On FEM techniques for multiphase flow

Recent developments regarding Numerics and CFD Software

Stefan Turek, Otto Mierka, Raphael Münster Institut für Angewandte Mathematik, LS III Technische Universität Dortmund ture@featflow.de

http://www.mathematik.tu-dortmund.de/LS3 http://www.featflow.de



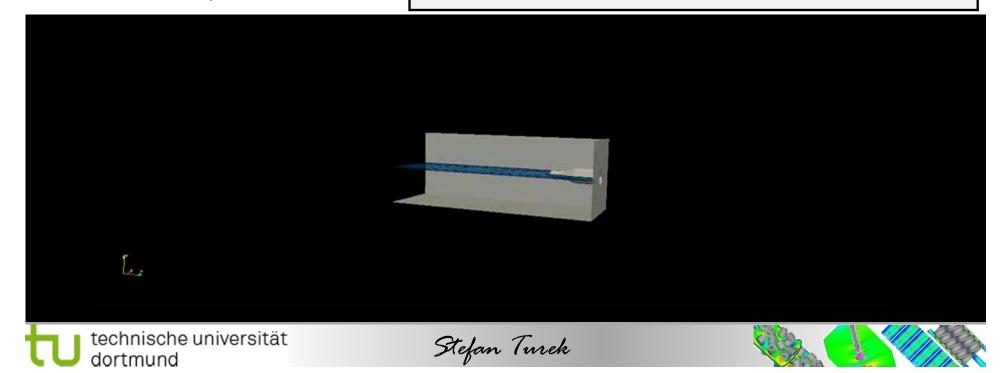
Overview & Motivation:

Accurate, robust, flexible and efficient simulation of multiphase problems with dynamic interfaces and complex geometries, particularly in 3D, is still a challenge!

- Mathematical Modelling
- Numerics / CFD Techniques
- Validation / Benchmarking
- HPC Techniques / Software

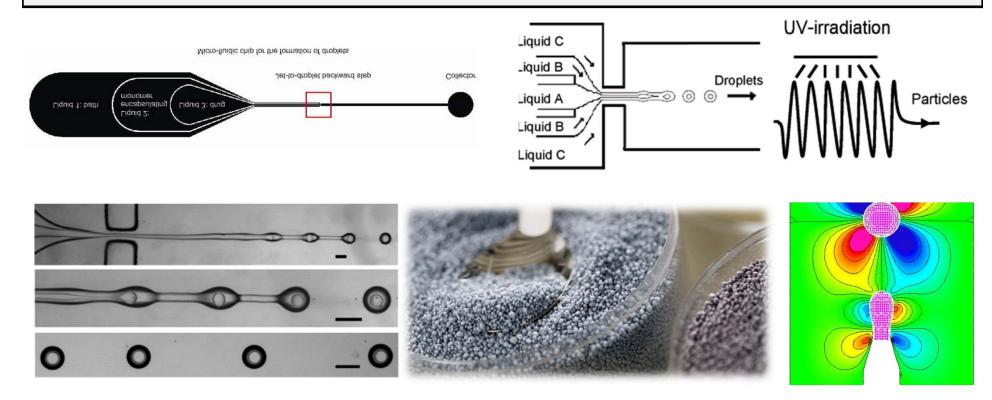
Vision: Highly efficient, flexible and accurate "real life" simulation tools based on modern Numerics and algorithms while exploiting modern hardware!

Realization: FEATFLOW



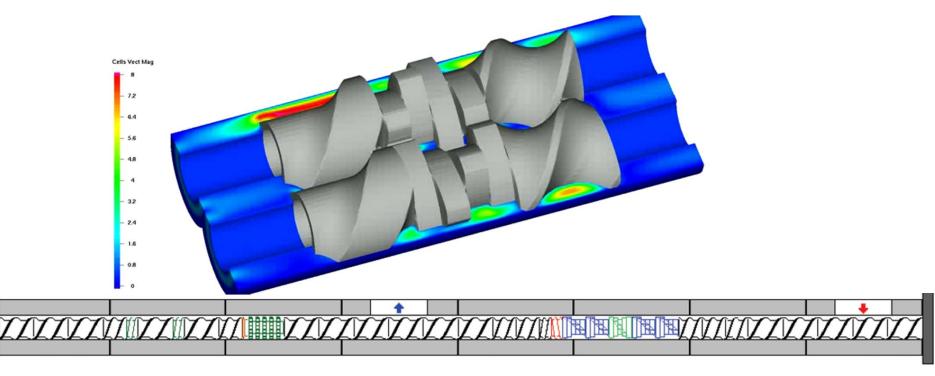
Motivation: Target Application I

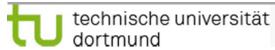
- Numerical simulation of micro-fluidic drug encapsulation ("monodisperse") compound droplets") for application in lab-on-chip and bio-medical devices
- Polymeric "bio-degradable" outer fluid with viscoelastic effects
- Optimization of chip design w.r.t. boundary conditions, flow rates, droplet size, geometry

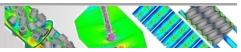


Motivation: Target Application II

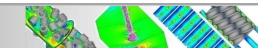
- Numerical simulation of twinscrew extruders
- Non-Newtonian rheological models (shear & temperature dependent)
 with non-isothermal conditions (cooling from outside, heat production)
- Analysis of the influence of local characteristics on the global product quality, prediction of hotspots and maximum shear rates
- Optimization of torque acting on the screws, energy consumption







Both applications require efficient basic flow solvers and techniques for liquid-liquid & liquid-solid interfaces in complex (time-dependent) domains



Basic Flow Solver: FeatFlow

Numerical features:

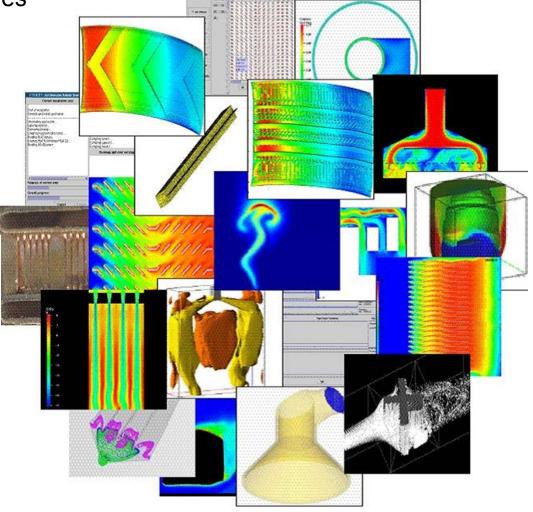
High order FEM discretization schemes

FCT & EO stabilization techniques

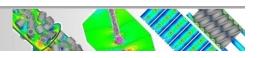
- Use of unstructured meshes
- Fictitious Boundary (FBM) methods
- Adaptive grid deformation
- Newton-Multigrid solvers

HPC features:

- Massive parallel
- GPU computing
- Open source



Hardware-oriented Numerics



The incompressible Navier Stokes equations

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) - \nabla \cdot \left(\mu \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \right] \right) + \nabla p = \mathbf{f}_{\mathrm{ST}} + \rho \mathbf{g}$$

$$\nabla \cdot \mathbf{v} = 0$$

Interface tension force

 $\mathbf{f}_{ST} = \sigma \kappa \mathbf{n}, \quad \kappa = -\nabla \cdot \mathbf{n} \quad \text{on } \left(\Gamma \right)$

