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A high order 3D FEM-Level Set approach for multiphase flows
with application to monodisperse droplet generation
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SUMMARY

Numerical simulation of incompressible multiphase flows with immiscible fluids is still a challenging
field, particularly for 3D configurations undergoing complex topological changes. In this paper, we
discuss a 3D FEM approach with high order Stokes elements (Q2/Q1) for velocity and pressure on
hexahedral meshes. A discontinuous Galerkin approach with piecewise linear polynomials (dG(1))
is used to treat the Level Set function. This new methodology allows the application of special
redistancing algorithms which do not change the position of the interface. We explain the corresponding
FEM techniques for treating the advection steps and surface tension effects, and validate the
corresponding 3D code with respect to both numerical test cases and experimental data. The
corresponding applications describe the generation of monodisperse droplets which vary with regard
to different flow rates and can be used for rigorous benchmarking of 3D multiphase flow simulations.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase flow problems are very important in many applications, and performing accurate,
robust and efficient numerical simulations of them has been the object of numerous research and
simulation projects for many years. One of the main challenges for the underlying numerical
methods is that the position of the moving interface between two fluids is unknown and must
be determined as a part of the boundary value problem which should be solved. If we assume
a domain Ω with two immiscible fluids, then the time dependent subdomains Ω1(t) and Ω2(t)
are bounded by an external boundary Σ and a dynamic interior boundary or interface Γ(t)
which might consist of several components (see Figure 1).
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Figure 1. Complete domain Ω.

Then, the usual model for laminar (multiphase) flow is described by the incompressible
Navier-Stokes equations

ρ(x)

[

∂u

∂t
+ u · ∇u

]

−∇ · (µ(x)[∇u + (∇u)T ]) + ∇p = ρ(x)g + fΓ(σ), (1)

∇ · u = 0 in Ω = Ω1 ∪ Γ ∪ Ω2, (2)

which contain an additional force term fΓ(σ) due to the surface tension σ at the free interface
Γ. Here, the density ρ as well as the viscosity µ are variable and discontinuous, that is

ρ(x, t) =

{

ρ1, ∀ x ∈ Ω1(t)
ρ2, ∀ x ∈ Ω2(t)

, µ(x, t) =

{

µ1, ∀ x ∈ Ω1(t)
µ2, ∀ x ∈ Ω2(t)

(3)

which significantly influences the continuous velocity u as well as the pressure p.

This contribution describes the implementation and application of a new Level Set approach
in the framework of the Finite Element Method (FEM) for such multiphase flow problems.
For this reason the open-source CFD package FeatFlow (www.featflow.de) was utilized
and extended with the corresponding newly created Level Set module such that the existing
methodology of the FeatFlow approach, namely flexible, high order FEM discretization
schemes in space and time with flux correction [35] and edge-oriented stabilization techniques
[45], unstructured meshes with adaptive grid deformation, efficient Newton-Multigrid solvers
and parallelization based on domain decomposition could be directly exploited.

The outline of the paper is as follows: After a short description in section 2 of the state-
of-the-art regarding interface tracking and capturing methods, particularly for Level Set
approaches, we describe in section 3 the chosen solution technique which is based on a
discrete projection method [58, 59] for the Navier-Stokes equations, the Level Set advection
equation and the corresponding reinitialization procedure. Moreover, the discretization aspects
regarding the incompressible Navier-Stokes equations using the Crank-Nicolson method
and the Q2/Q1 element pair are discussed in section 3, too, whereas the details of the
employed Discontinuous Galerkin FEM approach with P1 elements for the Level Set equation
can be found in section 4. Section 5 presents several numerical results which first of all
evaluate the (almost) grid independent behaviour of the developed CFD solver for two
prototypical benchmarking configurations. Subsequently, the simulation tools are examined for
the generation of monodisperse droplets: Based on corresponding experimental results in the
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A 3D FEM-LEVEL SET APPROACH 3

so-called ‘dripping regime’, the simulation methods are validated so that in a second step the
application to more complex configurations including variation of the inflow data is analyzed.
Based on corresponding experimental studies, we discuss a new benchmark configuration for
prototypical 3D multiphase flow which can be used for the ‘simple’ validation and evaluation of
multiphase flow CFD codes without requiring complex postprocessing tools. Finally, the results
are summarized in section 6 where an outlook is provided for more complex 3D multiphase
flow simulations.

2. MATHEMATICAL MODEL

The free interface Γ is constantly being deformed and moved so that its position has to be
treated as an unknown and be determined in every time step. Depending on the technique
for the representation of the interface, one can distinguish between front tracking and front
capturing approaches which can be realized on fixed as well as dynamic moving meshes. For
an overview of existing numerical approaches and their classification we recommend references
[55] and [52]. The ”natural” front tracking approach [2],[22],[41],[61] is based on an explicit
tracing of the dynamic interface between the two phases. Here, in the case of Lagrangian finite
element methods [27], the underlying mesh has to be constantly adapted to the free interface
so that the grid points move with the interface. More flexibility is promised by the Arbitrary
Lagrangian Eulerian (ALE) formulation [4],[5],[8],[19],[20] and [49] which is based on local
grid adaptation and which provides excellent results in the case of moderate deformations (for
instance for small waves at the free surface). Moreover, there are many more techniques of
fictitious domain and Chimera type which allow the highly accurate tracking of the dynamic
interfaces via overlapping surface meshes [28]. However, such front tracking methods do not
allow large deformations of the free interfaces or even topological changes such as drop and
bubble breakup and coalescence, which typically lead to highly distorted meshes. Moreover,
the computational costs regarding the implementation and also CPU timings are often very
large in particular for complex 3D simulations.

