k−1up

k−1, I
k
k−1up

k−1)k
.

After sufficiently many cycles on level N, the above multigrid algorithm yields the
converged solution to (42). An extension to the discrete saddle point problem (9)
can be performed using a global or local pressure Schur complement approach.

The global MPSC approach corresponds to solving the generic system (42) with

AN := BT A−1B, uN := p, fN :=
1

∆ t
BT A−1g.

The basic iteration is given by (15). After solving the Schur complement equation
for the pressure p, the velocity u is updated. The bulk of CPU time is spent on
matrix-vector multiplications for smoothing, defect calculation, and adaptive coarse
grid correction. The multiplication by C = BT Ã−1B requires an iterative solution
of a linear system, unless Ã is a diagonal matrix. The choice C = BT M−1

L B leads
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to a discrete projection scheme (16)–(18) that requires solving a viscous Burgers
equation and a Poisson-like equation. Both subproblems can be solved efficiently
using linear multigrid methods. For the reasons explained in Section 4, the global
MPSC approach is recommended for unsteady flows at high Reynolds numbers.

The local MPSC approach corresponds to solving the generic system (42) with

AN :=
[

A ∆ tB
BT 0

]
, uN :=

[
u
p

]
, fN :=

[
g
0

]
.

The basic iteration is the block-Jacobi method given by (37) or the block-Gauß-
Seidel version of the local PSC method. The cost-intensive part is the smoothing
step, as in the case of standard multigrid techniques for elliptic problems. Local
MPSC schemes lead to very robust solvers for coupled problems. This solution
strategy is recommended for flows at low and intermediate Reynolds numbers.

The presented MPSC solvers have been implemented in the open-source soft-
ware package FEATFLOW [80]. The source code and documentation are available
at http://www.featflow.de. Further algorithmic details (adaptive coarse grid cor-
rection, grid transfer operators, nonlinear iteration techniques, time step control,
implementation of boundary conditions) can be found in the monograph by the first
author [79]. Some programming strategies, data structures, and guidelines for the
development of a hardware-oriented code are presented in [81, 82, 83, 85].

7 Coupling with Scalar Equations

In many practical applications, the Navier-Stokes equations are coupled with a sys-
tem of conservation laws for scalar quantities transported with the flow. In the con-
text of turbulence modeling, the additional variables may represent the turbulent
kinetic energy k, its dissipation rate ε , or the components of the Reynolds stress
tensor. The evolution of temperatures, concentrations, and volume fractions is also
governed by convection-dominated transport equations with coefficients that depend
on the solution to the basic flow model. The discrete maximum principle for these
additional equations can be enforced using algebraic flux correction [37].

To explain the ramifications of a two-way coupling with scalar equations, we
consider the Boussinesq model of natural convection. The weakly compressible flow
induced by temperature gradients is described by the Navier-Stokes system

∂u
∂ t

+u ·∇u+∇p = ν∆u+T eg, ∇ ·u = 0, (43)

where T is the temperature, and eg stands for the unit vector directed opposite to the
gravitational acceleration g. The temperature equation is given by

∂T
∂ t

+u ·∇T = d∆T. (44)
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In the nondimensional form of this model, the viscosity and diffusion coefficient

ν =

√
Pr
Ra

, d =

√
1

RaPr

depend on the Rayleigh number Ra and Prandtl number Pr. A detailed description
of the Boussinesq model and the parameter settings for the MIT benchmark problem
(natural convection in a differentially heated enclosure) can be found in [9].

7.1 Finite Element Discretization

Adding the buoyancy force and the temperature equation to the discretized Navier-
Stokes equations, one obtains a nonlinear algebraic system of the form

Au(u)u+∆ tMT T +∆ tBp = fu, (45)
BT u = 0, (46)

AT (u)T = fT . (47)

The subscripts u and T are used to distinguish between the evolution operators and
right-hand sides of the momentum and temperature equations. As before, the matri-
ces Au and AT can be decomposed into a reactive, convective, and diffusive part

Au(v) = αuMu +βuKu(v)+ γuLu, (48)
AT (v) = αT MT +βT KT (v)+ γT LT . (49)

The finite element spaces and discretization techniques for u and T may be chosen
independently. For example, the temperature may be discretized with linear finite
elements even if Q̃1/Q0 or Q2/P1 elements are employed for the Navier-Stokes
part. Moreover, different stabilization techniques may be used for Ku and KT .

The generic matrix form of the discretized Boussinesq model (45)–(47) readsAu(u) ∆ tMT ∆ tB
0 AT (u) 0
BT 0 0

 u
T
p

=

 fu
fT
0

 . (50)

This generalization of (9) can be solved using a global or local MPSC algorithm.

7.2 Global MPSC Algorithm

In the case of unsteady buoyancy-driven flows, the equations of the Boussinesq
model (50) can be solved in a segregated manner. A discrete projection method
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for the Navier-Stokes equations can be combined with an algebraic flux correction
scheme for the temperature equation using outer iterations to update the unknown
coefficients. The decoupled solution of the two subproblems makes it possible to de-
velop software in a modular way making use of optimized multigrid solvers. More-
over, the time step can be chosen individually for each subproblem.

In the simplest implementation, one outer iteration per time step is performed.
Given the velocity un, temperature T n, and pressure pn at the time level tn, the
following fractional-step algorithm is used to advance the solution in time [88]:

1. Solve the viscous Burgers equation

Au(ũ)ũ = fu−∆ tMT T n−∆ tBpn.

2. Solve the Pressure-Poisson equation

BT M−1
L Bq =

1
∆ t

BT ũ.

3. Correct the velocity and pressure

un+1 = ũ−∆ tM−1
L Bq,

pn+1 = pn +q.

4. Solve the temperature equation

AT (un+1,T n+1)T n+1 = fT .

Since the matrix Au(ũ) depends on the unknown solution ũ to the discrete momen-
tum equation, the system is nonlinear. We solve it using iterative defect correction or
a Newton-like method. The discrete problem associated with the temperature equa-
tion is also nonlinear if algebraic flux correction is performed. Nonlinear solvers
and convergence acceleration techniques for such systems are discussed in [37].

7.3 Local MPSC Algorithm

A generalization of the local MPSC approach can be used in situations when the
above fractional-step algorithm proves insufficiently robust. The local problems are
formulated using a restriction of the approximate Jacobian matrix associated with
the nonlinear system (50). The structure of this matrix is as follows [65, 79]:
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J(σ ,u(l)) =

Au(u(l))+σR(u(l)) ∆ tMT ∆ tB
σR(T (l)) AT (u(l)) 0
BT 0 0

 . (51)

The nonlinearity of the convective term gives rise to the ‘reactive’ part R which
represents a solution-dependent mass matrix and may cause severe convergence
problems. For this reason, we multiply R by an adjustable parameter σ . The choice
σ = 1 corresponds to Newton’s method. Setting σ = 0, one obtains the fixed-point
defect correction scheme. In either case, the linearized problem is solved using a
fully coupled multigrid solver equipped with a local MPSC smoother of ‘Vanka’
type [65]. The global matrix J(σ ,u(l)) is decomposed into small blocks

Ji = PiJPT
i

associated with patches of regular shape. The smoothing of the global defect vector
is performed patchwise by solving the corresponding local subproblems.

The size of the local matrices can be further reduced by using the Schur comple-
ment approach. For simplicity, consider the case σ = 0 (an extension to σ > 0 is
straightforward). Using (47) to eliminate the temperature in (45), we obtain

Auu = fu−∆ tMT A−1
T fT −∆ tBp. (52)

Next, we use (52) to eliminate the velocity in the discretized continuity equation

BT u = BT A−1
u [fu−∆ tMT A−1

T fT −∆ tBp] = 0. (53)

Thus, the pressure Schur complement equation associated with (50) reads

BT A−1
u Bp = BT A−1

u

[
1

∆ t
fu−MT A−1

T fT

]
. (54)

At the local subproblem level, the matrix Ji is replaced with the Schur complement
preconditioner Ci that has the same size as in the case of the basic Navier-Stokes
system. After solving the local PSC equation and updating the pressure, the velocity
and temperature increments are calculated and added to the global vectors.