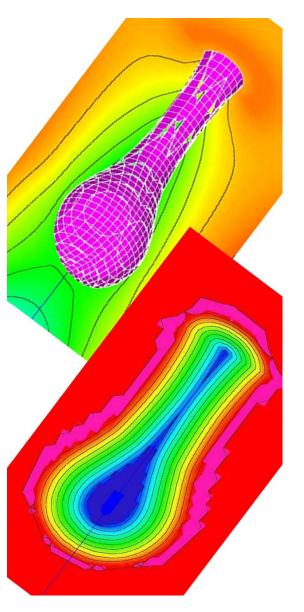
 $\mathbf{r}_{ST} = O k \mathbf{n}, \quad k = -\mathbf{v} \cdot \mathbf{n}$ On The Dependency of physical quantities

$$\mu = \mu(D(\mathbf{v}), \Gamma), \quad \rho = \rho(\Gamma)$$

Interface capturing realized by Level Set method

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$$

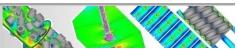
- Exact representation of the interface
- Natural treatment of topological changes
- Provides derived geometrical quantities (n, κ)



unknown

interface

location



Problems and Challenges

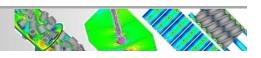
- Steep gradients of the velocity field and of other physical quantities near the interface (oscillations!)
- **Reinitialization** w.r.t. distance field (artificial movement of the interface → mass loss, how often to perform?)
- Mass conservation (during advection and reinitialization of the Level Set function)
- Representation of **surface tension**: CSF, Line Integral, Laplace-Beltrami, Phasefield, etc.
- Explicit or implicit treatment (→ Capillary Time Step restriction?)

Steep changes of physical quantities:

1) Elementwise averaging of the physical properties (prevents oscillations):

$$\rho_e = x\rho_1 + (1-x)\rho_2$$
, $\mu_e = x\mu_1 + (1-x)\mu_2$ x is the volume fraction

- 2) Flow part: Extension of nonlinear stabilization schemes (FCT, TVD, EO-FEM) for the momentum equation for LBB stable element pairs with discontinuous pressure (Q2/P1)
- 3) Interface tracking part with DG(1)-FEM: Flux limiters satisfying LED requirements

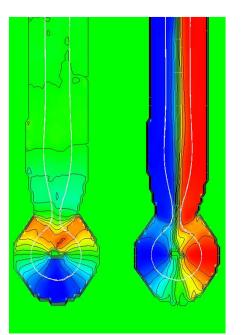


Reinitialization

- Mainly required in the vicinity of the interface
- How often to perform?
- Which realization to implement?
- Efficient parallelization (3D!)

Alternatives

- Brute force (introducing new points at the zero level set)
- Fast sweeping ("advancing front" upwind type formulas)
- Fast marching
- Algebraic Newton method
- Hyperbolic PDE approach
- many more.....



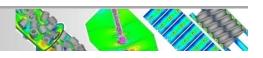
Globally defined normal vectors

Maintaining the signed distance function by PDE reinitialization

$$\frac{\partial \phi}{\partial \tau} + \mathbf{u} \cdot \nabla \phi = S(\phi) \qquad \mathbf{u} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|} \quad \Leftrightarrow \quad |\nabla \phi| = 1$$

Problems:

- What to do with the sign function at the interface? (smoothing?)
- How to handle the underlying non-linearity?
- How often to perform? (expensive → steady state)



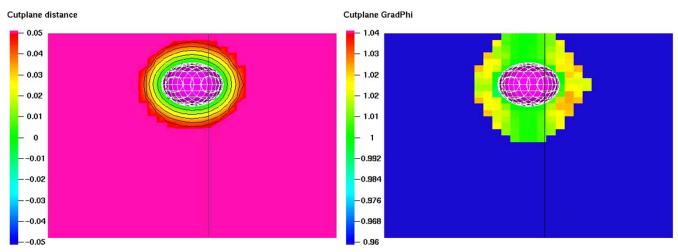
Fine-tuned reinitialization

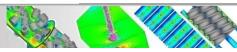
Our reinitialization is performed in combination of 2 ingredients:

- 1) Elements intersected by the interface are modified w.r.t. the slope of the distance distribution ("Parolini trick") such that $|\nabla\,\phi|=1$
- 2) Far field reinitialization: realization is based on the PDE approach ("FBM"), but it does not require smoothening of the distance function!

In addition: continuous projection of the interface (smoothening of the discontinuous P₁ based distance function)

$$\phi_{P_1} \xrightarrow{L_2 \text{ projection}} \to \phi_{Q_1} \xrightarrow{L_2 \text{ projection}} \to \phi_{P_1}$$





Continuum

Surface

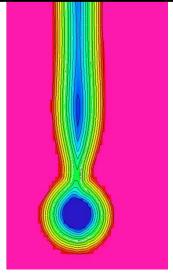
Force

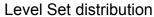
- Transformation of the surface integrals to volume integrals with the help of a <u>regularized</u> Dirac delta function δ
- Requires globally defined normals and curvature
- Reduction of spurious oscillations

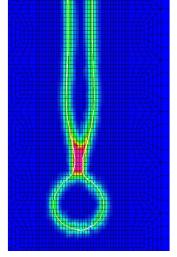
$$\mathbf{n}_{P_{1}} \xrightarrow{L_{2} \text{ projection}} \mathbf{n}_{Q_{1}} \qquad \text{continuous normal field}$$

$$\mathbf{f}_{ST} = \sigma \kappa \mathbf{n} \delta(x, \varepsilon) \qquad \int_{Q_{1}} \nabla \cdot \mathbf{n}_{Q_{1}} d\mathbf{x}$$

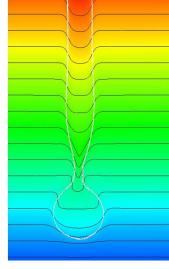
$$\kappa_{Q_{1}} = \frac{\Omega}{\int d\mathbf{x}} \qquad \text{continuous curvature field}$$



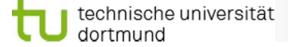


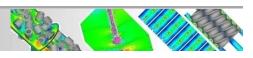


Distribution of the smoothed surface tension force $(\sigma \kappa \delta)_{\alpha}$



Resulting pressure distribution



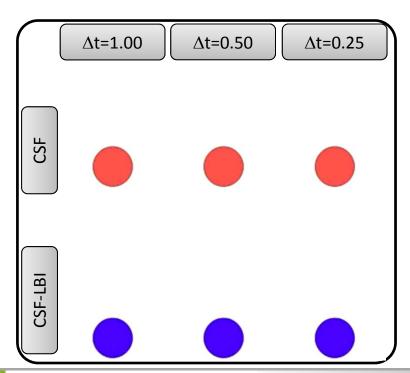


Surface Tension: Semi-implicit CSF formulation based on Laplace-Beltrami

$$\mathbf{f}_{ST} = \int_{\Omega} \sigma \kappa \hat{\mathbf{n}} \cdot \mathbf{v} \, \delta(\Gamma, \mathbf{x}) \, d\mathbf{x} = \int_{\Omega} \sigma \left(\underline{\Delta} \mathbf{x} \big|_{\Gamma} \right) \cdot \left(\mathbf{v} \, \delta(\Gamma, \mathbf{x}) \right) d\mathbf{x}$$
$$= -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \left(\mathbf{v} \, \delta(\Gamma, \mathbf{x}) \right) d\mathbf{x} = -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \mathbf{v} \, \delta(\Gamma, \mathbf{x}) \, d\mathbf{x}$$