In contrast to such Lagrangian methods, Eulerian front capturing methods are much more
robust and flexible. They are applicable even to free interface problems with significant
topology changes (breakup of bubbles, fragmentation, coalescence, etc.). Based on the
early Marker-and-Cell method of Harlow and Welch [62], the implicit reconstruction of the
interface is based on an indicator function φ(x, t) which contains the information about the
corresponding subdomain for the point x at time t. The distribution in the complete domain
Ω can then be calculated via the scalar transport equation

∂φ

∂t
+ u · ∇φ = 0 (4)

so that the exact position of the free interface Γ(φ) at any time can be reconstructed from φ
with the help of appropriate postprocessing techniques. One of the most well known methods
is the Volume-of-Fluid (VOF) method [1, 42] in which case the indicator function φ can be
interpreted as volume fraction which should have the discrete values 0 or 1 depending on the
location of x
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φ(x, t) =

{

1, ∀ x ∈ Ω1(t)
0, ∀ x ∈ Ω2(t)

(5)

The numerical drawback of this approach is that artificial diffusion smears out the
(originally) discontinuous indicator function which arises from the solution of the discretized
advection problems resulting in a boundary layer with 0 < φ < 1. Therefore, numerical
schemes and locally adapted meshes have to be designed to make this boundary layer as small
as possible so that the corresponding error for reconstructing the free interface is reduced.
Moreover, due to the steep gradients and the discontinuity of the indicator function, standard
Galerkin schemes lead to unphysical oscillations which significantly deteriorate the numerical
accuracy or even lead to unphysical over- and undershoots. As conclusion, the development of
corresponding high-order monotone discretization schemes in combination with unstructured,
locally refined meshes still today belongs to the numerical challenges one has to solve.

As a successful alternative, the Level Set approach [43],[44],[53] has been established which
represents the interface as zero isoline of a continuous indicator function φ which should be
close to the distance with respect to the free interface

φ(x, t) =

{

dist(x,Γ), ∀ x ∈ Ω1(t)
−dist(x,Γ), ∀ x ∈ Ω2(t)

(6)

so that Γ(t) = {x ∈ Ω |φ(x, t) = 0} holds. In contrast to the VOF approach, φ as a distance
function is smooth and allows the calculation of a globally defined normal vector n towards
the interface Γ and of the corresponding curvature via

n =
∇φ

|∇φ|
, κ = −∇ · n = −∇ ·

(

∇φ

|∇φ|

)

. (7)

Here, special FEM techniques for gradient recovery can be used which allow highly accurate
approximations of normals and curvature [55] which are necessary for the direct evaluation
of the surface tension force fΓ = κσδ(φ)n, with δ(φ) denoting the corresponding Dirac Delta
function. Hence, development and implementation of a typical Level Set approach consists of
performing the following sequence of tasks:

• Discretization of the Level Set transport problem (4) (and also (35), see later).
• Reinitialisation, resp., redistancing of the Level Set function.
• Additional correction so that mass and volume is preserved (if necessary).
• Calculation of normal vector fields (and curvature if needed) based on φ.
• Evaluation of the discontinuous fluid parameters ρ(φ), µ(φ), and of fΓ, with or without

reconstruction of Γ.

The above sequence of tasks involves a myriad of different possibilities and choices which
inevitably lead to numerous differing solution approaches. This is evident from the rich
collection of publications on Level Set methods which also demonstrates the high potential
of these methods for a wide range of applications (see for instance the books by Osher [43]
and Sethian [53]). However, the resulting quality of the solutions mainly depends on the
underlying numerical and computational approaches, and one has to acknowledge the fact
that most of existing Level Set codes are still based on finite differences on uniform Cartesian
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A 3D FEM-LEVEL SET APPROACH 5

meshes which is easy to implement. The drawback is that the computational cost typically is
quite high since uniform mesh refinement has to be performed to resolve the necessary scales,
particularly near the fluidic interfaces, but also due to complicated geometries with small-scale
structures. Unstructured meshes are particularly well suited for such approaches which leads
us to finite volume and finite element discretization methods which are the most prominent
candidates for unstructured simulation approaches. Examples for corresponding approaches in
the framework of VOF and Level Set methods can be found in [3],[8],[10],[18],[31],[39],[40],[50].
In many approaches, for example in the Interface Proximity Adaption Method of Barth and
Sethian [3], the mesh is locally refined near the interface which also is quite easy to find if φ is a
distance function [39]. Although finite element methods together with locally refined grids seem
to possess a very advantageous behaviour for simulation of multiphase flow problems with free
interfaces, most existing Level Set codes are still based on finite differences. It is only during the
last ten years that FEM codes have been successfully applied for these special CFD problems
([46],[51],[54]; see also [17],[25],[40],[47],[55],[57]). However, there is still a huge potential for
improvement if ‘optimal’ modern discretization and solution techniques shall be adapted to the
special characteristics of FEM-Level Set methods. In constructing a modern Level Set solver it
is important to focus on unstructured meshes with local grid refinement strategies for highly
nonstationary multiphase flow simulations, and make detailed studies for higher numerical
stability. Additionally, stable and accurate discretization of the convective terms (for instance,
VOF and Phase-Field methods show very steep gradients near the interface, similarly as Level
Set approaches without redistancing), robust treatment of large density differences, and the
handling of large surface tension σ also require special attention.

Summarizing the properties of FEM-Level Set techniques for multiphase flow problems, we
can conclude the following (potentially) advantageous behaviour in comparison to interface
tracking methods as well as VOF and Phase-Field approaches which motivates our recent and
future work for the combination of FEM and Level Set methods:

• If the Level Set function satisfies the distance property, it is smooth so that even on
highly uniform meshes qualitatively good results can be obtained. Local refinement
around the interface will help to improve the accuracy, but in contrast to VOF and
Phase-Field methods, which may lead to smeared interfaces due to numerical diffusion
or to unphysical oscillations due to steep gradients, adaptive meshes are not necessary.

• Accurate FEM discretizations of higher order can be adapted to the special
characteristics of Level Set functions, that means higher smoothness because of the
distance function properties.