The local MPSC algorithm is more difficult to implement than the fractional-step
method presented in Section 7.2. However, the coupled solution strategy has a num-
ber of attractive features. Above all, steady-state solutions can be obtained without
resorting to pseudo-time stepping. In the case of unsteady flows at low Reynolds
numbers, the strongly coupled treatment of local subproblems makes it possible to
use large time steps without any loss of robustness. On the other hand, the conver-
gence behavior of multigrid solvers with Newton-type linearization may turn out to
be unsatisfactory, and the computational cost per outer iteration is rather high com-
pared to the global MPSC algorithm. The performance of both solution techniques
is illustrated by the numerical study for the MIT benchmark problem [88].
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8 Case Study: Turbulent Flows

Turbulence plays an important role in many incompressible flow problems. Since
direct numerical simulation (DNS) of turbulent flows is unaffordable for Reynolds
numbers of practical interest, eddy viscosity models based on the Reynolds Aver-
aged Navier-Stokes (RANS) equations are commonly employed in CFD codes.

This section describes a numerical implementation of the k− ε model that has
been in use since the 1970s. To model the effect of unresolved velocity fluctuations,
the viscous part of the Navier-Stokes equations is replaced with

∇ · (ν +νT )[∇u+(∇u)T ],

where νT is the turbulent eddy viscosity. In the standard k− ε model [49], νT de-
pends on the turbulent kinetic energy k and its dissipation rate ε as follows:

νT =Cµ

k2

ε
, Cµ = 0.09.

The evolution of k and ε is governed by the convection-diffusion-reaction equations

∂k
∂ t

+∇ ·
(

uk− νT

σk
∇k
)
= Pk− ε, (55)

∂ε

∂ t
+∇ ·

(
uε− νT

σε

∇ε

)
=

ε

k
(C1Pk−C2ε), (56)

where Pk = νT
2 |∇u +∇uT |2 is responsible for the production of k. The involved

empirical constants are given by C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3.
The above equations are nonlinear and strongly coupled, which makes them very

sensitive to the choice of numerical algorithms. In particular, the discretization pro-
cedure must be positivity-preserving because negative values of the eddy viscosity
would produce numerical instabilities and eventually result in a crash of the code.

8.1 Positivity-Preserving Linearization

In our implementation of k–ε model, the incompressible Navier-Stokes equations
are discretized using the nonconforming Q̃1/Q0 element pair. Standard Q1 elements
are employed for k and ε . The discretization of (59)–(60) yields [40, 41]

Ak(u,νT )k = fk, (57)
Aε(u,νT )ε = fε . (58)

The use of algebraic flux correction for the convective terms is not sufficient for
positivity preservation. Indeed, nonphysical negative values can also be produced
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by the right-hand sides fk and fε . As shown by Patankar [57], a negative slope
linearization of sink terms is required to maintain positivity.

To write the equations of the k− ε model in the desired form, we introduce

γ =
ε

k
.

The negative slope linearization of (59)–(60) is based on the representation [46]

∂k
∂ t

+∇ ·
(

uk− νT

σk
∇k
)
+ γk = Pk, (59)

∂ε

∂ t
+∇ ·

(
uε− νT

σε

∇ε

)
+C2γε = γC1Pk, (60)

where νT and γ are evaluated using the solution from the last outer iteration [41].

After solving the linearized equations (59) and (60), the new values k(l) and ε(l)

are used to calculate the linearization parameter γ(l) for the next outer iteration, if
any. The associated eddy viscosity νT is bounded below by a certain fraction of
the laminar viscosity 0 < νmin ≤ ν and above by νmax = lmax

√
k, where lmax is the

maximum admissible mixing length (the size of the largest eddies, e.g., the width of
the domain). In our implementation, the limited mixing length

l∗ =

{
Cµ

k3/2

ε
, if Cµ k3/2 < εlmax

lmax, otherwise
(61)

is used to calculate the turbulent eddy viscosity by the formula

νT = max{νmin, l∗
√

k}. (62)

The corresponding linearization parameter γ is given by

γ =Cµ

k
νT

. (63)

The above representation makes it possible to avoid division by zero and obtain
bounded nonnegative coefficients without manipulating the values of k and ε .

8.2 Initial Conditions

It is not always easy to find reasonable initial values for the k–ε model. If the veloc-
ity is initialized by zero, it takes the flow some time to become turbulent. Therefore,
we use a constant eddy viscosity ν0 during a startup phase that ends at a certain time
t∗ > 0. The values to be assigned to k and ε at t = t∗ depend on the choice of ν0 and
on the mixing length l0 ∈ [lmin, lmax], where the threshold parameter lmin is related
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to the size of the smallest admissible eddies. Given ν0 and l0, we define

k0 =

(
ν0

l0

)2

, ε0 =Cµ

k3/2
0
l0

. (64)

Alternatively, the initial values of k and ε can be estimated with a zero-equation
turbulence model or defined using an extension of the boundary conditions.

8.3 Boundary Conditions

The k–ε model is very sensitive to the choice and numerical implementation of
boundary conditions. In particular, an improper near-wall treatment can render the
algorithm useless. The right choice of inflow values is also important. For this rea-
son, we discuss the imposition of boundary conditions in some detail.

At the inflow boundary Γin , the values of all variables are commonly prescribed:

u = g, k = c∞|u|2, ε =Cµ

k3/2

l0
on Γin, (65)

where c∞ ∈ [0.003,0.01] and |u| stands for the magnitude of the velocity vector.
At the outlet Γout, the normal derivatives of all variables are set equal to zero

n · [∇u+∇uT ] = 0, n ·∇k = 0, n ·∇ε = 0 on Γout. (66)

In the context of finite element methods, the normal derivatives appear in the surface
integrals that result from integration by parts in the variational form of the governing
equations. These integrals do not need to be assembled if homogeneous Neumann
(“do-nothing”) boundary conditions of the form (66) are prescribed.

On a fixed solid wall Γw, the velocity must satisfy the no-penetration condition

n ·u = 0 on Γw. (67)

In laminar flow models, the tangential velocity is also set equal to zero, so that the
no-slip condition u = 0 holds on Γw. To avoid the need for resolving the viscous
boundary layer in turbulent flow simulations, the boundary condition for the tan-
gential direction is frequently given in terms of the wall shear stress

tw = n ·σ − (n ·σ ·n)n, σ = ν [∇u+∇uT ]. (68)

If tw is prescribed on Γw, then equation (67) is called the free slip condition because
the tangential velocity is defined implicitly and its value is generally unknown.

The practical implementation of the free-slip condition is nontrivial, unless the
boundary of the domain is aligned with the axes of the Cartesian coordinate system.
In contrast to the no-slip condition, (67) constrains a linear combination of several
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velocity components whose boundary values are unknown. Therefore, standard im-
plementation techniques do not work. The free-slip condition can be implemented
using element-by-element transformations to a local coordinate system aligned with
the wall [16]. However, this strategy requires substantial modifications of the code.
In our current implementation, we drive the normal velocities to zero in an itera-
tive way using projections of the form u := u− (n ·u)n [40]. Other implementation
techniques are discussed in [39] in the context of compressible flow problems.

8.4 Wall Functions

To complete the problem statement, we still have to prescribe the tangential stress
tw, as well as the boundary conditions for k and ε on the wall Γw. Note that the
equations of the standard k− ε model are invalid in the near-wall region, where the
Reynolds number is rather low and viscous effects are dominant. To bridge the gap
between the no-slip boundaries and the region of turbulent flow, analytical solutions
to the boundary layer equations are frequently used to determine the values of tw, k,
and ε near the wall. The use of logarithmic wall laws leads to the following set of
boundary conditions to be prescribed at a small distance y from the wall Γw

tw =−u2
τ

u
|u|

, k =
u2

τ√
Cµ

, ε =
u3

τ

κy
, (69)

where κ = 0.41 is the von Kármán constant. The friction velocity uτ is given by

|u|
uτ

=
1
κ

logy++β , y+ =
uτ y
ν

. (70)

The value of the parameter β depends on the wall roughness (β = 5.2 for smooth
walls). The above logarithmic relationship is valid for 11.06≤ y+ ≤ 300.

The use of wall functions implies that a thin boundary layer of width y is re-
moved, and the equations of the k− ε model should be solved in the reduced do-
main. Since the local Reynolds number y+ is proportional to y, the wall distance
should be chosen carefully. It is common to apply the wall laws (69) at the first
internal node or integration point. However, the so-defined y depends on the mesh
size and may fall into the viscous sublayer where (70) is invalid.