Application of the semi-implicit time integration yields

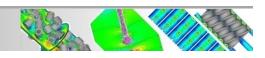
$$\mathbf{x}|_{\Gamma^{n+1}} = \mathbf{x}|_{\Gamma^n} + \Delta t \, \mathbf{u}^{n+1}$$



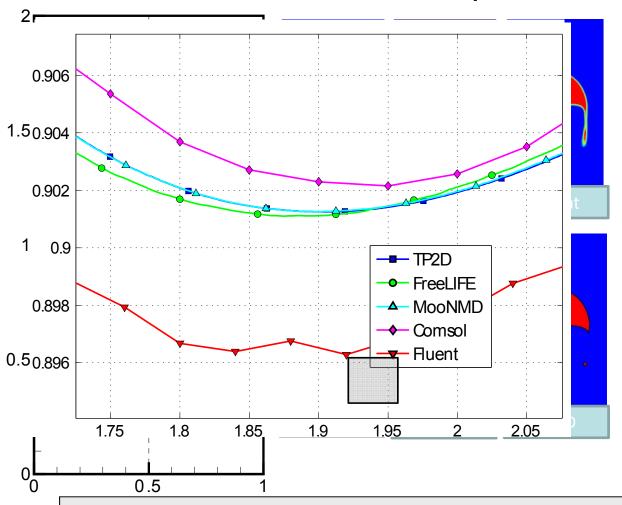
$$\mathbf{f}_{ST} = -\int_{\Omega} \sigma \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \, \widetilde{\mathbf{x}} \Big|_{\Gamma}^{n} \cdot \underline{\nabla} \mathbf{v} \, d\mathbf{x}$$
$$- \Delta t^{n+1} \int_{\Omega} \sigma \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \mathbf{u}^{n+1} \cdot \underline{\nabla} \mathbf{v} \, d\mathbf{x}$$

Advantages

- Relaxes Capillary Time Step restriction
- "Optimal" for FEM-Level Set approach due to global information



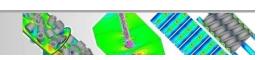
http://www.featflow.de/beta/en/benchmarks/



Benchmark quantities

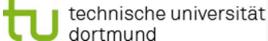
Center of mass
$$\mathbf{x}_c = \frac{\int\limits_{\Omega_2} \mathbf{x} \, dx}{\int\limits_{\Omega_2} 1 \, dx}$$
 Mean rise velocity
$$\mathbf{U}_c = \frac{\int\limits_{\Omega_2} \mathbf{u} \, dx}{\int\limits_{\Omega_2} 1 \, dx}$$
 Circularity
$$\phi = \frac{P_a}{P_c} = \frac{\pi d_a}{P_c}$$

Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, 2009



3D convergence analysis for large density jumps

Rising bubble problem for Eo = 60, Re = 34 Density jump 1:100 Level 3 Level 4 Level 2



Benchmarking with experimental results

Continuous phase:

Glucose-Water mixture

$$\mu_D = 500 \, mPa \, s$$

$$\rho_D = 972 \ kg \ m^{-3}$$

$$\dot{V}_D = 3,64 \, ml \, min^{-1}$$

$$\sigma_{CD} = 0.034 \, N \, m^{-1}$$

Silicon oil

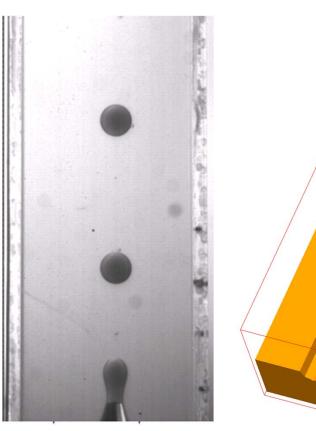
$$\mu_C = 500 \, mPa \, s$$

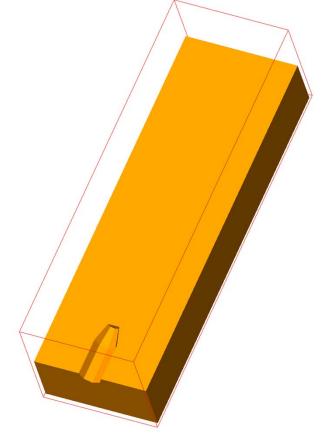
$$\rho_C = 1340 \ kg \ m^{-3}$$

$$\dot{V}_{C} = 99,04 \, mlmin^{-1}$$

Dispersed phase:

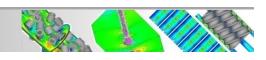
Experimental setup with AG Walzel (BCI/Dortmund)



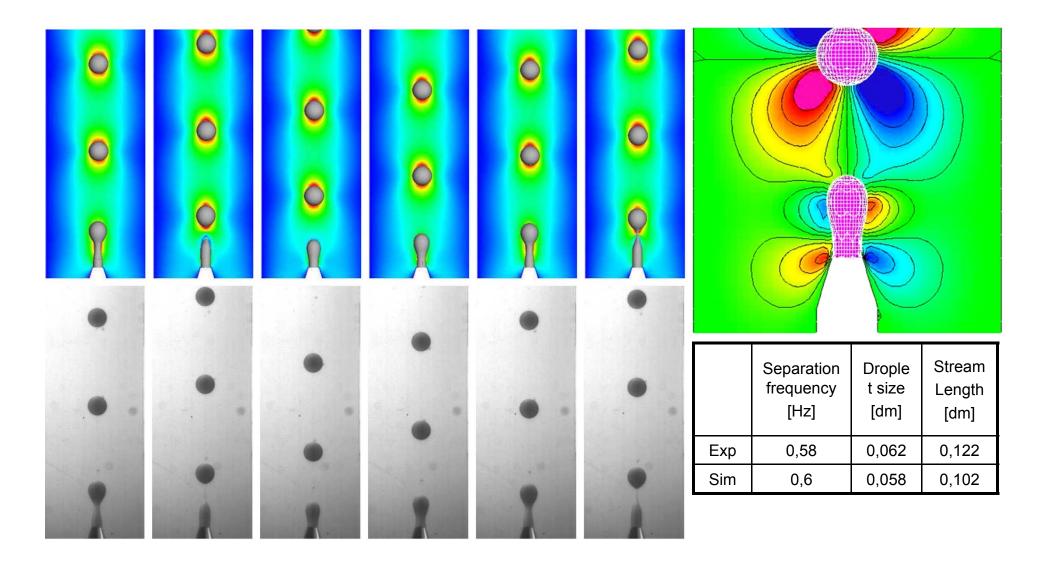


Validation parameters:

- frequency of droplet generation
- droplet size
- stream length



Benchmarking with experimental results



Tailored monodisperse droplets via modulation

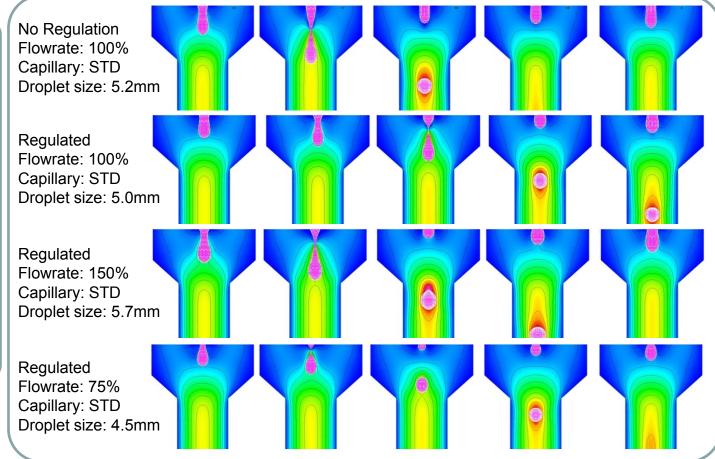
In case of monodisperse droplet generation:

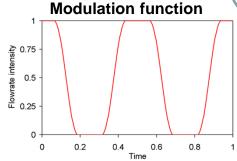
$$\dot{V}_D = fV_{\text{droplet}}$$

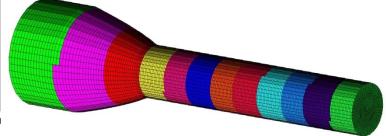
Influencable variables

On the level of the process:

- Flowrates
- Modulation frequency
- Modulation amplitude Geometrical changes:
- · Capillary size
- Contraction angle
- Contraction ratio

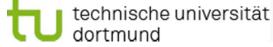


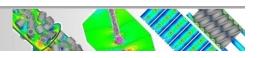




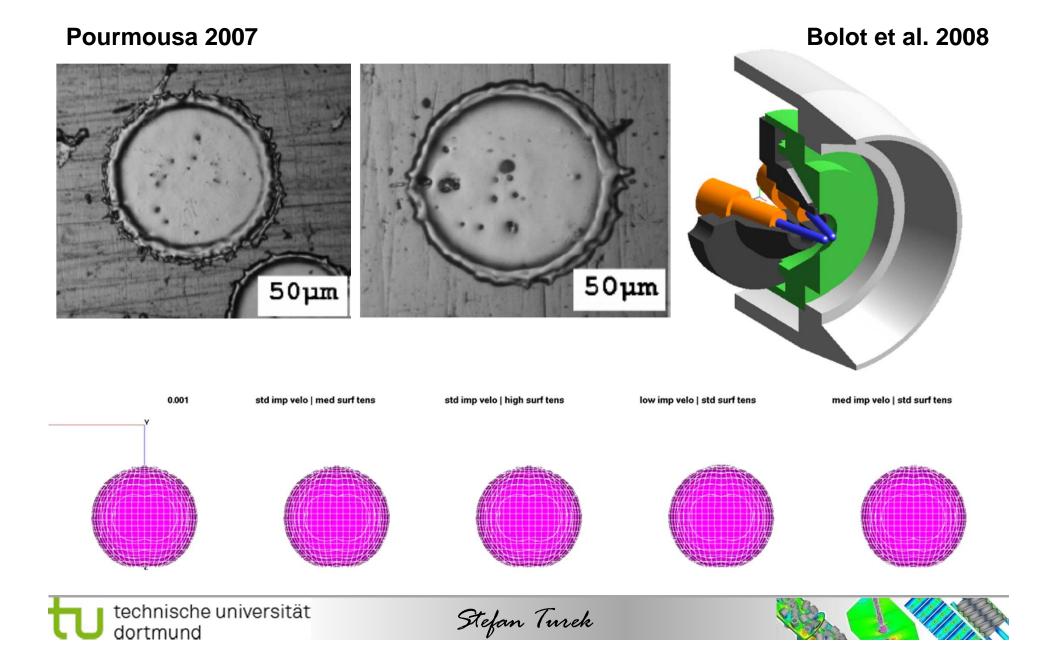
Resulting operation envelope:

- Size: 4.5 mm 5.7 mm
- Volume: $0.38 \text{ cm}^3 0.77 \text{ cm}^3$





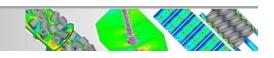
Next step: Interaction of droplets with surfaces



Now: Particulate Flow with Solid-Liquid Interfaces







- Fluid motion is governed by the Navier-Stokes equations
- Particle motion is described by Newton-Euler equations

$$\begin{split} M_{p} & \xrightarrow{dU_{p}} F_{p} + F_{ex,col} + \left(\Delta M_{p}\right) g, & I_{p} & \xrightarrow{d\omega_{p}} T_{p} - \omega_{p} \times \left(I_{p}\omega_{p}\right) \\ F_{p} & = -\int_{\Gamma_{p}} \sigma \cdot n_{p} d\Gamma_{p} & \xrightarrow{\text{Postprocessing the actual flow field}} T_{p} = -\int_{\Gamma_{p}} \left(X - X_{p}\right) \times \left(\sigma \cdot n_{p}\right) d\Gamma_{p} \end{split}$$

Fictitious Boundary Method

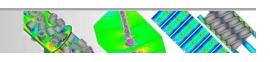
- Surface integral is replaced by volume integral
- Use of monitor function (liquid/solid)

$$\alpha_p(X) = \begin{cases} 1 & \text{for } X \in \Omega_p \\ 0 & \text{for } X \in \Omega_f \end{cases}$$

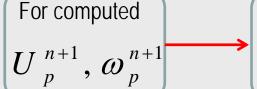
• Normal to particle surface vector is non-zero only at the surface of particles $n_p =
abla lpha_p$

$$F_{p} = -\int_{\Gamma_{p}} \boldsymbol{\sigma} \cdot \boldsymbol{n}_{p} d\Gamma_{p} = -\int_{\Omega_{T}} \boldsymbol{\sigma} \cdot \nabla \alpha_{p} d\Omega_{T}$$

$$T_{p} = -\int_{\Gamma_{p}} (X - X_{p}) \times (\sigma \cdot n_{p}) d\Gamma_{p} = -\int_{\Omega_{T}} (X - X_{p}) \times (\sigma \cdot \nabla \alpha_{p}) d\Omega_{T}$$



Fictitious Boundary Method



Position update:

Angle update:

$$\frac{dX_{p}}{dt} = U_{p,}$$

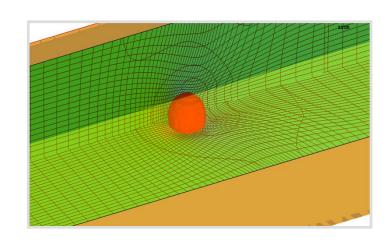
$$\frac{dX_{p}}{dt} = U_{p}, \qquad \frac{d\theta_{p}}{dt} = \omega_{p}$$

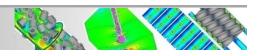
 $X_{p}^{n+1}, \theta_{p}^{n+1}$

Velocity "boundary condition" imposed for particles:

$$u(X) = U_p + \omega_p \times (X - X_p)$$

- supports HPC concepts (fixed data structures)
- easy grid generator
- relatively low resolution
 - Brute force → Finer mesh resolution
 - High resolution interpolation functions
 - **Grid deformation** (+ monitor function)





Grid Deformation Method

Idea: construct transformation ϕ , $x = \phi(\xi, t)$ with $\det \nabla \phi = f$

- \implies local mesh area $\approx f$
- 1. Compute monitor function $f(x,t) > 0, f \in C^1$ and

$$\int_{\Omega} f^{-1}(x,t) dx = |\Omega|, \quad \forall t \in [0,1]$$

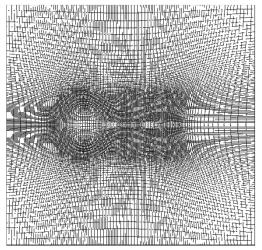
2. Solve($t \in [0,1]$)

