

Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions

Stefan Turek, Otto Mierka,

Chair of Applied Mathematics and Numerics, LS III

Scientific goals

Extend the up-to-now developed and validated methodology and realize the corresponding software implementation in the CFD package FEATFLOW. The main numerical ingredients to be combined/extended are the following:

- high-resolution <u>Algebraic Flux Correction (AFC)</u> stabilization schemes to suppress
 numerical diffusion and to prevent nonphysical oscillations
- locally adaptive <u>Grid Deformation (GD)</u> techniques applied on (general) unstructured meshes with the aim to obtain high-resolution computational meshes satisfying additional requirements on the relative orientation with respect to local velocity fields in order to further decrease the extent of numerical diffusion
- time-scale independent reaction modules for the treatment of mutually coupled <u>fast</u> <u>chemical reactions</u> supplemented with appropriate models to reflect the extent of segregation of the individual species
- High-order <u>Level Set</u> techniques for accurate tracking of fluid interfaces

High-resolution AFC stabilization

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v}c) - \alpha \Delta c = f(c) \qquad \text{with} \quad \alpha \to 0$$

Standard discretizations face shortcomings for non-smooth solutions

- Low order methods lead to smearing
- High order methods introduce unphysical oscillations (potentially leading to simulation blowup)

Remedy: Algebraic Flux Correction method

- Local extremum diminishing (+)
- Positivity preserving (+)
- Transforms the linear problem to a non-linear one (-) •
- Robust and highly accurate (+)

Otto Mierka 🔟 technische universität dortmund

PDE-free mesh deformation method

- Construction of (dynamic) monitor function (distance to interface, curvature, concentration gradients, vorticity)
- Anisotropic Laplace smoothening (fast)
- Arbitrary Lagrangian-Eulerian Method (ALE) for non-stationary problems
- Handling geometrically complex/dynamic problems in the framework moving interfaces

Scientific cooperation with: Prof. Fischer @ MPI IS Stuttgart, Published in: Nature Communications, 2014.

Reaktive Blasenströmungen

Remedies:

 \rightarrow <u>Operator splitting</u>

 \rightarrow MEMM (Fox et al.)

 \rightarrow AFC + GD

0.5 0

0.5 0

0.5 0

Numerical simulation of chemical reactions

Possible difficulties

- Extreme resolution requirements of the ch. species
- Extremely different time-scales (ch. r. vs transport)
- Micromixing subgrid mixing models (ch.r. rate limiter)

SPP1740 Jahreskolloquium Hamburg 31.08.-01.09.2015

8

sim

sim

Reaktive Blasenströmungen

Simulation of chemical reactions (preliminary work within the SPP 1740)

 $A + B \xrightarrow{k \to \infty} P$ $\partial_t \phi + u \cdot \nabla \phi = \nabla \cdot (d\nabla \phi)$ with $\phi = c_A - c_B$ Toor and Chiang Adopted simulation technique:

Simultaneous use of two meshes /discretizations:

- equidistant, structured, low resolution for velocity
- deformed, structured, high resolution for passive/active scalar

Efficient and robust interpolation from mesh to mesh in parallel framework

Transported scalar field ϕ

Monitor function

Computational mesh

Computational ref. Bothe et al.

Reaktive Blasenströmungen

Simulation of the super-focus mixer (SFM)

Geometry of the final SFM with visualization of the reactants

Intantaneous reaction scheme: $A + B \xrightarrow{k \to \infty} P$

Geometrical simplification: Application of a twofold symmetry

Expected maximum Re number range for flowrates

 $\dot{V} = 100 \ mL/h$ Re~ 50 $\dot{V} = 250 \ mL/h$ Re~125 $\dot{V} = 500 \ mL/h$ Re~250

... at the outflow

For stationary inflow conditions stationary velocity fields are to be expected!

This fact defines the computational strategy:

.... if there is only a negligible back-coupling (dilute solutions)

Blasenströmungen

Simulation of the super-focus mixer (SFM)

Geometry of the final SFM with visualization of the reactants

Intermediate SFM geometry and operation conditions

Mixing chamber: length: 22.5 mm initial width: 19.9 mm height: 500 µm opening angle: 50°

Intantaneous reaction scheme: $A + B \xrightarrow{k \to \infty} P$

Investigated flowrates: 100 mL/h 250 mL/h 500 mL/h

 $D_{A,B} = 3.0 \cdot 10^{-10} m^2 / s$

Otto Mierka tu technische universität dortmund

Computationally obtained flowfield in the Superfocus mixer

Flowrate: $\dot{V} = 100 \ mL/h$

Otto Mierka tu technische universität dortmund

Computationally obtained flowfield in the Superfocus mixer

Flowrate: $\dot{V} = 250 \ mL/h$

Otto Mierka tu technische universität dortmund

Computationally obtained flowfield in the Superfocus mixer

Flowrate: $\dot{V} = 500 \ mL/h$

Exploiting the two-fold symmetry only the $\frac{1}{4}$ of the domain needs to be meshed. Two consecutive mesh resolutions are used NEL($\frac{1}{4}$) = 1,25.10⁶ (M_1) and 10.10⁶ (M_2) elements.

Velocity is interpolated in an L2 sense from the unstructured (non-deformed) mesh to the deformed mesh.

Otto Mierka tu technische universität

Next tasks:

Superfofus mixer

Modeling:

- Quantification of the product distribution
- Extension to general reaction schemes (consecutive competitive reaction networks)
- Comparison with experimental data

Numerics:

Convergence estimation for simplified geometries in relation to flowrates (Re numbers)

Taylor flow

- Cooperation and joining the SPP 1506 Benchmark initiative (Pure flow) ٠
- Combination of the Level Set techniques with transport of species + mass transport •
- Taking part and support the "upgraded" benchmark initiative •

What do we need ... ?

Results of experimental observations serving as reference for validation purposes

- Integral and spatial (+temporal) measured data obtained for gradually increased (geometrical, reaction) complexity
- Local reaction mechanisms/constants under well defined operation conditions
- Practical suggestions for the design of a joint benchmark initiative supported with exp./sim. results

Otto Mierka 🔟 technische universität

Reaktive Blasenströmungen

Level Set based Interface tracking

- High order discretization
- Surface reconstruction in terms of surface triangulation
- Recursive subdivision of interface intersected elements (downward direction)
- Hierarchical storage of triangulated subsets (upward direction)
- Reinitialization in terms of L₂ projection of the distance distribution

3D Rising Bubble benchmark initiative:

http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark/

	μ_l	μ_g	$ ho_l$	$ ho_g$	σ_{12}	g_z
Case 1	10	1	1000	100	24,5	-0,98
Case 2	10	0,1	1000	1	1,96	-0,98

Otto Mierka tu technische universität

Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions

Stefan Turek, Otto Mierka,

Chair of Applied Mathematics and Numerics, LS III