Another possibility is to adapt the mesh so that the location of boundary nodes
always corresponds to a fixed value of y+ which should be as small as possible
for accuracy reasons. Taking the smallest value for which the logarithmic law still
holds, one can neglect the width of the removed boundary layer and avoid mesh
adaptation [24, 46]. In this case, the nodes located on the wall Γw should be treated
as if they were shifted by the distance y = y+ν

uτ
in the normal direction.

As explained in [24], the smallest wall distance for the definition of y+ corre-
sponds to the point where the logarithmic layer meets the viscous sublayer. At this
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point, the linear relation y+ = |u|
uτ

and the logarithmic law (70) must hold, whence

y+ =
1
κ

logy++β . (71)

This nonlinear equation can be solved iteratively. The resulting value of the param-
eter y+ (for the default settings κ = 0.41, β = 5.2) is given by y+∗ ≈ 11.06.

The relationship between y+∗ and the friction velocity uτ becomes very simple:

uτ =
|u|
y+∗

. (72)

On the other hand, the wall boundary condition for k implies that

uτ =C0.25
µ

√
k. (73)

Following Grotjans and Menter [24], we use a combination of the above to define

tw =− uτ

y+∗
u, uτ = max

{
C0.25

µ

√
k,
|u|
y+∗

}
. (74)

This definition of tw is consistent with (69) and prevents the momentum flux from
going to zero at separation/stagnation points [24]. The natural boundary condition
for the wall shear stress is used to evaluate the surface integral∫

Γw

tw ·wds =−
∫

Γw

uτ

y+∗
u ·wds, (75)

where w is the test function for the Galerkin weak form of the momentum equation.
By (69), the wall function for the turbulent eddy viscosity νT is given by

νT =Cµ

k2

ε
= κuτ y = κy+∗ ν . (76)

This relation is satisfied automatically if the wall functions for k and ε are im-
plemented in the strong sense. However, the use of Dirichlet boundary conditions
implies that the values of k and ε depend on u via the friction velocity uτ =

|u|
y+∗

but
there is no feedback. The result is an unrealistic one-way coupling.

To release the boundary values of k and ε and let them influence the tangential
velocity via (74)-(75), the wall functions must be implemented in a weak sense.
Differentiating (69), one obtains the Neumann boundary conditions [24]

n ·∇k =−∂k
∂y

= 0,

n ·∇ε =−∂ε

∂y
=

u3
τ

κy2 =
ε

y
.

(77)
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The unknown wall distance y can be expressed in terms of the turbulent eddy vis-
cosity νT = κuτ y, which yields a natural boundary condition of Robin type

n ·∇ε =
κuτ

νT
ε, uτ =C0.25

µ

√
k. (78)

The surface integrals associated with the Neumann boundary condition are given by∫
Γw

νT

σk
(n ·∇k)wds = 0, (79)∫

Γw

νT

σε

(n ·∇ε)wds =
∫

Γw

κuτ

σε

εwds. (80)

Alternatively, the strong form of the wall law ε =
u3

τ

κy =
u4

τ

κy+∗ ν
can be used to prescribe

a Dirichlet boundary condition for ε or evaluate the right-hand side of (80).
If the wall functions for ε and/or k are prescribed in a weak sense, it is essential

to calculate νT and Pk using the strong form of the wall law. That is, the correct
value of the turbulent eddy viscosity is given by (76), while the production term

Pk =
u3

τ

κy
=

u4
τ

κy+∗ ν
(81)

is in equilibrium with the dissipation rate. The friction velocity uτ is defined by (74).

8.5 Chien’s Low-Re k− ε Model

Logarithmic laws provide a reasonably accurate description model of the flow in the
near-wall region avoiding the need for costly integration to the wall. The derivation
is only valid for flat-plate boundary layers and developed flow conditions but wall
functions of the form (69) are frequently used in more general settings with con-
siderable success. An obvious drawback to this approach is the assumption that the
viscous sublayer is very thin. Clearly, it is no longer safe to apply the wall functions
on Γw if the wall distance associated with the constant y+∗ becomes too large.

A robust, albeit costly, alternative to wall laws is the use of damping functions
that provide a smooth transition from laminar to turbulent flow. In Chien’s low-
Reynolds number k− ε model [7], the turbulent eddy viscosity is redefined thus:

νT =Cµ fµ

k2

ε̃
, fµ = 1− exp(−0.0115y+), (82)

ε̃ = ε−2ν
k
y2 . (83)

This popular model is supported by the DNS results which indicate that the ratio
fµ = νT ε̃

Cµ k2 is not a constant but a function approaching zero at the wall.
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The following modification of (59)–(60) is used in Chien’s model [7]

∂k
∂ t

+∇ ·
(

uk− νT

σk
∇k
)
+αk = Pk, (84)

∂ ε̃

∂ t
+∇ ·

(
uε̃− νT

σε

∇ε̃

)
+β ε̃ = γC1 f1Pk, (85)

where the coefficients and damping functions are given by

α = γ +
2ν

y2 , β =C2 f2γ +
2ν

y2 exp(−0.5y+),

γ =
ε̃

k
, f1 = 1, f2 = 1−0.22exp

(
k2

6νε̃

)2

.

(86)

In contrast to wall functions, the boundary conditions on Γw are very simple:

u = 0, k = 0, ε̃ = 0 on Γw. (87)

Note that the sink terms in (84) and (85) have positive coefficients, as required
by Patankar’s rule [57]. The value of y+ is a function of the friction velocity:

y+ =
uτ y
ν

, uτ = max
{

C0.25
µ

√
k,
√
|tw|
}
. (88)

The wall shear stress tw is calculated using (68). Note that the computation of y+

requires knowing the wall distance y. In the current implementation, we calculate
it using a brute-force approach. More efficient techniques for computing distance
functions can be found in the literature on level set methods (see Section 10).

8.6 Numerical Examples

To verify the above implementation the k− ε model, we perform a numerical study
for two test problems. The first one is used to validate the code for Chien’s low-
Reynolds number k-ε (LRKE) model. In the second example, we use the LRKE so-
lution to evaluate the results obtained with logarithmic wall functions implemented
as Dirichlet (DIRBC) and Neumann (NEUBC) boundary conditions.

8.6.1 Channel Flow Problem

In the first example, we simulate the turbulent channel flow at Reτ = 395 based on
the friction velocity uτ , half of the channel width d, and kinematic viscosity ν . The
reference data for this well-known benchmark problem are provided by the DNS
results of Kim et al. [35]. In order to obtain the developed flow conditions required
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Fig. 3 Channel flow: local mesh refinement in the boundary layer.

Fig. 4 Channel flow: LRKE solutions vs. Kim’s DNS results for Reτ = 395.

for validation, the inflow and outflow boundary conditions for the reduced domain
were swapped repeatedly so as to emulate periodic boundary conditions.

The equations of the LRKE model are solved with the 3D code on a hexahedral
mesh of 50,000 elements. Due to the need for high resolution, local mesh refinement
is performed in the near-wall region, as shown in Fig. 3. The distance from the wall
boundary to the nearest interior point corresponds to y+ ≈ 2. The numerical results
for this test are presented in Fig. 4. The profiles of the nondimensional quantities

u+ =
ux

uτ

, k+ =
k
u2

τ

, ε
+ =

εν

u4
τ

are in a good agreement with the DNS results [35] for this benchmark. The calcu-
lated profiles of u+ and ε+ are particularly close to the reference data.
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8.7 Backward Facing Step

In the second example, we simulate the turbulent flow past a backward facing step
in 3D. The definition of the Reynolds number Re = 47,625 is based on the step
height H, mean inflow velocity umean, and kinematic viscosity ν . The objective is to
evaluate the performance of the k− ε model with three different kinds of near-wall
treatment: LRKE vs. DIRBC and NEUBC implementation of wall functions.

All simulations are performed on the same mesh that consists of approximately
260,000 hexahedral elements. Local mesh refinement is performed in the near-wall
region and behind the step (see Fig. 5). A comparison of the steady-state solutions
for the turbulent kinetic energy k and eddy viscosity νT with the reference solution
from [32] is presented in Figs. 6 and 7. Significant differences between the solu-
tions computed using the strong and weak form of logarithmic wall functions are
observed even in the “eyeball norm.” DIRBC was found to produce disappointing
results, whereas the accuracy of the NEUBC solution is similar to LRKE.