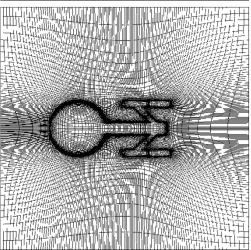
$$\Delta v(\xi,t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi,t)} \right), \quad \frac{\partial v}{\partial n} \Big|_{\partial\Omega} = 0$$

3. Solve the ODE system

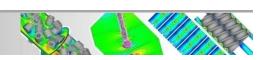
$$\frac{\partial}{\partial t}\phi(\xi,t) = f(\phi(\xi,t),t)\nabla v(\phi(\xi,t),t)$$

new grid points:
$$x_i = \phi(\xi_i, 1)$$

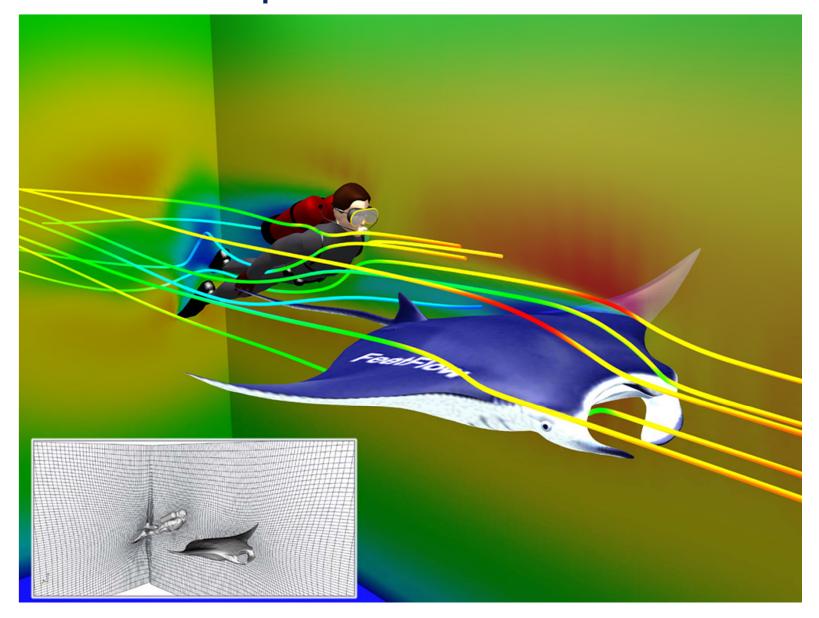




Grid deformation preserves the (local) logical structure of the grid



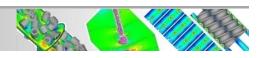
Generalized Tensorproduct Meshes



Operator-Splitting Approach

The algorithm for $t^n \rightarrow t^{n+1}$ consists of the following 5 substeps

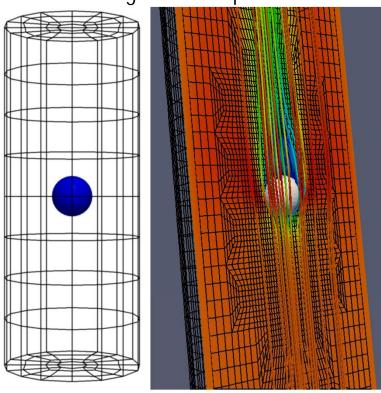
- 1. Fluid velocity and pressure: $NSE(u_f^{n+1}, p^{n+1}) = BC(\Omega_p^n, u_p^n)$
- 2. Calculate hydrodynamic forces: F_n^{n+1}
- 3. Calculate velocity of particles: $u_p^{n+1} = g(F_p^{n+1})$ (collision model)
 4. Update position of particles: $\Omega_p^{n+1} = f(u_p^{n+1})$
- 5. Align new mesh
- → Required: efficient calculation of hydrodynamic forces
- → Required: efficient treatment of particle interaction (?)
- → Required: fast (nonstationary) Navier-Stokes solvers



Benchmarking and Validation

Free fall of particles:

- Terminal velocity
- Different physical parameters
- Different geometrical parameters



Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2010, accepted

d =	0.3.	$\rho_{.} = 1.14$	
CV _S	0.0,	ρ_s	

	ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.	.02	5.885	6.283	6.33
0.	.05	4.133	3.972	4.05
(0.1	2.588	2.426	6.66
(0.2	1.492	1.401	6.50

d	= 0.2.	$\rho_{\rm s} = 1$.14
Cr c	0.2,	$\rho_{\rm c}$,

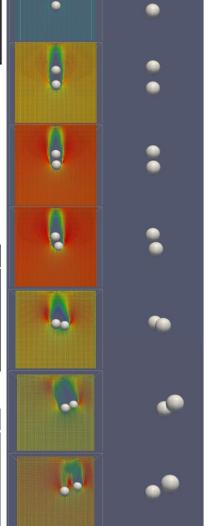
		S		5
ı	ν	$U_{featflow}$	U_{exp}	Relative error (%)
	0.02	4.370	4.334	0.83
	0.05	2.699	2.489	8.44
	0.1	1.649	1.552	6.25
	0.2	0.946	0.870	8.74

$d_s = 0.3, \quad \rho_s = 1.02$

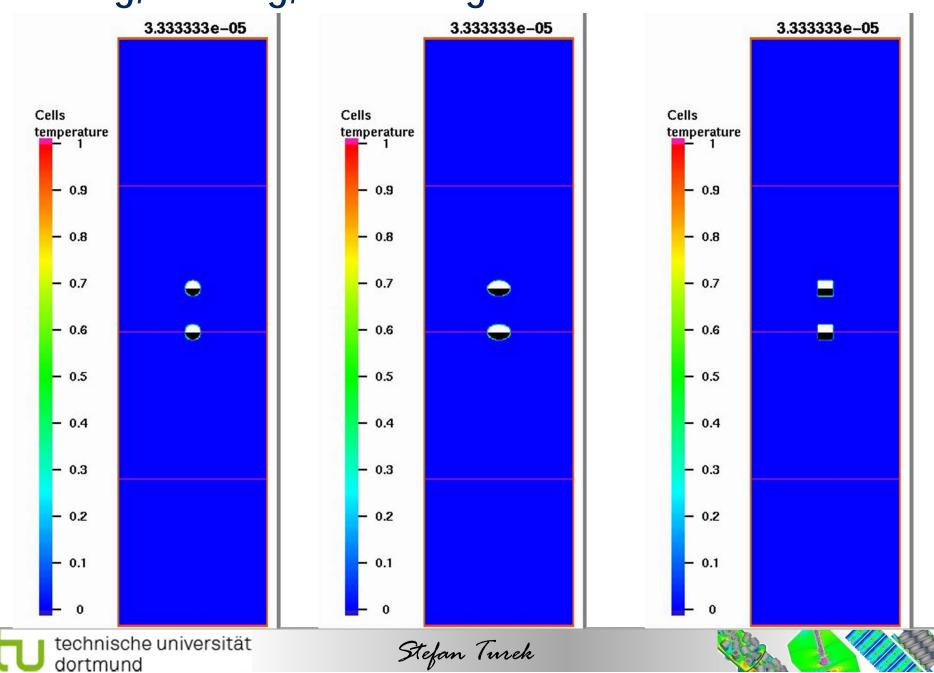
ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.01	2.167	2.107	2.84
0.02	1.495	1.436	4.11
0.05	0.809	0.749	8.01
0.1	0.402	0.404	0.44
0.2	0.218	0.216	1.02

