

Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen

DFG – SPP 1423 "Prozess-Spray"

Prof. Dr. Stefan Turek, <u>Dr. Otto Mierka</u> Institut für Angewandte Mathematik, LS III Technische Universität Dortmund omierka@mathematik.uni-dortmund.de

> <u>http://www.featflow.de</u> <u>http://www.mathematik.tu-dortmund.de/LS3</u>

Main objectives of the project

- Development of a fast and accurate CFDbased simulation tool suitable for non-Newtonian multiphase problems. Extension of the standard FeatFlow solver with additional packages
 - Level Set Method for interface capturing
 - Generalized Newtonian rheological models
 - ALE Method with dynamic mesh deformation
- Multistage validation of the simulation tool w.r.t experimental measurements or computational benchmarks
- Simulation of encapsulation (3-phase) processes:
 - under modulated conditions
 - materials obeying shear thinning rheological

models

Continuity of development within SPP 1423

CFD simulation of monodisperse droplet generation by means of jet break-up → Geometry, material parameters, rheological properties, modulation

1st period

- LS-FEM
- Benchmarking and Validation
- Droplet dripping
- Modulation

2nd period

- mgLS-FEM
- Gas/liquid-like systems
- Non-Newtonian models
- Jetting regime

Newtonian jetting example

• Wider range of Op. Cond.

3rd period

- mgLS⁽²⁾-FEM
- Gas/liquid/solid systems with Non-Newtonian fluids
- Multiple Level Set
- Modulation

Modulation example

Encapsulation processes

- Numerical simulation of *micro-fluidic drug encapsulation ("monodisperse compound droplets")*
- "Bio-degradable" outer liquid with generalized Newtonian behaviour
- Optimization w.r.t. boundary conditions, flow rates, droplet size, geometry, modulation

- Core material is defined as the specific material that requires to be coated (liquid, emulsion, colloid or solid)
- Shell material is present to protect and stabilize the core (Alginate, Chitosan, Gelatin, Pectin, Waxes, Starch)

Otto Mierka

M. Whelehan

Numerical challenges of the encapsulation process

technische universität dortmund

Modular structure of mgLS⁽²⁾-FEM

Practical realization – interface reconstruction

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$$

Stability requirement: ϕ should be smooth!

Reinitialization / Accurate distance computation / Interface reconstruction

The key is to fully exploit the high order resolution of the interface

• Triangulation of the arising surface

 Hierarchical storage of triangulated subsets Reduction to mass of points weighted with their integral area (upward direction)

Practical realization – interface reconstruction

High order Q2 discretization of the Level Set equation $\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$

Stability requirement: ϕ should be smooth!

Reinitialization / Accurate distance computation / Interface reconstruction

The key is to fully exploit the high order resolution of the interface

Otto Mierka

Validation and convergence of the flow solver

3D Rising Bubble benchmark initiative:

http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark/

Mass loss evolution in time

Spatial convergence: FEATFLOW vs Ref Temporal convergence: FEATFLOW vs Ref FEATFLOW vs other discret. techniques

Validation of droplet generation w.r.t. experiments

Cooperation with the group of Prof. Walzel / TU Dortmund

- Dripping shows an excellent agreement with experiments
- Increasing sensitivity of the process for higher flowrates leading to jetting!
- Introduction of controlled source of disturbances in terms of modulation

 $V_D/V_C = 4.0:197.0$

Recent development: Grid deformation and ALE

Advantages:

- Constant mesh/data structure
- Increased resolution in regions of interest
- Nonlinear PDE approach is **not** necessary → anisotropic Laplace smoother
- Straightforward usage for 3D unstructured meshes

Intelligence of the method depends on the construction of the monitor function

- Geometrical description (solid body, interface triangulation)
- Field oriented description (steep gradients, fronts) \rightarrow numerical stabilization

Microfish dynamics Cooperation with: Prof. Fischer @ MPI IS Stuttgart Work published in: Nature Communications, 2014

Twinscrew extruders

Cooperation with: Prof. Schöppner @ KTP Paderborn Work submitted to: Comp. Meth. In Appl. Math. & Eng. , 2015

Microreactors

Cooperation with: Prof. Schlüter @ TUHH Hamburg

Computational mesh after deformation

concentratio

Simulation of viscous liquid jets

J. M. Nóbrega et al.: The phenomenon of jet buckling: Experimental and numerical predictions

dortmund

Reference case Newtonian inner/outer liquid

Triangulation oriented mesh deformation

Influence of the mesh resolution \rightarrow mesh convergence

Non-Newtonian shell / Newtonian core material

Viscosity model:

Shear thinning power law:

$$\mu=\mu_0(\varepsilon+\dot\gamma)^{n-1}$$

where

$$\dot{\gamma} = \|D(u)\| = \left\|\frac{1}{2}[\nabla u + (\nabla u)^T]\right|$$
$$\varepsilon = 10^{-4}$$

Increasing shear thinning effects leading to suppressed satellite droplet formation

Solver adjustments

- Fixed point iteration for the nonlinearity
- Defect evaluation with the deformation tensor
- Preconditioned with shear dependent diff. operator

Viscosity distribution in the laminar jet (n=0.8)

U technische universität dortmund

Conclusions

- ALE based grid deformation guarantees a speedup equivalent to one resolution level (that corresponds to 8 times better performance compared to a static mesh simulation with a comparable resolution)
- High order discretization together with the developed reinitialization procedure guarantees excellent mass conservation and convergence properties
- The simulation tool has been validated in a sequence of stages of development
- The developed production code is configured for realistic encapsulation processes

Outlook

Encapsulation in the framework of fluids obeying more specific rheological models:

- Viscoelastic fluids (single phase with LCR is already implemented)

- Viscoplastic fluids (cooperation with Prof. Frigaard @ Vancouver)

Gas bubble encapsulation

Thank You for Your attention