An important evaluation criterion for this popular test problem is the recircula-
tion length defined as LR = xr/H. For the implementation based on wall functions
implemented as Dirichlet boundary conditions, this integral quantity can be readily
inferred from the distribution of the skin friction coefficient

c f =
u2

τ

u2
mean

ux

|ux|

on the bottom wall (see Fig. 8). The recirculation length predicted by LRKE and
NEUBC is underestimated (LR ≈ 5.4). The computational results published in the
literature exhibit the same trend (5.0 < LR < 6.5, see [32, 24, 75]). On the other
hand, the implementation of wall functions in the strong sense yields LR ≈ 7.1,
which matches the experimentally measured recirculation length (LR ≈ 7.1, see
[34]). Unfortunately, this perfect agreement turns out to be a pure coincidence.

In Fig. 9, the calculated velocity profiles for 6 different distances from the step
are compared to one another and to the experimental data from Kim’s thesis [34].
The corresponding profiles of k and ε are displayed in Fig. 10 and Fig. 11, respec-
tively. This comparative study indicates that NEUBC yields essentially the same
results as Chien’s low-Reynolds number model, whereas the use of DIRBC leads to
a significant discrepancy, especially at small distances from the step. It is also worth
mentioning that the presented profiles of ε do not suffer from spurious undershoots
which are frequently observed in other computations. This can be attributed to the
positivity-preserving treatment of the convective terms and sinks in our algorithm.

Fig. 5 Backward facing step: a 2D view of the computational mesh in the xy-plane.
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(a)

(b)

(c)

(d)

Fig. 6 Backward facing step: steady-state distribution of k for Re = 47,625. (a) reference solution
[32], (b) DIRBC solution, (c) NEUBC solution, (d) LRKE solution.

(a)

(b)

(c)

(d)

Fig. 7 Backward facing step: steady-state distribution of νT for Re= 47,625. (a) reference solution
[32], (b) DIRBC solution, (c) NEUBC solution, (d) LRKE solution.
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Fig. 8 Backward facing step: distribution of c f along the lower wall, Re = 47,625.

Fig. 9 Backward-facing step: profiles of ux for 6 different distances x/H from the step.

Fig. 10 Backward-facing step: profiles of k for 6 different distances x/H from the step.
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Fig. 11 Backward-facing step: profiles of ε for 6 different distances x/H from the step.

9 Case Study: Population Balances

The hydrodynamic behavior of a polydisperse two-phase flow can be described by
a RANS model for the continuous phase coupled with a population balance model
for the size distribution of the disperse phase (bubbles, drops, or particles). Pop-
ulation balance equations (PBEs) describe crystallization processes, liquid-liquid
extraction, gas-liquid dispersions, and polymerization, to name just a few important
applications. The implementation of PBE models in CFD software adds an extra
dimension to the problem, which increases the complexity of the code and incurs
exorbitant computational costs. For this reason, examples of RANS-PBE multiphase
flow models have been rare. In addition to our own work [3] to be presented here,
we mention the Multiple Size Group (MUSIG) model [47] implemented in the com-
mercial code ANSYS CFX and the recent publications by John et al. [25, 33] who
used algebraic flux correction of FCT type to enforce positivity preservation.

9.1 Mathematical Model

The PBE for gas-liquid or liquid-liquid flows is an integro-differential transport
equation for a probability density function f that depends on certain internal prop-
erties of the disperse phase. In the case of polydisperse bubbly flows, the internal
coordinate of primary interest is the volume υ of the bubble, and f (x, t,υ) is the
probability that a bubble of volume υ will occupy location x at time t. The number
density Nab and volume fraction αab of bubbles with υ ∈ [υa,υb] are given by

Nab(x, t) =
∫

υb

υa

f (x, t,υ)dυ , (89)

αab(x, t) =
∫

υb

υa

f (x, t,υ)υ dυ . (90)
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The changes in the bubble size distribution are caused by convection in the physi-
cal space and by bubble-bubble interactions ( breakage and coalescence) that change
the profile of f along the internal coordinate. Let ug(x, t,υ) denote the average ve-
locity of bubbles that may be defined by adding an empirical slip velocity uslip(m)
to the solution u(x, t) of the RANS model for the continuous phase. For simplicity,
we assume that the slip velocity is constant, i.e., bubbles of all sizes are moving with
the same velocity ug. The general form of population balance equation reads

∂ f
∂ t

+∇ ·
(

ug f − νT

σT
∇ f
)
= B++B−+C++C−, (91)

where νT is the turbulent eddy viscosity and σT is the turbulent Schmidt number.
The terms in the right-hand side of (91) describe the changes of f due to break-

age (B) and coalescence (C) phenomena. The superscripts “+” and “–” are used
to distinguish between sources and sinks. In this study, we use the models devel-
oped by Lehr et al. [43, 44] with some modifications proposed in [5]. Let rB and
rC denote the kernel functions that describe the rates of breakage and coalescence,
respectively. The modeling of B± and C± is based on the assumption that

• the probability that a parent bubble of volume υ will break up to form two daugh-
ter bubbles of volumes υ̃ and υ− υ̃ is given by rB(υ , υ̃) f (υ),

• the probability that two bubbles of volumes υ̃ and υ− υ̃ will coalesce to form a
bubble of volume υ is given by rC(υ− υ̃ , υ̃) f (υ̃) f (υ− υ̃).

Integrating the breakage and coalescence rates over all bubble sizes, one obtains

B++B−+C++C− =
∫

∞

υ

rB(υ , υ̃) f (υ̃)dυ̃− f (υ)
υ

∫
υ

0
υ̃rB(υ̃ ,υ)dυ̃

+
1
2

∫
υ

0
rC(υ̃ ,υ− υ̃) f (υ̃) f (υ− υ̃)dυ̃− f (υ)

∫
∞

0
rC(υ̃ ,υ) f (υ̃)dυ̃ .

(92)

The model is closed by the choice of the kernel functions rB and rC, see [5, 43, 44].

9.2 Discretization of PBEs

In our algorithm [3], the population balance equation (92) is discretized using the
method of classes which corresponds to a piecewise-constant approximation along
the υ-coordinate. In the case of n classes, the pivot volumes are defined by

υi = υminqi−1, i = 1, . . . ,n (93)

where υmin is the volume of the smallest “resolved” class and q is a scaling factor.
The class width ∆υi is defined as the length of the interval [υL

i ,υ
U
i ], where [3]

υ
U
i = υi +

1
3
(υi+1−υi), υ

L
i = υi−

2
3
(υi−υi−1). (94)
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The method of classes transforms the integro-differential equation (92) into a
system of n coupled transport equations for the class probability densities fi

∂ fi

∂ t
+∇ ·

(
ug fi−

νT

σT
∇ fi

)
=

n

∑
j=i

rB
i, j f j∆υ j−

fi

υi

i

∑
j=1

υ jrB
j,i∆υ j

+
1
2

i

∑
j=1

rC
j,k f j fk∆υ j− fi

n

∑
j=1

rC
j,i f j∆υ j, i = 1, . . . ,n.

(95)

The number density and volume fraction of bubbles in the i-th class are given by

Ni = fi∆υi, αi = fiυi∆υi = fiNi.

Multiplying (95) by υi∆υi, one obtains a system of transport equations for the class
holdups αi. This transformation leads to a conservative scheme such that the dis-
cretized source terms are balanced by the discretized sink terms, and the total holdup
of the disperse phase is not affected by breakage or coalescence. We tacitly assume
that the bubbles are incompressible so that the conservation of volume is equiva-
lent to the conservation of mass. The number density is generally not conserved but
the results of Buwa and Ranade [5] indicate that this inconsistency has hardly any
influence on the specific interfacial area and the average bubble size.