• Accurate representations of the interface are provided, without explicit description, but
even for complex geometrical changes, which is important for handling the surface tension
term.

• Auxiliary quantities like normal vectors and curvature are provided, even globally, which
is particularly advantageous for the CSF [7] approach.

On the other hand, there are still several problems with Level Set approaches (and some of
them are also valid for VOF and Phase-Field methods) which are numerically challenging and
which are in the focus of our recent and also planned research activities:

• The standard Level Set formulation is not conservative which may lead to mass loss.
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6 S. TUREK ET AL.

• Since reinitialisation is necessary to preserve the distance property, often highly expensive
computational operations might be necessary, for instance via solving globally the
Eikonal equation, or redistancing is based on ‘cheaper’ methods which however change
the position and shape of the interface, leading again to mass loss.

• Due to the standard explicit treatment of surface tension, the time step size is restricted
by the capillary time step restriction, that means the necessary time steps depend by
purely numerical reasons on the size of surface tension and on the local mesh size.

In the following sections, we first of all describe the overall solution technique which is based
on a discrete projection method which is followed by a discussion of the FEM discretization
details, particularly regarding the Discontinuous Galerkin approach for treating the Level Set
equation.

3. DISCRETE PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS

In this section, we briefly review the ‘Discrete Projection method’ as a special variant of
Multilevel Pressure Schur Complement (MPSC) approaches for the solution of incompressible
flow problems, and we combine it with FEM discretization techniques. We will explain some
characteristics of high-resolution FEM schemes as applied to incompressible flow problems and
discuss the computational details regarding the efficient numerical solution of the resulting
nonlinear and linear algebraic systems. Furthermore, we will discuss the coupling mechanisms
between the ‘basic’ flow model (standard Navier-Stokes equations for velocity and pressure)
and the scalar transport equations for the Level Set indicator function in our multiphase flow
solver.

3.1. Discretization techniques

For a better illustration, we consider first of all numerical solution techniques for the (single
phase) incompressible Navier-Stokes equations,

ut − ν∆u + u · ∇u + ∇p = f , ∇·u = 0 , in Ω × (0, T ] , (8)

for given viscosity ν and force f which might contain the surface tension. Moreover, boundary
values are prescribed on the boundary ∂Ω as well as an initial condition at t = 0. Solving
this problem numerically is still a considerable task in the case of long time calculations and
high Reynolds numbers, particularly in 3D and also in 2D if the time dynamics is complex.
The common solution approach is a separate discretization in space and time. We first (semi-)
discretize in time by one of the usual methods known from the treatment of ordinary differential
equations, such as the Forward or Backward Euler-, the Crank-Nicolson- or Fractional-Step-
θ–scheme, or others, and obtain a sequence of generalized stationary Navier-Stokes problems.

Basic θ-scheme:

Given un and k = tn+1 − tn, then solve for u = un+1 and p = pn+1

u − un

k
+ θ[−ν∆u + u · ∇u] + ∇p = gn+1 , ∇·u = 0 , in Ω (9)

with right hand side gn+1 := θfn+1 + (1 − θ)fn − (1 − θ)[−ν∆un + un · ∇un].
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A 3D FEM-LEVEL SET APPROACH 7

In the following simulations, the parameter θ is chosen as θ = 1/2, representing the Crank-
Nicolson-scheme which is of second order. Alternatively, the Fractional-Step-θ-scheme which
uses three different values for θ and for the time step k at each time level, is another excellent
candidate with slightly better robustness properties.

For the spatial discretization, we choose a finite element approach which is based on a
suitable variational formulation. On the finite mesh Th (3D hexahedral elements in our case)
covering the domain Ω with local mesh size h, one defines polynomial trial functions for velocity
and pressure. These spaces Hh and Lh should lead to numerically stable approximations as
h → 0, i.e., they should satisfy the so-called inf-sup (LBB) condition [23]

min
qh∈Lh

max
vh∈Hh

(qh,∇·vh)

||qh||0 ||∇vh||0
≥ γ > 0 (10)

with a mesh-independent constant γ. While the original FEATFLOW solvers are based on
rotated multilinear nonconforming finite element functions for the velocity and piecewise
constant pressure approximations, we recently extended the complete solver package to higher
order Stokes elements, namely conforming triquadratic ansatz functions for the velocity and
trilinear (‘Q2/Q1’), resp., (discontinuous) linear (‘Q2/P1’) pressure approximations, which
both belong to the ‘best’ finite element pairs for laminar incompressible flow w.r.t. accuracy
and robustness. Since so far most of our numerical simulations have been performed for
small up to moderate Reynolds numbers, the (nonlinear) convective operator was discretized
using standard stabilization techniques only. Currently, we use edge-, resp., face-oriented FEM
stabilization techniques [45] which can be easily realized for higher order ansatz functions,
too. Here, special jump terms of the gradient of the solution as well as of the test function
have to be included into the weak formulation which leads to a consistent stabilization, for
stationary as well as nonstationary configurations. It is planned to apply this technique in
the case of higher Reynolds number flows, too, which will be a subject of our further studies
for such multiphase flow problems. For an overview regarding such special FEM stabilization
techniques, we refer to [45] and particularly to [11] which contains corresponding results for
the Q2/P1 approach, too.

