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Motivation: Numerical & Algorithmic Challenges

• Mathematical Modelling of Dynamic Interfaces
• Numerics / CFD Techniques
• HPC Techniques / Software
• Validation / Benchmarking

Accurate, robust, flexible and efficient simulation of multiphase
problems with dynamic interfaces and complex geometries, particularly
in 3D, is still a challenge!

Aim: Highly efficient, flexible and accurate
„real life“ simulation tools based on
modern numerics and algorithms while
exploiting modern hardware!

Realization:        FeatFlow
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Motivation: Target Application I
• Numerical simulation of micro-fluidic drug encapsulation (“monodisperse 

compound droplets”) for application in lab-on-chip and bio-medical devices
• Polymeric “bio-degradable” outer fluid with viscoelastic effects
• Optimization of chip design w.r.t. boundary conditions, flow rates, droplet size, 

geometry
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Motivation: Target Application II
• Non-Newtonian rheological models (shear & temperature dependent)
• Non-isothermal flow conditions (cooling from outside, heat production)
• Evaluation of torque acting on the screws, resulting energy consumption
• Influence of local characteristics on global product quality
• Influence of gaps on back-mixing
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Basic Flow Solver: FEATFLOW
Numerical features:
• Parallelization based on domain decomposition
• FCT & EO stabilization techniques
• High order FEM (Q2/P1) discretization
• Use of unstructured meshes
• Adaptive grid deformation
• Newton-Multigrid solvers

Hardware-oriented Numerics

HPC features
• Massive parallel
• GPU computing
• Open source
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The incompressible Navier Stokes equation
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Two phase flow (l-l) with resolved interphases
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Interphase capturing realized by Level Set method

• Exact representation of the interphase
• Natural treatment of topological changes
• Provides derived geometrical quantities (n,  )
• Requires reinitializion w.r.t. distance field
• Can lead to mass loss  dG(1) discretization!

   











 SS nn+

Stefan Turek



Two phase flow (s-l) with resolved interphases
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• Fluid motion is governed by the Navier-Stokes equations
• Particle motion is described by Newton-Euler equations
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Fictitious Boundary Method
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Two phase flow (s-l) with resolved interphases

 supports HPC concepts (no computational overhead, constant data structures, optimal load balancing) 
 reduces dramatically requirements put on the computational mesh
 relatively low resolution

 Brute force  Finer mesh resolution
 High resolution interpolation functions
 Grid deformation (via Level-Set function)

Fictitious Boundary Method
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Velocity “boundary condition” imposed for particles:

Position update: Angle update:
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Grid Deformation Method

idea : construct transformation                                with
local mesh area

1. Compute monitor function                                  
and

3. Solve the ODE system

new grid points:
Grid deformation preserves the (local) logical structure of the grid
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Generalized Tensorproduct Meshes
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Sedimentation of many Particles

Stefan Turek



Flow Simulation for the Flow Around Cylinder problem

Known benchmark problem (DFG) in the CFD community

 Comparison of CFX 12.0, OpenFoam 1.6 and FeatFlow
 Drag and lift coefficients behave very sensitive to mesh resolution 
 Ideal indicator for computational accuracy
 Five consequently refined meshes L1 (coarse), …, L5 (fine)
 Same meshes and physical models used in all three codes
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L2 6,144

L3 49,152

L4 393,216

L5 3,145,728

Benchmarking and Validation
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CFX OpenFOAM

Benchmarking and Validation
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FeatFlow Comparison

 Same order of  accuracy with FeatFlow  on L3 as L5 with CFX and OpenFOAM on L5!
 High order Q2/P1 FEM + (parallel) Multigrid Solver

Less then 2 hours sim. time on 3+1 processors

Benchmarking and Validation
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Benchmarking and Validation
14.1,3.0  ssd 

02.1,2.0  ssd 

14.1,2.0  ssd 

Free fall of particles:
• Terminal velocity
• Different physical parameters
• Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element
Fictitious Boundary Methods (FEM-FBM) for 3D
particulate flow, IJNMF, 2010, accepted
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3D simulations with complex shapes

‘Kissing, Drafting, Thumbling’ Sedimentation of particles in a complex domain
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Velocity distribution

Pressure distribution

Absorber packing simulations
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L3

L4

L3 L4

Absorber packing simulations
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Twinscrew Flow Simulations
Geometrical representation of the twinscrews Fictitious Boundary Method

 Fast and accurate description of the rotating 
geometry (screws)
 Applicable for conveying and kneading elements
 Mathematical description available for

single, double- or triplet-flighted screws 
 Surface and body of the screws are known at any 

time
 Mathematical formulation replaces external CAD-

description

In cooperation with: 
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Meshing strategy – Hierarchical mesh refinement

level 1 level 2 level 3

Twinscrew Flow Simulations

2D mesh extrusion into 3D
Pre-refined regions in the vicinity of gaps
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Twinscrew Flow Simulations
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Vielen Dank!





Glucose-Water mixture
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Continuous phase:

Silicon oil
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Validation parameters:
• frequency of droplet generation
• droplet size
• stream length

Experimental Set-up with AG Walzel (BCI/Dortmund)

Benchmarking with experimental results
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Benchmarking with experimental results

Separation 
frequency

[Hz]

Drople
t size
[dm]

Stream
Length
[dm]

Exp 0,58 0,062 0,122

Sim 0,6 0,058 0,102

Group of Prof. Walzel
BCI/DortmundExp. results 
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