The discretization of the bubble size distribution is conservative if a source in the
equation for one class appears as a sink in the equation for another class. To verify
this, consider a bubble of class i that breaks up into bubbles of classes j and k such
that υi = υ j +υ j. The increments to the three right-hand sides sum to zero:

i : −
(

υ jrB
i, j∆υ j

fi
υi

)
υi∆υi −

(
υkrB

i,k∆υk
fi
υi

)
υi∆υi = −rB

i, jαi
υ j∆υ j

υi
−rB

i,kαi
υk∆υk

υi

j : +
(

υ jrB
i, j fi∆υi

)
υ j∆υ j = rB

i, jαi
υ j∆υ j

υi

k : +
(

υkrB
i,k fi∆υi

)
υk∆υk = rB

i,kαi
υk∆υk

υi

Next, suppose that bubbles of the j-th and k-th class coalesce to form a bubble of
class i. The gains and losses in the three classes are as follows:

i : + 1
2

(
rC

j,k f j fk∆υ j + rC
k, j fk f j∆υk

)
υi∆υi

j : −
(

f jrC
j,k fk∆υk

)
υ j∆υ j =−rC

j,kα j fk∆υk

k : −
(

fkrC
k, j f j∆υ j

)
υk∆υk =−rC

k, jαk f j∆υ j

Suppose that all classes have the same width, that is, ∆υi = ∆υ j = ∆υk. Using
the fact that υi = υ j +υk, we obtain the following relationship

1
2

(
rC

j,k f j fk∆υ j + rC
k, j fk f j∆υk

)
(υ j +υk)∆υi = rC

j,kα j fk∆υk + rC
k, jαk f j∆υ j

which proves that the source and sink terms due to coalescence are also balanced.
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In our implementation, the discretization of the internal coordinate is performed
using nonuniform grids. To maintain the conservation of volume under coalescence,
we calculate the sinks for every possible pair of classes and add their absolute values
to the equation for the class that contains the emerging bubble. By this definition,
the sources and sinks sum to zero, so that the total volume remains unchanged.

9.3 Integration of PBE in CFD Codes

The implementation of PBE in an existing CFD code calls for a block-iterative solu-
tion strategy. The diagram in Fig. 12 illustrates the coupling effects that arise when
a PBE model is combined with the algorithm described in Section 8. In addition
to the internal couplings within the Navier-Stokes system (C1 and C2), the k− ε

model (C3), and the PBE transport equations (C4), the two-way couplings between
these blocks must be taken into account (C5-C7). To reduce the computational cost,
we currently neglect the influence of the disperse phase on the continuous phase and
make a number of other simplifying assumptions (see below). The one-way coupling
is a good approximation for flows driven by pressure and/or shear-induced turbu-
lence. The numerical treatment of buoyancy-driven bubbly flows was addressed in
[42] in the context of a drift-flux model with a two-way interphase coupling.

Fig. 12 Coupling of PBE with the turbulent flow model for the continuous phase.

9.4 Numerical Examples

To our knowledge, there is no standard benchmark problem for population balance
models coupled with the fluid dynamics of turbulent two-phase flows. In this section,
we study the influence of turbulence on the bubble size distribution in a turbulent
3D pipe flow. The main quantity of interest is the Sauter mean diameter d32 defined
as the diameter of the sphere that has the same volume / surface area ratio as the
entire ensemble. To show the potential of the CFD-PBE model in the context of an
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industrial application, we simulate the flow through a Sulzer static mixer SMVTM.
The results are compared to experimental data provided by Sulzer Chemtech Ltd.

9.4.1 Turbulent Pipe Flow

Turbulent pipe flow is well suited for testing population balance models with one
spatial and one internal coordinate [26]. The preliminary validation of our algorithm
was performed on a 3D version of this problem [3]. The continuous phase is water
flowing through a 1m long pipe of diameter d = 3.8cm. The incompressible fluid
that constitutes the droplets of the disperse phase has similar physical properties
(density and viscosity). Due to this assumption, the interphase slip and buoyancy
effects are neglected. That is, both phases are assumed to move with the mixture
velocity which is calculated using the k-ε turbulence model. The Reynolds number
for this simulation is Re = dw

ν
= 114,000, where w stands for the bulk velocity. The

computational mesh is generated using a 2D to 3D extrusion of the mesh for the
circular cross section. Each layer consists of 1,344 hexahedral elements.

The calculated radial profiles of the axial velocity, turbulent dissipation rate, and
eddy viscosity for the developed flow pattern are presented in Fig. 13. The results of
the turbulent flow simulation determine the velocity and the breakage/coalescence
rates for the population balance model. The CFD-PBE simulations are performed
for 30 classes with nonuniform spacing that corresponds to the discretization factor
q = 1.7. The feed stream is generated by a circular sparger of diameter 2.82cm that
produces droplets of diameter din = 1.19mm. At the inlet, the volume fraction of
droplets equals αin = 0.55. In the region of fully developed flow, the total holdup
of the disperse phase has the constant value αtot = 0.30. Moreover, the droplet size
distribution reaches an equilibrium under the developed flow conditions.
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Fig. 13 Turbulent pipe flow: radial profiles of the axial velocity (left), turbulent dissipation rate
(middle), and turbulent viscosity (right).

Figure 14 displays the distribution of the Sauter mean diameter d32 in five cross
sections. For better visualization, the axis scaling x : y : z = 10 : 1 : 1 is employed
in this diagram. Note that the equilibrium is attained at a short distance from the
inlet. The distributions of the droplet size distribution and the radial profiles of the
Sauter mean diameter for x = {0,0.06,0.18} are presented in Fig. 15. The diagrams
in Fig. 16 show the size distribution at the outlet and Sauter mean diameter along
the x-axis for radii r = {0,R/3,2R/3}. As expected, a high concentration of larger
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Fig. 14 Turbulent pipe flow: Sauter mean diameter d32 at x = {0,0.06,0.18,0.33,0.6}.
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Fig. 15 Turbulent pipe flow: droplet size distribution (left) and radial variation of the Sauter mean
diameter (right) at x = {0,0.06,0.18}.
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Fig. 16 Turbulent pipe flow: droplet size distribution at the outlet (left) and longitudinal variation
of the Sauter mean diameter at r = {0,R/3,2R/3} (right).

droplets is observed in the middle of the pipe, where the flow is fully turbulent and
ε is relatively small. The concentration of smaller droplets is higher in the near-wall
region, where ε is relatively large. The holdup distributions for three representative
droplet classes (small, medium, and large) are presented in Fig. 17. The correspond-
ing droplet diameters are given by 0.49mm, 1.70mm, and 4.90mm.
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Fig. 17 Turbulent pipe flow: holdups of small (top), medium (middle), and large (bottom) droplets.

9.4.2 Static Mixer SMVTM

Static mixers are used in industry to disperse immiscible liquids as they flow around
mixer elements rigidly installed in a tubular housing. The mechanical simplicity of
static mixers makes them an attractive alternative to rotating impellers. Moreover,
the dissipation of frictional energy in the packing is more uniform, and so is the
resultant drop size distribution [62]. This homogeneity can be attributed to the stable
flow pattern that depends on the geometry of the internal parts. The Sulzer SMVTM

mixing elements consist of intersecting corrugated plates and channels. This design
leads to fast and efficient dispersive mixing in the turbulent flow regime.

Many experimental and computational studies of laminar and turbulent static
mixers can be found in the literature. For a detailed review, we refer to Thakur et al.
[74]. Our interest in this industrial application is driven by the desire to explore the
capabilities of the developed simulation tools. The complex geometry of the static
mixer SMVTM, as shown in Fig. 18 justifies the combination of a multidimensional
flow model with PBEs. The inlet condition is that of a water-oil mixture with oil
holdup αi j = 0.1, Sauter mean diameter d32 = 10−3 m, and inflow speed vin = 1m/s.
The physical properties of the two phases are listed in Table 1. The mixture is treated
as a single fluid with density and viscosity defined as a weighted average of those
for oil and water. The weights are given by the corresponding volume fractions.
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Fig. 18 Geometry of the SMVTM static mixer.

Computations are performed on a mesh that consists of approximately 50,000
hexahedral elements. Due to the high computational cost, a one-way coupling be-
tween the flow and the PBEs is assumed. The simulation run begins with the com-
putation of a steady-state solution for the turbulent flow field, see Fig. 19. The con-
verged velocity and turbulent dissipation rate are used to solve the PBEs for 45
classes. The discretization constant equals q= 1.4 and the smallest droplets have the
diameter of 0.5mm. The distributions of the Sauter mean diameter d32 and droplet
ensembles with d32 ∈ [0.62,0.63]mm are displayed in Fig. 20.

For comparison purposes, we also present the experimental data provided by
Sulzer Chemtech Ltd. The measurements are performed in the cross section right
after the mixer element, and the detected droplets are assigned to the correspond-
ing discrete classes. Since the number of classes for the numerical simulation is too

Table 1 Physical properties of the phases flowing in the SMVTM static mixer.