3.2. Solution techniques

Using the same notation u and p also for the coefficient vectors in the representation of the
approximate solution, the discretized Navier-Stokes equations may be written as a coupled
(nonlinear) algebraic system of the form:

Given un and f , compute u = un+1 and p = pn+1 by solving

Au + ∆tBp = g , BT u = 0, where (11)

g = [M − θ1∆tN(un)]un + θ2∆tfn+1 + θ3∆tfn . (12)

Here and in the following, we use the more compact form for the diffusive and advective
part

N(v)u := −ν∆u + v · ∇u (13)
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8 S. TUREK ET AL.

while M is the (consistent or lumped) mass matrix, B is the discrete gradient operator, and
−BT is the associated divergence operator. Furthermore,

Au = [M − θ∆tN(u)]u, N(u) = K(u) + νL, (14)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator incorporating
a certain amount of artificial diffusion due to some appropriate FEM stabilization as described
before. The solution of nonlinear algebraic systems like (11) is a rather difficult task and many
aspects, namely the treatment of the nonlinearity and of the incompressibility as well as the
outer control of the couplings, need to be taken into account. Consequently, this leads to a
great variety of incompressible flow solvers which are closely related to one another but exhibit
considerable differences in terms of their stability, convergence, and efficiency. The Multilevel
Pressure Schur Complement (MPSC) approach outlined below makes it possible to put many
existing solution techniques into a common framework and to combine their advantages so as
to obtain better run-time characteristics.

The fully discretized Navier-Stokes equations (11) as well as the linear subproblems to be
solved within the outer iteration loop for a fixed-point defect correction or, with a similar
structure, for a Newton-like method admit the following representation

[

A ∆tB
BT 0

] [

u

p

]

=

[

g

0

]

. (15)

In general, we have A = M + βN(u), with β = −θ∆t for time-dependent problems. If the
operator A is nonsingular, the velocity can be formally expressed as

u = A−1(g − ∆tBp) (16)

and plugged into the discretized continuity equation

BT u = 0 (17)

which gives a scalar Schur complement equation for the pressure only

BT A−1Bp =
1

∆t
BT A−1g. (18)

Thus, the coupled system (15) can be handled as follows

1. Solve the Pressure Schur Complement (PSC) equation (18) for p.
2. Substitute p into relation (16) and compute the velocity u.

It is worth mentioning that the matrix A−1 is full and should not be assembled explicitly.
Instead, an auxiliary problem is to be solved by a direct method or by inner iterations. For
instance, the velocity update (16) is equivalent to the solution of the discretized momentum
equation Au = g − ∆tBp. Likewise, the matrix S := BT A−1B is never generated in practice.
Doing so would be prohibitively expensive in terms of CPU time and memory requirements.
It is instructive to consider a preconditioned Richardson method which yields the following
basic iteration for the PSC equation

p(l+1) = p(l) − C−1

[

Sp(l) −
1

∆t
BT A−1g

]

, l = 0, . . . , L − 1. (19)
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A 3D FEM-LEVEL SET APPROACH 9

Here C has to be chosen as suitable preconditioner to S but being easier to ‘invert’ in an
iterative way. The number of PSC cycles L can be fixed or chosen adaptively so as to achieve a
prescribed tolerance for the residual. The basic idea behind the family of global MPSC schemes
is the construction of globally defined additive preconditioners for the Schur complement
operator S = BT A−1B. Recall that the matrix A has the following structure

A := M + βK(u) + γL, (20)

where β = −θ∆t and γ = νβ. Unfortunately, even today it is still a very challenging task to
construct a matrix Ã and a preconditioner C = BT Ã−1B that would be a sufficiently good
approximation to all three components of A and S, respectively; particularly for the convective
part with K(u). Therefore, one usually starts with developing individual preconditioners for
the reactive (M) and diffusive (L) part, while the convective (K) part is neglected by applying
this special kind of operator splitting. In our case, the Reynolds numbers in the considered
flow configurations are so far quite small, so that this appraoch can be justified, particularly if
small time steps are used to resolve to complex dynamical behaviour. Therefore, the (lumped)
mass matrix M proves to be a reasonable approximation to the complete operator A, so that
our basic iteration (19) for the pressure Schur complement equation

p(l+1) = p(l) + [BT M−1B]−1 1

∆t
BT A−1

[

g − ∆tBp(l)
]

(21)

can be interpreted and implemented as a discrete projection scheme, if L = 1, such as those
proposed in [13],[24]. Then, the main algorithmic steps are as follows [58]:

1. Solve the ‘viscous Burgers’ equation for ũ

Aũ = g − ∆tBp(l).

2. Solve the discrete ‘Pressure-Poisson’ problem

BT M−1Bq =
1

∆t
BT ũ.

3. Correct the pressure and the velocity

p(l+1) = p(l) + q, u = ũ − ∆tM−1Bq

In essence, the right-hand side of the momentum equation is assembled using the old pressure
iterate and the intermediate velocity ũ is projected onto the subspace of solenoidal functions
so as to satisfy the constraint BT u = 0. Moreover, the matrix BT M−1B corresponds to a
mixed discretization of the Laplacian operator [24] so that this method is a discrete analogue
of the classical projection schemes derived by Chorin (p(0) = 0) and Van Kan (p(0) = p(tn))
via operator splitting for the continuous problem.

Next, we apply this special operator-splitting approach to the full multiphase flow system,
that means

ρ(x)

[

∂u

∂t
+ u · ∇u

]

−∇ · (µ(x)[∇u + (∇u)T ]) + ∇p = ρ(x)g + fΓ,σ(φ), (22)

∂φ

∂t
+ u · ∇φ = 0 , ∇ · u = 0 . (23)
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10 S. TUREK ET AL.

After discretization in space and time, we obtain again a system of nonlinear algebraic
equations which can be written in matrix form as follows

Au(un+1)un+1 + ∆tF (φn+1) + ∆tBpn+1 = gu, (24)

Aφ(un+1)φn+1 = gφ, BT un+1 = 0. (25)

Here and below the superscript n + 1 refers to the time level, while subscripts identify the
origin of discrete operators (u for the momentum equation and φ for the Level Set equation);
moreover, ρ and µ are evaluated w.r.t. the old time level tn which makes this formulation semi-
implicit. Note that we have the freedom of using different finite element approximations and
discretization schemes for the velocity u and indicator function φ, and the discrete problem
(24)–(25) can be solved again in the framework of the discrete projection method. For relatively
small time steps, this strategy works very well, and simulation software can be developed in
a modular way making use of optimized multigrid solvers. Consequently, in the simplest case
(just one outer iteration per time step), the sequence of algorithmic steps to be performed is
as follows:

1. Compute ũ from the momentum equation

Au(ũ)ũ = gu − ∆tF (φn) − ∆tBpn.

