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Motivation

Vorarbeiten mit FEATFLOW

• Accurate, robust, flexible and efficient simulation of 
multiphase problems, particularly in 3D, is still a 
challenge

• Specific Application: Monodisperse laminar droplets

Problem: Results are due to many parameters, i.e., 
density (ratio), viscosity (ratio), rheological behaviour, 
surface tension, flow conditions,…

Efficient CFD techniques (implicit FEM-Multigrid-Level
Set solver in FEATFLOW, dynamically adapted meshes, 
parallel/HPC techniques)

Benchmarking/Validation via experiments
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Governing Equations

The incompressible Navier Stokes equation
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Interphase tension force

Dependency of physical quantities
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Discretization:
• a) Navier-Stokes: FEM Q2/Q1
• b) Levelset: DG-FEM P1
• Crank-Nicholson scheme in time

in space
+ stabilization (TVD,EO-FEM)
no stabilization !

Required: Efficient Flow Solver

Main features of the FeatFlow approach:
• Parallelization based on domain decomposition
• High order discretization schemes
• Use of unstructured meshes
• Multigrid linear solver
• FCT & EO stabilization techniques
• Adaptive grid deformation
• UCHPC

Q2/P1
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Required: Efficient Interphase Tracking
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Levelset method ( “smooth“ distance function)

Problems:
• It is not conservative mass loss
• Needs to be reinitialized to maintain its distance property
• Higher order discretization?

Benefits:
• Provides an accurate representation of the interphase
• Provides other auxiliary quantities (normal, curvature)
• Allows topology changes
• Treatment of viscosity, density and surface tension without
explicit representation of the interphase
• Adaptive grid advantageous, but not necessary
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Problems and Challenges

• Steep gradients of the velocity field and of physical
properties near the interphase (oscillations!)

• Reinitialization (smoothed sign function, artificial
movement of the interphase ( mass loss), how often to 
perform?)

• Mass conservation (during levelset advection and 
reinitialization)

• Representation of interphacial tension: CSF, Line 
Integral, Laplace-Beltrami, Phasefield, etc., explicit or
implicit treatment?
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Stabilization Techniques

Steep changes of physical quantities:
1) Elementwise averaging of the physical properties (prevents

oscillations): 

2) Flow part: Extension of nonlinear stabilization schemes (AFC, TVD) 
for the momentum equation for LBB stable element pairs.

3) Interphase tracking part with DG-FEM: Flux limiters satisfying LED 
requirements.

( ) ( ) 2121 1,1 μμμρρρ xxxx ee −+=−+= x is the volume fraction
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Reinitialisation

Globally defined normal vectors

Maintaining the signed distance function by PDE reinitialization
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Problems:
• What to do with the sign function at the interphase? 
(smoothing?)
• How often to perform? (expensive steady state)

Alternatives
• Brute force (introducing new points at the zero level surfaces)
• Fast sweeping (applying „advancing front“ upwind type formulas)
• Fast marching
• Algebraic Newton method
• Hyperbolic PDE approach
• many more…..
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Problems and solutions
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Our reinitialization is performed in combination of 2 ingredients:
1) Elements intersected by the interphase are modified w.r.t. the slope of the

distance distribution („Parolini trick“) such that

2) Far field reinitialization: realization is based on the PDE approach („FBM“), 
but it does not require smoothening of the distance function!

In addition: continuous projection of the interphase (smoothening of the
discontinuous P1 based distance function)

1=∇φ
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Problems and solutions
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Mass conservation
Must be satisfied on the continuous and discrete level as well!
(In work) Replacement of:

Nonlinear PDE!

Remark: No stabilization! (to avoid numerical diffusion)
distance function should be smooth anyway

Good agreement with experimental measurements
(in terms of droplet size, frequency)
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Benefits of DG-FEM for Levelset

• possibility of reduction of the computational domain (only for levelset) 
• mass preserving (interphase preserving!) reinitialization
• exact localization of the interphase (polygons)
• exact evaluation of volume fractions
• relatively simple parallelization

Layering concept

Interphase 
representation by polygons

Parallelization based
on domain
decomposition
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Surface Tension

( )εδσκ ,ST xnf =

∫

∫

Ω

Ω

⋅∇
=

⎯⎯⎯⎯ →⎯

x

xn

nn

d

dQ

Q

QP

1

1

1

2

1

projectionL

κ

continuous normal field

continuous curvature field

Resulting pressure
distribution

Distribution of the smoothed
interphacial tension force ( )

1Qσκδ
Levelset distribution

Continuum Surface Force (CSF):
• Transformation of the surface integrals to volume integrals with the help of 
a regularized Dirac delta function δ
• Requires globally defined normals and curvature
• Reduction of spurious oscillations
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Surface Tension - Alternative Treatments

( )PFPFST φφσ ∇×∇⋅∇=f

Phase Field (PF) approach

• No reconstruction of normals and curvature needed
• Fully implicit treatment is possible
• Also possible for LS (?) 
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Surface Tension - Alternative Treatments
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Application of the semi-implicit time integration yields

Semi implicit CSF formulation based on Laplace-Beltrami

Advantages
• Relaxes capillary time step restriction
• „Optimal“ for FEM-Levelset approach
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Benchmark quantities

CFX

FreeLIFE

Comsol

TP2D

Fluent

MooNMD

0 0.5 1
0

0.5

1

1.5

2

t = 3.0

t = 0

t = 1.0

t = 0.5

t = 1.5

t = 2.0

t = 2.5

Bubble Benchmarks
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Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.:
Quantitative benchmark computations of two-dimensional bubble dynamics, 
International Journal for Numerical Methods in Fluids, in press, DOI: 10.1002/fld.1934, 2009

http://www.featflow.de/beta/en/benchmarks/
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Adaptive HPC Techniques

CELL processor
(PS3), 218 GFLOP/s,              
Memory @ 3.2 GHz

GPU (NVIDIA GTX 285):         
240 cores @ 1.476 GHz,         
1.242 GHz memory bus
(160 GB/s) ≈ 1.06 TFLOP/s

40 GFLOP/s, 140 GB/s on GeForce GTX 280

0.7 (1.4) GFLOP/s on 1 core of Xeon E5450
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Droplet Jetting Application

Next step: Extension to liquid-gas systems
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Outlook