Water Oil
ρ (kgm-3) 1000 847
ν (kgm-1s-1) 1x10-3 32x10-3

σ (Nm-1) 72x10-3 21x10-3
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Fig. 19 The vertical velocity component (left) and turbulent dissipation rate (right).

Fig. 20 Distribution of the Sauter mean diameter d32 for all classes (left) and droplet ensembles
with d32 ∈ [0.62,0.63]mm (right).
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Fig. 21 Experimental and numerical results for the holdup with 45 (left) and 15 (right) classes.

large to obtain a representative number of droplets for each class, both numerical
solutions and the measured data are mapped onto a size distribution with 15 classes,
see Fig. 21. The results indicate that the CFD-PBE model provides a fairly good de-
scription of the population dynamics in turbulent mixtures. However, further effort
is required to improve the accuracy of the model and of the numerical algorithms.
This research will be continued in collaboration with Sulzer Chemtech Ltd.

10 Case Study: Interfacial Dynamics

Population balance models yield just a rough statistical estimate of the size dis-
tribution in gas-liquid and liquid-liquid dispersions. The position, shape, and size
of individual drops or bubbles cannot be determined using such a model. To re-
solve the microscopic scales, the incompressible Navier-Stokes equations for the
two immiscible fluids must be solved on subdomains separated by a moving bound-
ary. The position of the interface is generally unknown and must be determined as
a part of the problem. In this section, we describe level set methods that provide
an implicit description of the interface and make it possible to solve a wide range
of free boundary problems (deformation of drops/bubbles, breaking surface waves,
slug flow, capillary microreactors, dendritic crystal growth) on fixed meshes.

10.1 The Level Set Method

The idea behind modern level set methods, as described in [54, 67, 68], is an implicit
representation of the interface Γ (t) in terms of a scalar variable ϕ(x, t) such that

Γ (t) = {x |ϕ(x, t) = 0}. (96)
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For practical purposes it is worthwhile to define ϕ as the signed distance function

ϕ(x, t) =±dist(x,Γ (t)). (97)

As a useful byproduct, one obtains the globally defined normal and curvature

n =
∇ϕ

|∇ϕ|
, κ =−∇ ·n. (98)

Since |ϕ(x, t)| is the (shortest) distance from x to Γ (t), it may serve as an indicator
of interface proximity for adaptive mesh refinement techniques [2, 36].

It can be shown that the evolution of ϕ is governed by the transport equation

∂ϕ

∂ t
+u ·∇ϕ = 0. (99)

The velocity field u is obtained by solving the generalized Navier-Stokes system

ρ

(
∂u
∂ t

+u ·∇u
)

= −∇p+∇ · (µ[∇u+(∇u)T ])+ f|Γ , (100)

∇ ·u = 0, (101)

where f|Γ is an interfacial force. The density ρ and viscosity µ are assumed to be
constant in the interior of each phase and have a jump across Γ . We have

ρ(x, t) = ρ1 +(ρ2−ρ1)H(x, t), (102)
µ(x, t) = µ1 +(µ2−µ1)H(x, t). (103)

The value of the discontinuous Heaviside function H depends on the sign of ϕ

H(ϕ,x, t) =
{

1, if ϕ(x, t)> 0,
0, if ϕ(x, t)< 0. (104)

In numerical implementations, regularized approximations to H are employed.
In most existing level set codes, equations (99)–(101) are discretized using finite

difference or finite volume approximations on structured meshes. However, the last
decade has witnessed a lot of progress in the development of FEM-based level set
algorithms [31, 45, 51, 56, 69, 76, 92]. In particular, discontinuous Galerkin meth-
ods have become popular in recent years [23, 48, 58]. The advantages of the finite
element approach include the ease of mesh adaptation and the availability of a robust
variational method for the numerical treatment of surface tension [1, 28].
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10.2 Reinitialization

Even if the level set function ϕ is initialized using definition (97), it may cease to
be a distance function as time evolves. In many situations, this is undesirable or un-
acceptable. First, nonphysical displacements of the interface and large conservation
errors are likely to arise. Second, the lack of the distance function property has an
adverse effect on the accuracy of numerical approximations to normals and curva-
tures. Third, if the gradients of ϕ become too steep, approximate solutions to (99)
may be corrupted by spurious oscillations or excessive numerical diffusion.

The usual way to prevent a deterioration of the level set function is a postprocess-
ing step known as ‘reinitialization’ or ‘redistancing.’ The purpose of this correction
is to restore the distance function property of ϕ without changing its zero level set.
Of course, it is possible to recalculate the distance from each mesh point to the
interface. Such a ‘direct’ reinitialization is straightforward but computationally ex-
pensive, even if restricted to a narrow band around Γ . Alternatively, the distance
function property can be enforced by solving the Eikonal equation

|∇ϕ|= 1 (105)

subject to ϕ = 0 on Γ (t) = {x | ϕ̃(x, t) = 0}, where ϕ̃ is the level set function before
reinitialization. The most popular techniques for solving (105) are fast sweeping
methods [77], fast marching methods [66, 67], and the hyperbolic PDE approach
[73]. In the latter method, equation (105) is treated as the steady-state limit of

∂ϕ

∂τ
+w ·∇ϕ = sign(ϕ̃), w = sign(ϕ̃)

∇ϕ

|∇ϕ|
. (106)

The solution to this nonlinear equation is initialized by ϕ̃ and marched to the steady
state. In practice, it is enough to restore the distance function property in a narrow
band around the interface. Hence, a few pseudo-time steps are sufficient.

For stability reasons, the discontinuous sign function is typically replaced with a
smooth approximation. This practice may result in a loss of accuracy and displace-
ments of Γ . In the interface local projection method of Parolini [56], finite element
techniques are employed to perform direct reinitialization in the interface region.
The corrected values of ϕ provide the boundary conditions for the subsequent solu-
tion of (106) in a reduced domain, where sign(ϕ̃) has no jumps.

To avoid the need for postprocessing, Ville et al. [92] replace (99) and (106) with
a single transport equation. The so-defined ‘convected’ level set method leads to an
elegant and efficient algorithm. We also subscribe to the viewpoint that convection
and reinitialization should be combined as long as there is no fail-safe way to fix ϕ

when the damage is already done. This has led us to develop a variational level set
method in which the Eikonal equation (105) is treated as a constraint for the level
set transport equation [38]. The nonlinear Lagrange multiplier term∫

Ω

λ∇ϕ ·∇wdx (107)
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added to the weak form of (99) corrects the gradients by adding artificial diffusion
(λ > 0) or antidiffusion (λ < 0) whenever |∇ϕ| > 1 or |∇ϕ| < 1, respectively. In
our experience, no flux limiting is required since ϕ remains smooth. A detailed
description of the Lagrange multiplier approach will be presented elsewhere [38].

10.3 Mass Conservation

A major drawback of level set algorithms is the lack of mass conservation. Indeed,
ρ(ϕ) given by (102) may fail to satisfy the nonlinear continuity equation

∂ρ(ϕ)

∂ t
+∇ · (uρ(ϕ)) = 0. (108)

As an alarming consequence, the volume of incompressible fluids may change in an
unpredictable manner. In particular, this is likely to happen when evolving interfaces
undergo topological changes such as coalescence or breakup.

Both transport and redistancing may be responsible for mass conservation errors
in level set algorithms. To some extent, these errors can be reduced by using more
accurate numerical schemes and adaptive mesh refinement techniques [52]. Many
tricks for improving the conservation properties of level set algorithms have been
proposed in recent years [45, 58, 59, 69, 72]. Again, the usual approach relies on
the use of postprocessing techniques designed to preserve the total volume

V (t) =
∫

Ω

H(ϕ,x, t)dx =V (0), ∀t ≥ 0, (109)

where H is the Heaviside function defined by (104). Smolianski [72] enforces this
constraint by adding a constant cϕ to the nonconservative approximation

ϕ̄ = ϕ + cϕ ,
∫

Ω

H(ϕ + cϕ ,x, t)dx =V (0). (110)

This level correction ensures global mass conservation but there is a danger that the
lost mass will reappear in a wrong place. If one fluid consists of multiple discon-
nected components, global conservation does not ensure that the mass/volume of
each component is conserved. Clearly, manipulations of the form (110) are inappro-
priate in such situations. In our opinion, an incorrect distribution of mass is more
harmful than (readily identifiable) mass conservation errors.