2. Solve the discrete Pressure-Poisson problem

BT M−1Bq =
1

∆t
BT ũ.

3. Correct the pressure and the velocity

pn+1 = pn + q, un+1 = ũ − ∆tM−1Bq.

4. Solve the Level Set equation for φ

Aφ(un+1)φn+1 = gφ.

Due to the nonlinearity of the discretized convective terms, resp., of the reinitialisation step,
iterative defect correction or Newton-like methods, resp., corrections via redistancing, must
be invoked in steps 1 and 4. However, due to the assumed relatively small time steps, such
nonlinear iteration methods are not critical for the complete flow simulation.

4. THE FEM-LEVEL SET-dG(1) APPROACH

Our chosen Level Set approach is based on a first order Discontinuous Galerkin discretization
in space, dG(1)-FEM, that means with piecewise linear polynomials. In the following, we will
discuss the corresponding techniques for the discretization of the advection equation, for the
treatment of the surface tension force and for the reinitialisation procedure.

4.1. Discontinuous Galerkin upwinding for the Level Set approach

There are several ways to approximate and solve Discontinuous Galerkin approximations for
the Level Set function φ [12],[17],[37],[41]. The general form of the Level Set transport equation
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A 3D FEM-LEVEL SET APPROACH 11

involving the normal front velocity can for instance be solved directly by using a Runge-Kutta
dG-formulation for the Hamilton-Jacobi equations [29, 36]. The starting point to introduce
our discretization of the Level Set transport equation is as follows

∂φ

∂t
+ u · ∇φ = 0 (26)

with a given velocity field u. In our case u is taken as the convective velocity from the Navier-
Stokes solver and must accordingly be updated in each time step. We have u · n = un, where
n is the unit normal to the interface Γ according to relation (7). The Level Set equation (26)
can thus be rewritten as

∂φ

∂t
+ ∇ · (uφ) = φ∇ · u. (27)

The reformulated Level Set equation above is simply a linear convection or advection
equation in conservative formulation with a source term on the right hand side. We continue
to rewriting it in weak form by introducing a triangulation, Mh, of the domain Ω where E is
an element E ∈ Mh. We are thus seeking an approximated solution in the following space

Vh =
{

vh ∈ L∞(Ω) : vh|E ∈ Vh(E),∀E ∈ Mh
}

.

Here Vh(E) denotes the local discrete test and trial spaces. The corresponding derivation follows
by multiplying equation (26) by a suitably chosen test function after which partial integration
over each element E is performed. This yields

∫

E

vh

∂φ

∂t
dx =

∫

E

φu · ∇vhdx −

∫

∂E

vhφu · nEds +

∫

E

vhφ∇ · udx, ∀vh ∈ Vh(E)

where nE is the outward pointing unit normal belonging to the element E . The trial solution
space is accordingly discretized as φh ∈ Vh(E) which results in:

∫

E

vh

∂φh

∂t
dx =

∫

E

φhu · ∇vhdx −

∫

∂E

vhφhu · nEds +

∫

E

vhφh∇ · udx, ∀vh ∈ Vh(E) (28)

The fluxes on the internal boundaries are multiply defined since the underlying test and
trial spaces are discontinuous. This is handled by replacing the outer flux in the last term of
the right-hand side of equation (28) with a numerically upwinded flux, that is

∫

E

vh

∂φh

∂t
dx =

∫

E

φh∇ · (uvh) dx −

∫

∂E

vhφup
h u · nEds, ∀vh ∈ Vh(E). (29)

The upwinding flux is calculated as

φup = φ− if u · nE ≥ 0, and φ+ otherwise

where φ− and φ+ are defined as

φ− = limǫ→0−φ(x + ǫnǫ, t)

φ+ = limǫ→0+φ(x + ǫnǫ, t).

In other words this means that φup is the value of φ taken from an upwind element at an
element interface.
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In our approach, equation (29) is discretized in space by firstly constructing the triangulation
Mh by subdivision in hexahedral elements E (or equivalently quadrilateral elements in two
dimensions). Furthermore both the test and trial function spaces, vh and φh, are constructed
by employing linear 1st order polynomial basis functions on each element E , the so-called dG(1)
approach. These basis functions are completely determined by interior nodes of the element
and are thus discontinuous at inter-element edges. Moreover, the discretization in time utilizes
as before the standard 2nd order Crank-Nicolson scheme as described for instance in [59].

4.2. Treatment of surface tension effects

Surface tension effects are taken into account through the following force balance at the
interface Γ

[u]|Γ = 0, [−pI + µ(∇u + (∇u)T )]
∣

∣

Γ
· n = σκn

where n is the unit normal at the interface pointing into Ω1, [A]|Γ = A|Ω1∩Γ −A|Ω2∩Γ denotes
the jump of a quantity A across the interface, σ is the surface tension coefficient, and κ is the
curvature of the interface Γ. The first condition implies continuity of the velocity across the
interface, whereas the second describes the force balance on Γ. Two strategies are often used
to handle the curvature term, either to rewrite it as a volume force, that means

fst = σκnδ(Γ,x)

where δ(Γ,x) is the Dirac delta function localizing the surface tension forces to the interface,
or to introduce the Laplace-Beltrami operator applied to the identity id : R

2 → R
2

κn = ∆Γ id

and integrating the corresponding term in the weak formulation of the problem by parts [4, 19].
In the case of the usual explicit treatment we get