$d_s = 0.2, \quad \rho_s = 1.02$

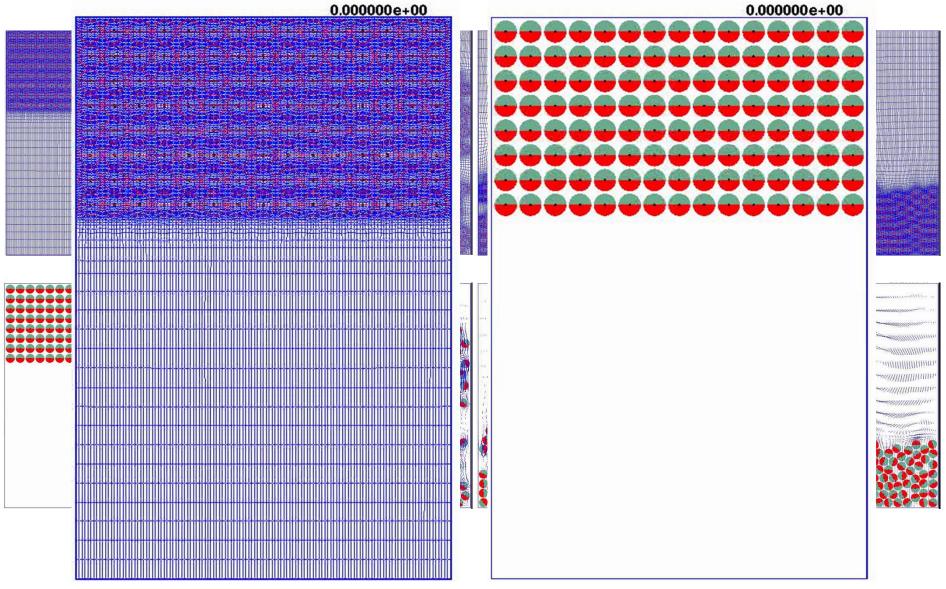
ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.01	1.4660	1.4110	3.90
0.02	0.9998	0.9129	9.52
0.05	0.4917	0.4603	6.82
0.1	0.2637	0.2571	2.57
0.2	0.1335	0.1317	1.37

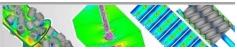


'Kissing, Drafting, Thumbling' of 2 Particles



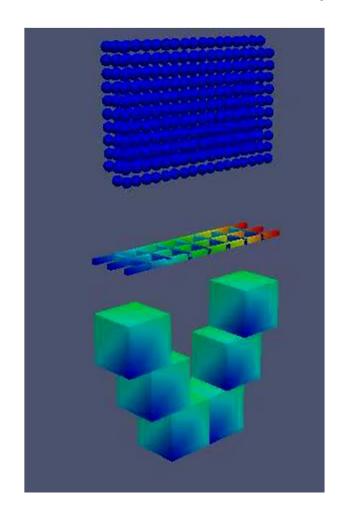
Sedimentation of many Particles

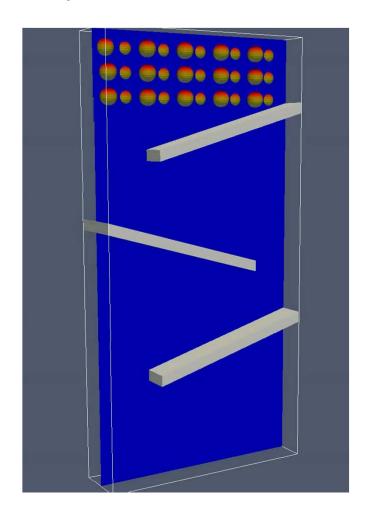




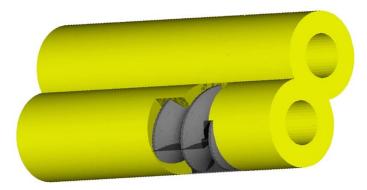
3D simulations with more complex geometries

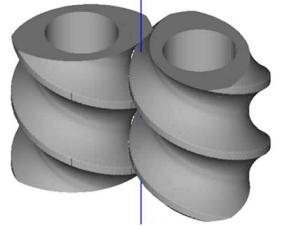
Sedimentation of particles in a complex domain





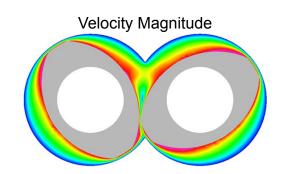
Geometrical representation of the twinscrews → Fictitious Boundary Method

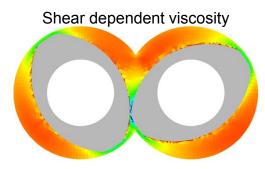


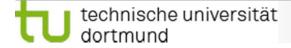


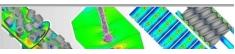
- Fast and accurate description of the rotating geometry
- Applicable for conveying and kneading elements
- Mathematical description available for single, double- or triplet-flighted screws
- Non-Newtonian and temperature dependent physical properties
- Heat dissipation due to high shear rates
- Viscoelastic effects and free interfaces.

In cooperation with:

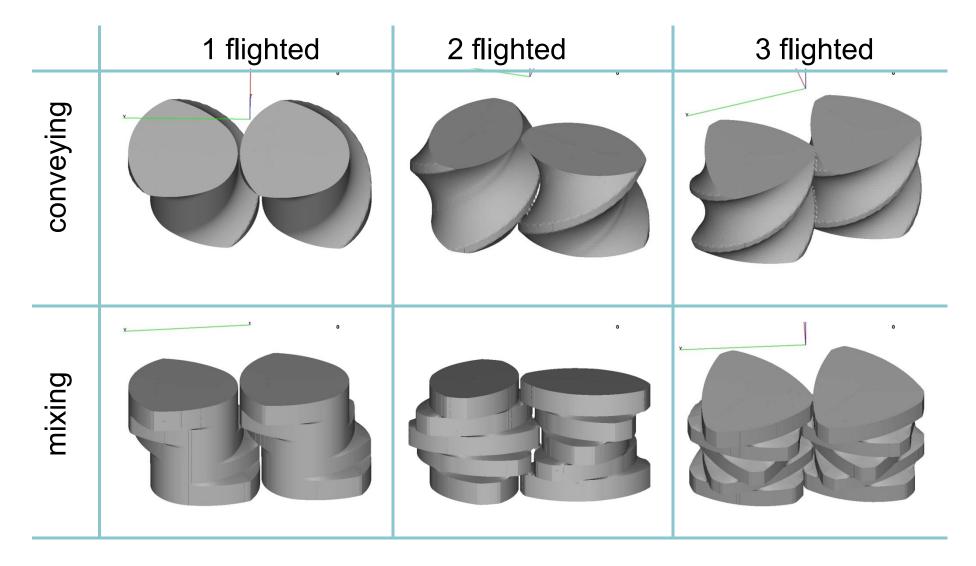


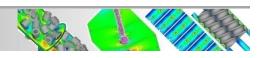




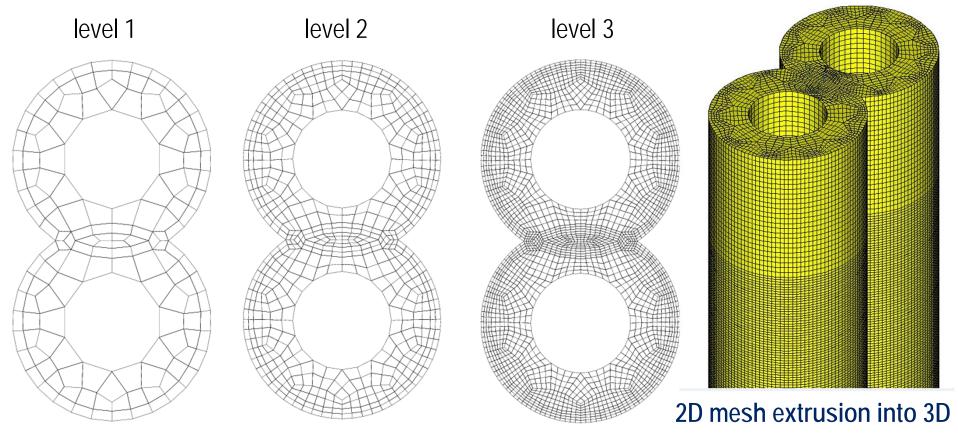


Library of conveying and mixing elements

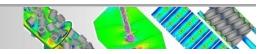


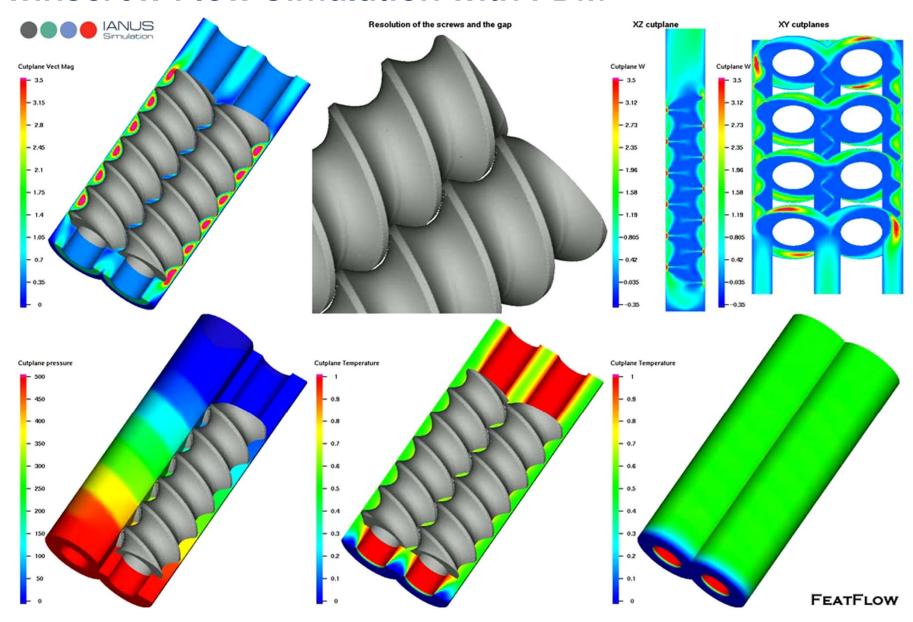


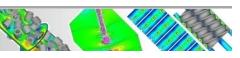
Meshing strategy – Hierarchical mesh refinement



Pre-refined regions in the vicinity of gaps







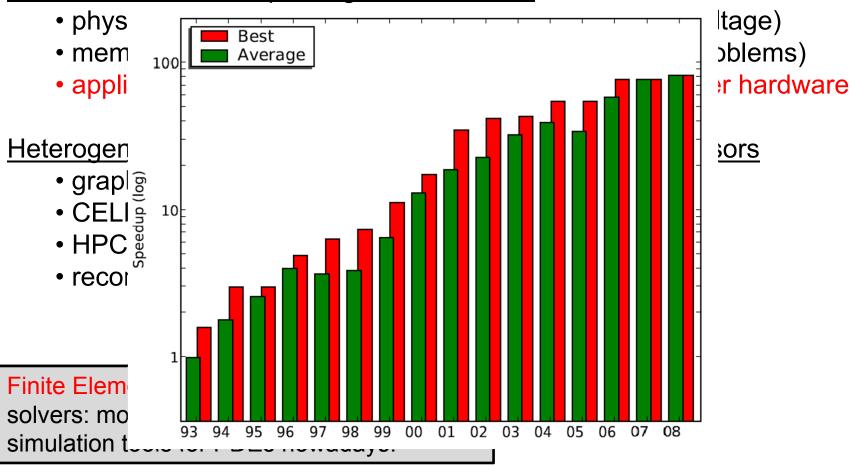
Current Status

- Numerical efficiency?
 - \rightarrow OK
- Parallel efficiency?
 - → OK (tested up to appr. 1000 CPUs)
 - → More than 10.000 CPUs???
- Single processor efficiency?
 - → OK (for CPU)
- 'Peak' efficiency?
 - \rightarrow NO



Next: Special HPC Techniques

The 'free ride' is over, paradigm shift in HPC:

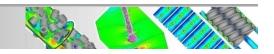


Extensive Tests show.....

- It is (almost) impossible to come close to Single Processor Peak
 Performance with modern (= high numerical efficiency) simulation
 tools
- Parallel Peak Performance with modern Numerics even harder, already for moderate processor numbers

Hardware-oriented Numerics (HwoN)
+
UnConventional Hardware (UCHPC)
=

FEAST Project



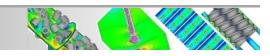
Unconventional Hardware

CELL multicore processor (PS3),
 7 synergistic processing units @ 3.2 GHz,
 Memory @ 3.2 GHz

≈ 218 GFLOP/s

GPU (NVIDIA GTX 285):
 240 cores @ 1.476 GHz,
 1.242 GHz memory bus (160 GB/s)
 ≈ 1.06 TFI OP/s

UnConventional High Performance Computing (UCHPC)



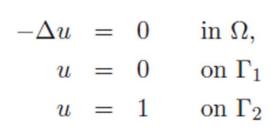
Design Goals

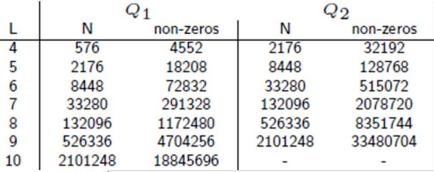
Include GPUs into FEAST

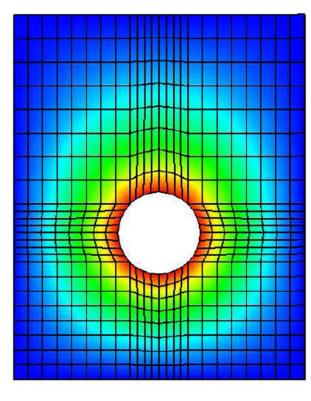
- without
 - changes to application codes FEA(S)TFLOW
 - fundamental re-design of FEAST
 - sacrificing either functionality or accuracy
- but with
 - noteworthy speedups
 - a reasonable amount of generality w.r.t. other co-processors
 - and additional benefits in terms of space/power/etc.

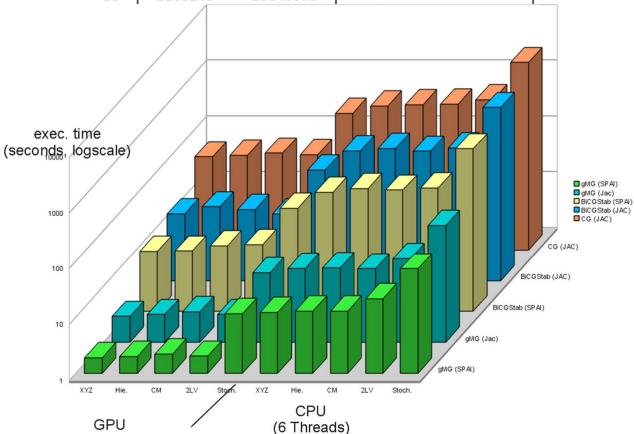
But: no --march=gpu/cell compiler switch

Solver Benchmark (unstructured mesh)





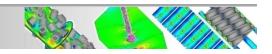




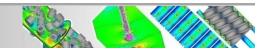
Huge Potential for the Future ...