Lesage and Dervieux [45] proposed a localized mass corrector in which the con-
stant cϕ is multiplied by the nodal residual of a dual level set equation. If the mass
is conserved in a control volume around node i, then the value of ϕi remains un-
changed. However, the corrections to other nodes depend on the global constant cϕ ,
which implies that the distribution of the lost mass may still be incorrect.

In the conservative level set method of Olsson and Kreiss [53], ϕ is replaced with
a regularized Heaviside function. This definition makes the algorithm akin to the
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phase field (diffuse interface) method. Due to the presence of a steep front and the
absence of Cahn-Hilliard terms, the use of flux limiting is a must. A finite difference
TVD scheme is used to solve the transport equation in the original publication [53].
In the context of a finite element approximation, the conservative level set method
can be implemented using algebraic flux correction of FCT or TVD type.

10.4 Surface Tension

The overall accuracy of level set algorithms depends not only on the computation of
ϕ but also on the numerical treatment of the surface tension force

f|Γ (x, t) = σκnδ (x, t), (111)

where σ is a surface tension coefficient and δ is the Dirac delta function localizing
the effect of f|Γ to Γ . The normal n and curvature κ are given by (98).

In a finite element code, the values of n and κ can be obtained using variational
recovery techniques [29]. A better approach to the numerical treatment of surface
tension effects is based on the following fact from differential geometry:

κn = ∆ idΓ ,

where idΓ is the identity mapping on Γ and ∆ is the Laplace-Beltrami operator

∆ f := ∇ · (∇ f ), ∇ f := ∇ f − (n ·∇ f )n.

The contribution of (111) to the weak form of the momentum equation (100) is
calculated using the definition of δ (x, t) and integration by parts [1, 28, 29]∫

Ω

f|Γ ·wdx =−
∫

Γ

σ∇x ·∇wds. (112)

Since a fully explicit treatment of this term leads to a capillary time step restriction,
we follow the semi-implicit approach proposed by Bänsch [1] in the context of a
front-tracking method. Plugging xn+1 = xn +∆ tun+1 into (112), we obtain

fσ =−
∫

Γ n
σ∇x ·∇wds−∆ t

∫
Γ n

σ∇un+1 ·∇wds. (113)

Note that the second term is linear in un+1 and has the structure of a discrete diffu-
sion operator. In contrast to the fully explicit approach, the discretization becomes
more stable for large values of σ , as shown by the numerical study in [28, 29].

Following Hysing [28, 29], we evaluate fσ using the continuum surface force
(CSF) approximation [4]. By definition of the Dirac delta function, we have

fσ =−
∫

Ω

σ∇x ·∇wδ
n dx−∆ t

∫
Ω

σ∇un+1 ·∇wδ
n dx. (114)
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Since δ is singular, numerical integration is performed using a regularized delta
function. Given an approximate distance function ϕ , we define

δε(x) =
max{0,ε−|ϕ|}

ε2 , (115)

where ε is a small parameter. Note that there is no need to know the position of Γ

that would be difficult to determine for bilinear and higher-order elements.
Sussman and Ohta [71] have recently found another promising way to achieve

unconditional stability in a numerical implementation of stiff surface tension terms.
Their algorithm is based on the concept of volume preserving motion by mean cur-
vature. Reportedly, it offers a speed-up by a factor 3-5 for a given accuracy.

10.5 Putting it All Together

The above presentation of the level set method reveals that its practical implemen-
tation involves many choices and tradeoffs. The most important components are the
solver for the Navier-Stokes equations with discontinuous coefficients, the numer-
ical approximation of the level set transport equation, mechanisms for maintaining
the distance function property and mass conservation, the method for computation
of normals and curvatures, and the numerical treatment of surface tension.

In the parallel 3D code developed by our group at the TU Dortmund, the incom-
pressible Navier-Stokes equations are solved using a generalization of the discrete
projection scheme described in Section 4. The velocity and pressure are discretized
using Q̃1/Q0 or Q2/P1 elements. The level set equation is solved with a FEM-TVD
scheme for continuous Q1 elements [29, 31] or an upwind-biased P1 discontinuous
Galerkin (DG) method without any extra stabilization [86]. A variety of methods
have been implemented to solve the Eikonal equation at the reinitialization step for
the Q1 version [30]. The DG approach makes it possible to reinitialize ϕ without dis-
placing the free interface. The gradient of the piecewise-linear solution is constant
inside each cell. To enforce |∇ϕ|= 1, we correct the slopes in elements crossed by
the interface and solve (106) elsewhere, see [86] for details. The implementation
of the surface tension force is based on the semi-implicit algorithm presented in
Section 10.4. The option of solving contact angle problems is also provided.

10.6 Numerical Examples

In the absence of analytical solutions (which are very difficult to derive for interfa-
cial two-phase flows) benchmarking is the only way to verify the developed method.
Pure numerical benchmarks are of little help if no quantitative comparisons can be
made. A visual inspection alone is rarely, if ever, sufficient for validation purposes.
To illustrate this, consider the bubble shapes shown in Fig. 22. These shapes were
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Fig. 22 Rising bubble simulation: numerical solutions produced by 6 codes.
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Fig. 23 Rising bubble benchmark: results for (a) Test 1 and (b) Test 2.

calculated by six different codes with identical problem formulations. Ideally, the
six solutions should be identical on fine meshes. Unfortunately, this is not the case.
The shapes are quite similar but it is impossible to tell which solutions, if any, are re-
ally correct. In order to identify the good ones, one must replace the “eyeball norm”
with some quantitative criteria for measuring the accuracy of simulation results.

10.6.1 Two-Dimensional Rising Bubble

In a recent paper [31], we proposed a new benchmark for interfacial two-phase
flows. In collaboration with two other groups, we simulated a two-dimensional bub-
ble rising in a liquid column. Two parameter constellations were considered. In the
first test, the densities and viscosities of the two phases differ by a factor of 10, and
the surface tension coefficient is chosen large enough to hold the bubble together.
At the final time, the bubble assumes a typical ellipsoidal shape that was predicted
very well by all codes under investigation, see Fig. 23a. In the second test, the den-
sity and viscosity ratios are as large as 1000 and 100, respectively. Moreover, the
value of the surface tension coefficient is reduced. The bubble shape falls into the
skirted/dimpled ellipsoidal-cap regime, and a breakup occurs before the final time,
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see Fig. 23b. The topological changes of the interface make this test rather challeng-
ing. All computational details (geometry, initial and boundary conditions, parameter
values) and the reference data for both cases are available online [6].

Since the publication of rising bubble benchmark, several other groups have con-
tributed their results. It turned out that many different interface capturing techniques
(level set, volume of fluid, phase field) produce very similar results. We remark that
the rationale for developing a 2D test configuration was not an accurate prediction of
physical reality (2D bubbles do not exist in nature) but the computation of reference
solutions for evaluation of CFD software and underlying numerical methods.

10.6.2 Three-Dimensional Rising Bubble

The 3D version of our level set code has also been tested on a rising bubble problem
[86]. The settings for this simulation correspond to test cases B, C, and D defined in
the paper by van Sint Annaland et al. [93]. The proportions of the bubble diameter
d and domain dimensions ax×ay×az are (db : ax : ay : az) = (3 : 10 : 10 : 20). The
bubble undergoes significant deformations but does not break up. The densities and
viscosities of the two immiscible fluids differ by a factor of 100. The values of the
surface tension coefficient σgl and gravitational acceleration gz are given in terms of
the dimensionless Eötvös and Morton numbers defined as in [10]

Eo =
gz∆ρgld2

b
σgl

, Mo =
gzµ4

l ∆ρgl

ρ2
l σgl

. (116)

The Reynolds number associated with the terminal rise v∞ velocity is defined by

Re =
ρlv∞db

µl
. (117)

In order to assess the dependence of the bubble shape and v∞ on the mesh size,
simulations were performed with two different meshes and two levels of refinements
for each mesh (2,3 for mesh A and 3,4 for mesh B). The equilibrium bubble shapes
shown in Fig. 24 indicate that the employed mesh resolution is sufficient, especially
in the cases B and D. The measured and calculated values of the Reynolds number
for all cases are listed in Table 2. The empirical data of Clift et al. [10] and simu-
lation results of van Sint Annaland [93] are shown in the columns labeled ReE and
ReS, respectively. The last 4 columns show our results obtained on meshes A and B

Table 2 3D rising bubble: empirical vs. simulated Reynolds numbers for Cases B, C, D.