(fst,v) =

∫

Γn

σκnnn · vdΓ (30)

where the superscript n denotes the previous time level. The extension of the surface integrals
into volumetric ones can be obtained by the indicated incorporation of the Dirac Delta function
δ = δ(Γ,x), which has the value 1 at the location of the interface, φ = 0, and zero elsewhere,
that means:

(fst,v) =

∫

Ω

σκnnn · vδ (Γn) dx (31)

According to our implementation we approximate the Delta function δ by a continuous
regularized one, which is a smooth function in the vicinity ǫ of the interface:

δ(φ) =







φ < 0 max
(

0, 1
ǫ

+ 1
ǫ2

φ
)

φ ≥ 0 max
(

0, 1
ǫ
− 1

ǫ2
φ
)

(32)

Since the interface normal nn and curvature κn are higher order derivatives of the Level Set
function φn, their distributions can be obtained by a combination of appropriate projection
and gradient recovery techniques. Accordingly, the continuous (piecewise trilinear) interface
normal nn

Q1
is obtained by L2-projection (and normalization) from the piecewise discontinuous
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P1 space into the continuous Q1 space. Finally, the continuous approximation κn
Q1

of the
curvature κn is reconstructed via L2-projection, too,

∫

Ω

κn
Q1

wdx = −

∫

Ω

w∇ · nn
Q1

dx, (33)

where w denotes the test functions from the conforming trilinear Q1 space.
One of the remaining challenging problems is the capillary time step restriction which couples

the time step size with the (local) mesh size h and 1/σ leading to very high computational cost
due to such strict stability constraints. Beside the classical work by Bänsch, who developed a
semi-implicit approach for front tracking, the FEM-Level Set approach by Hysing [30] is one
of the very few attempts for interface capturing methods. Very recently, there was published
an alternative method by Sussmann [56] which contains a survey on this problem and existing
solution strategies. However, it still has to be stated that the combination of adaptive Level Set
or VOF methods on locally adapted meshes shows severe numerical problems if configurations
with large surface tension shall be simulated in an accurate, robust and efficient way. And,
moreover, the challenges further increase for non-newtonian multiphase fluids, for instance
for Power Law models (‘shear thinning’ [14]) or for viscoelastic fluids [63] which even for
single-phase flows lead to huge problems for large Weissenberg numbers. Nevertheless, we
are convinced that the described FEM-Level Set techniques have the potential to solve these
challenging problems.

As a final comment, in the framework of variational formulations, the corresponding volume
integral can be reduced to a boundary integral which serves as natural boundary condition at
the free interface [48],[55]. Moreover, if partial differentiation of the Laplace-Beltrami operator
is applied in tangential direction of the interface [4],[5],[15],[21],[26],[38] then the calculation
of second derivatives of φ for the curvature can be omitted which can be used for very efficient
evaluations of the surface tension force in combination with Level Set functions satisfying the
distance property. This is in contrast to the usual finite difference approaches which require a
less accurate Continuum Surface Force (CSF) approximation of the (singular) Delta function
[7].

4.3. Reinitialization procedure for LS-dG(1)

For the accurate calculation of the normal and curvature, as described in (7), and hence
for the accurate position and shape of the dynamic interface, one has to take care that φ
satisfies - at least near the interface Γ - the distance property which typically is achieved
via appropriate postprocessing of a given numerical approximation φ̃. Since the direct
reinitialisation φi := sign(φ̃i)dist(xi,Γ) is very expensive, one way to do the corresponding
corrections is to solve the so-called Eikonal equation |∇φ| = 1 [32],[34] with boundary
conditions φ = 0 on Γ = {x ∈ Ω | φ̃(x) = 0}. Typical methods are based on fast sweeping
[64] or fast marching [53], while another approach is based on pseudo-timestepping for this
nonlinear equation which leads to a Hamilton-Jacobi PDE:

∂φ

∂τ
= sign(φ̃)(1 − |∇φ|), φ|τ=0 = φ̃. (34)

Corresponding numerical approaches exploit that this problem can be written as a (nonlinear)
transport equation

∂φ

∂τ
+ w · ∇φ = sign(φ̃), with w = sign(φ̃)

∇φ

|∇φ|
. (35)
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14 S. TUREK ET AL.

By stability reasons, the (discontinuous) sign function is typically replaced by a smoothed
approximation which may lead to loss of accuracy and shift of the free interface. In the
framework of Finite Elements, the interface local projection of Parolini [47] helps, particularly
for piecewise linear functions leading to a constant gradient vector, which combines the
advantages of direct and PDE-based reinitialisation. Then, the correction of φ̃ mostly consists
of 3 steps:

1. In mesh cells which contain the free boundary Γ, an exact reconstruction via (piecewise
constant) gradient is applied.

2. Use a L2 projection to obtain a best approximation of φ near Γ.
3. Outside of the ‘surface domain’ Ωint, solve equation (35) using the already calculated

values of φ at the boundary of Ωint as Dirichlet boundary conditions.

According to our implementation, the reinitialization of the Level Set distribution is based
on the advantages offered by the Discontinuous Galerkin Finite Element Method dG(1). This
particularly means that we perform segregated reinitialization procedures on different groups
of elements. The identified groups are as follows:

• elements intersected by the interface, we denote them by E ⊂ M0

• few layers of elements in positive direction (φ > 0) from the interface, E ⊂ M+

• few layers of elements in negative direction (φ < 0) from the interface, E ⊂ M−

• the rest of the domain, these are the elements E ⊂ M∞

Such a segregated approach enables us to get rid of the discontinuity that the sign function
S(φ) exhibits at elements intersected by the interface. Moreover, it reduces the computational
overhead since the PDEs are computed in a reduced computational domain only. Summarizing,
the developed algorithm for the reinitialization is as follows

1. Direct reinitialization for E ⊂ M0: φn |∇φ=1|
−→ φn+1

2. PDE based solution for E ⊂ M+ with ∂φ
∂τ

+ n · ∇φ = +1

3. PDE based solution for E ⊂ M− with ∂φ
∂τ

− n · ∇φ = −1

4. Prescription of far field values for E ⊂ M∞: φn+1
RI = φ∞

where n := nn = ∇φn

|∇φn| . The coupling between the individual groups of elements is achieved

by imposition of boundary conditions from E ⊂ M0 for the PDE based reinitialization which
is treated via the Fictitious Boundary Method approach. One has to keep in mind that the
(discontinuous) sign function does not cause a problem in the 4th step since the discontinuity
has been treated already in step 1. Additionally, the calculated Level Set function can be
corrected due to mass loss which typically is performed by adding an appropriate constant cφ

so that the total volume of both phases remains constant [55]. Moroever, further improvements
can be obtained via high order discretization and grid adaptivity [12] which is subject of
ongoing research.