- Numerical Simulation & High Performance Computing have to consider recent and future hardware trends, particularly for heterogeneous multicore architectures and massively parallel systems!
- More research in the combination of 'Hardware-oriented Numerics' and 'Unconventional Hardware' is necessary!
- (Still) much more powerful CFD tools are possible if modern
 Numerics meets modern Hardware!

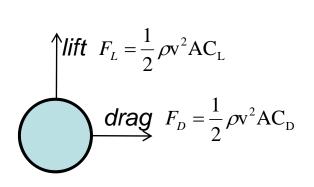
...or most of existing (academic/commercial) CFD software will be 'worthless' in a few years!

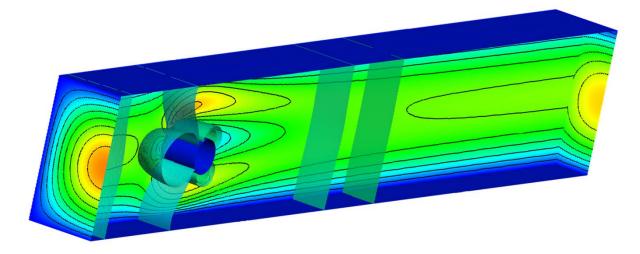


...Happy Birthday, Pekka



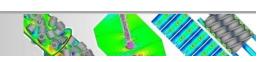
Known benchmark problem (DFG) in the CFD community





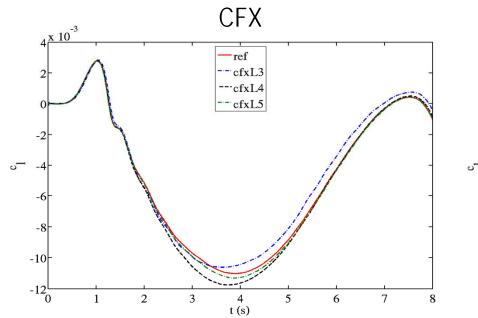
- Comparison of CFX 12.0, OpenFoam 1.6 and FeatFlow
- Drag and lift coefficients behave very sensitive to mesh resolution
- → Ideal indicator for computational accuracy
- Five consequently refined meshes L1 (coarse), ..., L5 (fine)
- Same meshes and physical models used in all three codes

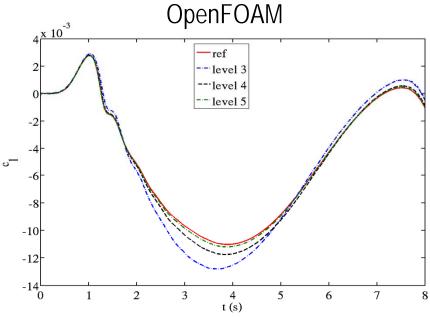
Mesh Level	# Elements
L2	6,144
L3	49,152
L4	393,216
L5	3,145,728



Benchmarking

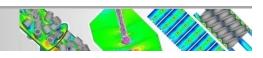
Flow Simulation with CFD software available on the market





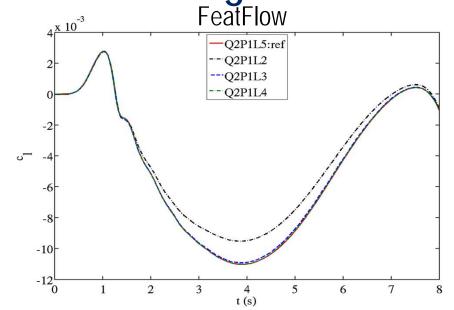
Case	L2 error		timing
	c_D	C_L	
CFX L3	0.0152	0.0781	13420
CFX L4	0.0098	0.0631	4 x 58680
CFX L5	0.0029	0.0224	8 x 205600

Case	L2 error		Timing
	c_D	C_L	
OF L3	0.0261	0.1449	5180
OF L4	0.0067	0.0591	4 x 19500
OF L5	0.0016	0.0147	8 x 595200



Benchmarking

Flow Simulation with **FEATFLOW**



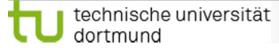
	$4 \frac{x}{10^{-3}}$	70	(Com	pariso	on		1290	
	2		,		Q2P1L5 OFL5 cfxL5		,		
	-2-								
C _I	-4- -6-	`				/			
	-8- -10-		1	None and	-				-
	-120	1	2	3	4 t (s)	5	6	7	8

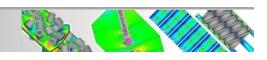
Case	L2 error		Timing
	c_{D}	C_L	
FF L2	0.0209	0.1378	2 x 5000
FF L3	0.0029	0.0109	3 x 25000
FF L4	0.0005	0.0015	20 x 32000
FF L5	(ref)	(ref)	23 x 242000

Case	L2 error		timing
	c_D	C_L	
FF L3	0.0029	0.0109	3 x 25000
OF L5	0.0016	0.0147	8 x 595200
CFX L5	0.0029	0.0224	8 x 205600

Less than 2 hours sim. time with adaptive time stepping on 3+1 processors

- → Same order of accuracy with **FEATFLOW** on L3 as L5 with **CFX** and **OpenFOAM** on L5!
- → High order Q2/P1 FEM + (parallel) Multigrid Solver





Validation based on experimental results

Jetting mode

Experimental setup/results by **AG Walzel** (**BCI/Dortmund**)

Continuous phase:

Glucose-Water mixture

$$\mu_D = 500 \, mPa \, s$$

$$\rho_D = 972 \ kg \ m^{-3}$$

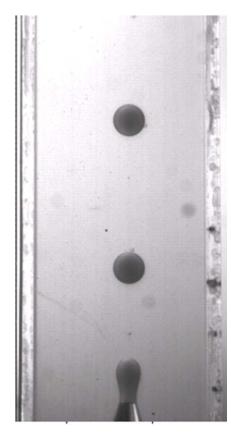
 $\sigma_{CD} = 0.034 \, N \, m^{-1}$

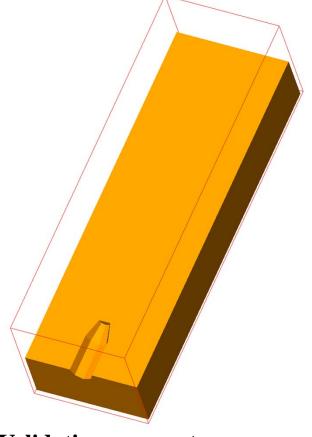
Silicon oil

 $\mu_C = 500 \, mPa \, s$

 $\rho_C = 1340 \ kg \ m^{-3}$

Dispersed phase:



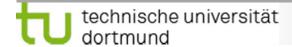


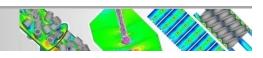
Operating conditions

V _D [ml/min]	3 64	4,17	4,70	5,23	5,75
AD [IIIIIIII]	0,04		4,70	0,20	0,70
V _C [ml/min]	99,04	113,34	128,34	143,34	156,95

Validation parameters:

- frequency of droplet generation
- droplet size
- stream length





Validation based on experimental results