Case Shape Mo Eo ReE ReS RemAl2 RemAl3 RemBl3 RemBl4
B Ellipsoidal 0.100 9.71 4.6 4.3 5.50 5.50 5.60 5.60
C Skirted 0.971 97.1 20.0 18.0 17.7 18.0 18.0 18.0
D Dimpled 1000 97.1 1.5 1.7 2.00 2.03 2.03 2.03
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(a) Case B: Eo=9.71, Mo=0.1
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(b) Case C: Eo=97.1, Mo=0.971
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(c) Case D: Eo=97.1, Mo=1000
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Fig. 24 3D rising bubble: equilibrium shapes (left) and snapshots of the deforming bubble (right).
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for refinement levels 2-4. Although these results are essentially mesh-independent,
ReS exhibits a better correlation with ReE . Since no grid convergence studies were
performed in [93], it is unclear if the values of ReS have also converged. This state
of affairs illustrates the urgent need for a collaborative research effort aimed at the
development of a new 3D benchmark for interfacial two-phase flows.

10.6.3 Droplet Dripping

In the last numerical example, we simulate the process of droplet dripping in a liq-
uid stream [86]. In the corresponding experimental setup, the continuous phase is
a glucose-water mixture and the disperse phase is silicon oil. The dripping mode is
characterized by relatively low volumetric flow rates and by the fact that the droplets
are generated in the near vicinity of the capillary, so that the stream length is compa-
rable to the size of the generated droplets. Since the temperature is kept at a constant
value during the whole experiment, the densities and viscosities of the two phases
are also constant. The experimental studies performed by the group of Prof. Walzel
(BCI, TU Dortmund) provide the average values of target quantities like the droplet
size, droplet generation frequency, and the stream length. These experimental data
make it possible to validate the 3D simulation results to be presented below.

The geometry of the domain around the capillary is sketched in Fig. 25. The
problem dimensions measured in decimeters (dm) are as follows:

domain dimensions 0.3 × 0.3 × 1.2
inner capillary radius R1=0.015
outer capillary radius R2 =0.030
primary phase inlet radius R3 = 0.15

Fig. 25 Droplet dripping: a sketch of the domain around the capillary.
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The physical properties of the continuous (C) and disperse (D) phase are given by

ρC = 1340 kg m−3 = 1.34 kg dm−3,

ρD = 970 kg m−3 = 0.97 kg dm−3,

µC = µD = 500 mPa s = 0.050 kg dm s−1,

gz =−9.81 m s−2 =−98.1 dm s−2,

σ = 0.034 N m−1 = 0.034 kg s−2.

The inflow boundary conditions are given in terms of the volumetric flow rates

V̇C =
∫ R3

R2

(
2πra1(R3− r)(r−R2)

)
dr =

−2πa1

[
r4

4
− (R2 +R3)

r3

3
+R2R3

r2

2

]R3

R2

=
πa1

6
(R2 +R3)(R3−R2)

3

and

V̇D =
∫ R1

0

(
2πra2(R1− r)(R1 + r)

)
dr = 2πa2

[
R2

1r2

2
− r4

4

]R1

0
=

πa2

2
R4

1.

The parabolic velocity profile at the inflow boundary is defined by the formula

w =

a2(R1− r)(R1 + r), if 0 < r < R1,
a1(R3− r)(r−R2), if R2 < r < R3,
0, otherwise.

The parameter values a1 = 10.14 dm−1 s−1, a2 = 763.7 dm−1 s−1 correspond to

V̇C = 99.04 ml min−1 = 99.04 cm3 min−1 = 99.04
10−3dm3

60s
= 1.65 10−3 dm3s−1,

V̇D = 3.64 ml min−1 = 3.64 cm3 min−1 = 3.64
10−3dm3

60s
= 6.07 10−5 dm3s−1.

The above operating conditions lead to a pseudo-steady dripping mode. The mea-
sured frequency of droplet formation is f = 0.60Hz (cca 0.58Hzexp), the diameter of
the generated droplets is d = 0.058 dm (cca 0.062 dmexp), and the maximum stream
length is L = 0.102 dm (cca 0.122 dmexp). The process of droplet dripping is il-
lustrated by the diagrams and photographs in Fig. 26. The agreement between the
simulation results and physical reality is remarkably good. In this study, we used the
Q2/P1/P1 version of the 3D code. The total holdup of the disperse phase evolves as
shown in Fig. 27. The slope of the lines that correspond to the experimental data is
given by q = 6.07 10−5 dm3s−1. The measured and simulated holdups follow the
same trend, although the optional mass correction step was deactivated.
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Fig. 26 Droplet dripping: 3D simulation (top) vs. experiment (bottom).

Fig. 27 Total holdup of the disperse phase: 3D simulation vs. experiment.

11 Conclusions

In this chapter, we presented a family of multilevel pressure Schur complement
methods for the incompressible Navier-Stokes equations. The coupling of the ba-
sic flow model with (systems of) scalar transport equations was illustrated by the
case studies for the k-ε turbulence model, population balance equations, and level
set algorithms. This survey covers a small but representative selection of incom-
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pressible problems that can be solved efficiently using the proposed tools. The cur-
rent research activities of our groups cover a wide range of other applications such
as particulate and granular flows [50, 55], viscoelastic fluids [12], computational
hemodynamics [17], benchmarking for fluid-structure interaction [84], chemotaxis
problems [70], and GPU computing [18, 83], to name just a few.

The design of professional CFD software for grand-challenge industrial prob-
lems requires an optimal interaction of discretization methods, iterative solvers, and
software engineering aspects. The overall performance of the code depends on all
of these components. Obtaining quantitatively accurate results in a computation-
ally efficient manner is still an issue even for scalar convection-dominated transport
problems and laminar flow models. The mathematical challenges of today include
the extension of algebraic flux correction schemes to higher-order finite elements
and tensor-valued transport operators, hp-adaptivity in space and time, rigorous a
posteriori error estimation, and model-dependent improvements.

The optimization of iterative solvers for linear and nonlinear systems requires
a further analysis of Newton-like methods, convergence acceleration techniques,
monolithic multigrid solvers, and domain decomposition methods for parallel com-
puting. Furthermore, the importance of benchmark computations and grid conver-
gence studies cannot be overemphasized. We invite the reader to visit our CFD
benchmarking site [6], get familiar with the test cases and propose new ones.

In addition to the above mathematical challenges, the growing demands of the
CFD industry require a further investment in the development of hardware-oriented
implementation techniques for modern computer architectures. The main bottleneck
to high performance is not the actual data processing but slow memory access (see
[81] for a critical discussion). For this reason, the actual MFLOP/s rates are typically
very low compared to the theoretical peak performance. A major gain of efficiency
can be achieved, for example, by using cache-based implementation techniques and
exploiting the tensor product structure of stencils for block-structured grids. Such a
hardware-oriented approach may yield an overall speedup factor of up to 1000 even
on a single processor. On top of that, the use of optimal parallelization strategies
may boost the performance of the code by further orders of magnitude.

In light of the above, the key to achieving optimal performance in the context
of implicit finite element flow solvers lies in shifting the distribution of CPU times
from costly memory access tasks (assembly of matrices / right-hand sides / residu-
als, adaptive mesh refinement / coarsening) toward more arithmetic-intensive work
(solution of sparse linear systems). High-performance computing techniques based
on this philosophy are already available and prove remarkably efficient [82].

In recent years, graphics processing units (GPUs) have become a popular tool for
scientific computing. The contributions of our group include a GPU- and multicore-
oriented implementation technique for geometric multigrid solvers [18]. Sparse
matrix-vector multiplications are utilized throughout the multigrid pipeline: in the
coarse-grid solver, in smoothers, and even in grid transfer operators. The current im-
plementation can handle several low- and high-order finite element spaces in 2D and
3D. On a single GPU, we achieve speedups by nearly an order of magnitude com-
pared to a multithreaded CPU code. We conclude that the practical implementation
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of a numerical algorithm may be as important as the choice of its mathematical
components. This means that the methods of scientific computing will continue to
evolve following the technological trends in computer architecture.
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