5. NUMERICAL SIMULATIONS

This section contains several numerical studies for validating and evaluating the methodology
described in the previous sections.
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5.1. Single phase flow around a cylinder

Figure 2. Geometry and coarse mesh for the ‘Flow around a cylinder’ benchmark.

The first incompressible flow problem to be dealt with, particularly to demonstrate the
accuracy of the high-order Q2/Q1 approach, is the well-known benchmark Flow around
a cylinder developed in 1995 for the priority research program “Flow simulation on high-
performance computers” under the auspices of DFG, the German Research Association [60].
This project was intended to facilitate the evaluation of various numerical algorithms for the
incompressible Navier-Stokes equations in the laminar flow regime. A quantitative comparison
of simulation results is possible on the basis of relevant flow characteristics such as pressure
values as well as drag and lift coefficients, for which sufficiently accurate reference values are
available.

Table I. Mesh convergence results (levels 2 to 5) in terms of drag, lift and pressure difference for the
‘DFG Flow around cylinder problem’ at Re = 20. Comparison of our results with reference results

[6],[33].

Level dP Drag Lift NEL NDOF(u, p)

2 0.17899920 6.0533152 1.5554940E-02 770 25,000
3 0.17212932 6.1438414 0.9350278E-02 6,200 175,000
4 0.17111110 6.1746591 0.9392623E-02 50,000 1,315,000
5 0.17100129 6.1826205 0.9385577E-02 400,000 10,175,000

Authors Reference values

BRAACK 0.17101905 6.1853331 0.9401228E-02 1,000,000 40,000,000
JOHN 0.17077855 6.1853267 0.9401222E-02 2,000,000 55,000,000

Here, we consider the steady incompressible flow around a cylinder with circular cross-
section. An in-depth description of the geometrical details and boundary conditions can be
found in reference [60] which contains all relevant information regarding this benchmark
configuration. The flow at Re = 20 is actually dominated by diffusion and could be simulated
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16 S. TUREK ET AL.

by the standard Galerkin method without any extra stabilization. The corresponding results
are shown in Table I and demonstrate the high quality of the Q2/Q1 approach compared to
reference values from the literature.

5.2. Two-phase flow of a rising bubble

Having established that our (basic) CFD solver works fine we can now proceed to examine
the case of two phase flow. To start we study mesh convergence of a single bubble rising in a
liquid column which belongs to standard test cases and which is characterized in Fig. 3. The
corresponding results on several mesh levels are compared in Fig. 3 which demonstrate the
grid-independent quality of the developed solution approach.

Figure 3. Left: Expected bubble shape in relation to the classification by Clift, Grace and Weber [9].
Right: Comparison of the results for the rising bubble problem obtained on different levels (2,3,4) of
computational grids. Level 2 result – blue, Level 3 result – red, Level 4 result – black. Left: Results of

Level 2 and 3; Middle: Results of Level 3 and 4; Right: Result of Level 4

5.3. Monodisperse droplet generation

5.3.1. Dripping simulation The experimental setup involves a two phase problem consisting
of glucose-water mixture (as continuous phase) and silicon oil (as dispersed phase). The
measurements are restricted to the so called dripping mode. This mode is characterized by
relatively low volumetric flowrates and by the fact that the droplets are generated in the near
vicinity of the capillary so that the stream length is comparable with the size of the generated
droplets. Since the temperature is kept at a constant value during the whole experiment
all physical properties of the present phases are constant. The experimental measurements
were realized (by the group of Prof. Walzel, BCI, TU Dortmund) to obtain statistically
averaged quantities such as droplet size, droplet generation frequency and stream length. These
experimentally measured quantities are compared with our subsequent simulation results.
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The basic units used to define the derived quantities are the following ones:

[length] = dm,

[time] = s,

[mass] = kg

The list of physical quantities is as follows:

gz = −9.81 m s−2 = −98.1 dm s−2

σ = 0.034 N m−1 = 0.034 kg s−2

ρC = 1340 kg m−3 = 1.34 kg dm−3

ρD = 970 kg m−3 = 0.97 kg dm−3

µ = µC = µD = 500 mPa s = 0.050 kg dm s−1 Sketch of the benchmark domain

The list of geometrical parameters is as follows:

[domain size] = [−0.15 : 0.15] x [−0.15 : 0.15] x [0.0 : 1.2] dm3

[inner capillary radius] = R1 = 0.015 dm

[outer capillary radius] = R2 = 0.030 dm

[primary phase inflow radius] = R3 = 0.15 dm

The boundary conditions imposed on the inflow velocity are the following:

w =







a2(R1 − r)(R1 + r) if 0 < r < R1 (Dispersed phase)
a1(R3 − r)(r − R2) if R2 < r < R3 (Continuous phase)
0 otherwise

The parameters a1 and a2 are defined to achieve the required volumetric flowrates:

V̇C =

∫ R3

R2

(

2πra1(R3 − r)(r − R2)
)

dr = −2πa1

[

r4

4
− (R2 + R3)

r3

3
+ R2R3

r2

2

]R3

R2

=

=
πa1

6
(R2 + R3)(R3 − R2)

3.

V̇D =

∫ R1

0

(

2πra2(R1 − r)(R1 + r)
)

dr = 2πa2

[

R2
1r

2

2
−

r4

4

]R1

0

=
πa2

2
R4

1.

The volumetric flowrates for the simulations are set to:

V̇1 = 99.04 ml min−1 = 99.04 cm3 min−1 = 99.04
10−3dm3

60s
= 1.65 10−3 dm3s−1,

V̇2 = 3.64 ml min−1 = 3.64 cm3 min−1 = 3.64
10−3dm3

60s
= 6.07 10−5 dm3s−1,

which is guaranteed by setting a1 = 10.14 dm−1 s−1 and a2 = 763.7 dm−1 s−1.
The resulting process leads to a pseudo-steady state, where the droplet separation happens

according to the so called dripping mode. The frequency of the given mode is f =
0.60 Hz (cca 0.58 Hzexp), which produces droplets of size d = 0.058 dm (cca 0.062 dmexp).
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18 S. TUREK ET AL.

Figure 4. Sequence of one droplet separation compared with experimental measurements.

The maximum stream length during the process is L = 0.102 dm (cca 0.122 dmexp). The
snapshots of one full droplet generation compared with experimental measurements are given
in the following figures (see Fig. 4). The time evolution of the volume of the secondary phase
is given in Fig. 5. As it can be seen, the rate of increase in the volume of the dispersed phase
follows the theoretically expected trend in a reasonable way.

Figure 5. Evolution of the volume of the secondary phase. Theoretical lines are characterized by the
slope q = 6.07 10−5 dm3s−1.
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5.3.2. Jetting simulations According to experimental observations, increasing the flowrates
of the present phases from the previously described dripping mode gradually changes the
behavior of the process to the so called jetting mode which is characterized by an elongated
(more or less) stable stream of the dispersed phase. This behavior establishes the basis for
further validation of our multiphase flow solver. The flowrates of the individual phases are
listed in Tab. II. The experimentally measured and computationally predicted droplet sizes
and stream lengths are plotted in Fig 6. As it can be seen from the graphs the correlation of
measurements and simulations is stronger for smaller flowrates but remains in a reasonable
range for higher flowrates as well. Regarding the results obtained for high flowrates we have
to be aware of the fact that the process becomes very sensitive (experimentally proved by
increased standard deviation of the monitored quantities). Now, if taking into account that
our current results may not be mesh independent, one could expect even better prediction
qualities with an increased resolution of the mesh.

Table II. Flowrates of the continuous and dispersed phases for the jetting configuration.

Figure 6. Comparison of droplet sizes and stream lengths for different flowrates.

5.3.3. Nozzle simulations The 3D nozzle simulations have been performed in order to gain a
better understanding of the influence of time dependent boundary conditions from the process
control point of view. According to our simulation results transient boundary conditions offer
more flexibility in the achievement of a wider range of droplet sizes than imposing constant
operation conditions. The idea to manipulate the operation conditions of the process is based
on the fact that in case of monodisperse droplet generation the volumetric flowrate of the
dispersed phase V̇D is proportional to the generated droplet volume Vdroplet

V̇D = fVdroplet, (36)

where f is the droplet generation frequency. The difference between imposing constant and
time dependent operation condition is the fact, that in case of the transient one the frequency
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of the process is influenceable (at least in a certain range) by the frequency of the transient
operation conditions. Once we have control over the process frequency (i.e. droplet generation
frequency), the droplet size adapts according to (36). In the current work we focused on periodic
regulation of the flowrate of the dispersed phase. The material properties of the assumed phases
were similar to the ones described in the benchmark configuration only with the difference of
an increased density ratio on the order of 1:3. In Fig. 7 we present two typical configurations
of monodisperse droplet generation in a nozzle-like geometry with periodic flowrate regulation
of the dispersed phase. The only difference between the two simulations is a 50% difference in
the flowrate of the dispersed phase. Since the frequencies of the imposed flowrates were set the
same (and equal to the droplet generation frequency), the resulting droplet volumes differ in
50% as well. In contrast to these results, it is also possible to operate the two considered cases
with constant flowrates, but due to the selfadapted frequencies of the two processes a different
ratio of characteristic droplet sizes might be achieved. Of course, the proposed process control
has its limitations, because by manipulating only the mean flowrate of the dispersed phase it
is not possible to generate arbitrarily large or small droplets. This is why in case of smaller
or larger droplet generation one has to modify the geometrical parameters of the process.
Such a situation is demonstrated in Fig. 8, where in case of a 25% smaller mean volumetric
flowrate (and the same frequency of regulation) the process ends up in monodisperse droplet
generation only by using a capillary of a smaller diameter. The resulting droplet volumes in
this case settled at a 25% lower value than compared to the standard case.

Figure 7. Snapshots of two sequences of droplet generation for differently regulated operation
conditions. Top: 100%, Bottom: 150% volumetric flowrate, same capillary sizes.

6. SUMMARY

In this contribution, we have shown that the realization of a new FEM-Level Set approach in
the framework of Discontinuous Galerkin Finite Elements together with special PDE based
reinitialization techniques leads to very efficient simulation tools for modelling multiphase flow
problems. The implemented parallel 3D multiphase flow solver has been validated in the case
of moderate flow conditions (dripping mode) w.r.t. experimental measurements with quite
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Figure 8. Snapshots of a sequence of regulated droplet generation with 75% volumetric flowrate and
by means of a smaller capillary.

satisfying agreement. In a next step, the application of the CFD solver has been extended to
more complex flow conditions (jetting mode), and the achieved results have been compared
with data measured by experiments. Finally, numerical simulations involving complex nozzle
geometries have been carried out in order to reveal the possibilities of regulation of the resulting
droplet sizes and frequencies by means of periodic flow rate modulations of the dispersed phase.
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