On FEM techniques for multiphase flows

<u>Stefan Turek</u>, Otto Mierka, Raphael Münster Institut für Angewandte Mathematik , LS III Technische Universität Dortmund ture@featflow.de

http://www.mathematik.tu-dortmund.de/LS3 http://www.featflow.de

Motivation: Numerical & Algorithmic Challenges

Accurate, robust, flexible and efficient simulation of *multiphase problems* with *dynamic interfaces* and *complex geometries*, particularly in 3D, is still a challenge!

- Mathematical Modelling of *liquid-liquid (I-I)* and *solid-liquid (s-I)* Interfaces
- Numerics / CFD Techniques
- Validation / Benchmarking
- HPC Techniques / Software

Vision: Highly efficient, flexible and accurate "real life" simulation tools based on modern Numerics and algorithms while exploiting modern hardware!

Realization:

FEATFLOW

Motivation: Target Application I

- Numerical simulation of *micro-fluidic drug encapsulation ("monodisperse compound droplets")* for application in lab-on-chip and bio-medical devices
- Polymeric "bio-degradable" outer fluid with viscoelastic effects
- Optimization of chip design w.r.t. boundary conditions, flow rates, droplet size, geometry

Stefan Turek

Motivation: Target Application II

- Numerical simulation of *twinscrew extruders*
- Non-Newtonian rheological models (shear & temperature dependent) with non-isothermal flow conditions (cooling from outside, heat production)
- Evaluation of torque acting on the screws, energy consumption
- Influence of local characteristics on global product quality, prediction of hotspots and maximum shear rates

Stefan Turek

Basic Flow Solver: FeatFlow

Main features of the FEATFLOW approach:

- Parallelization based on domain decomposition
- FCT & EO stabilization techniques
- High order FEM discretization schemes
- Use of unstructured meshes
- Adaptive grid deformation
- Newton-Multigrid solvers

HPC features

- Massive parallel
- GPU computing
- Open source

Hardware-oriented Numerics

Stefan Turek

Interphase capturing realized by Level Set method

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$$

- Exact representation of the interphase
- Natural treatment of topological changes
- Provides derived geometrical quantities (\mathbf{n}, κ)
- Requires reinitializion w.r.t. distance field
- Can lead to mass loss $\rightarrow dG(1)$ discretization!

Problems and Challenges

- **Steep gradients** of the velocity field and of other physical quantities near the interphase (oscillations!)
- **Reinitialization** (smoothed sign function, artificial movement of the interphase (→ mass loss), how often to perform?)
- Mass conservation (during advection and reinitialization of the Level Set function)
- Representation of **interphacial tension**: CSF, Line Integral, Laplace-Beltrami, Phasefield, *etc.*
- Explicit or implicit treatment (→ Capillary Time Step restriction?)

Stefan Turek

Steep changes of physical quantities:

1) Elementwise averaging of the physical properties (prevents oscillations):

 $\rho_e = x\rho_1 + (1-x)\rho_2$, $\mu_e = x\mu_1 + (1-x)\mu_2$ x is the volume fraction

- Flow part: Extension of nonlinear stabilization schemes (FCT, TVD, EO-FEM) for the momentum equation for LBB stable element pairs with discontinuous pressure (Q2/P1)
- 3) Interphase tracking part with DG(1)-FEM: Flux limiters satisfying LED requirements

Stefan Turek

Reinitialization

- Mainly required in the vicinity of the interphase
- How often to perform?
- Which realization to implement?
- Efficient parallelization (3D!)

Alternatives

- Brute force (introducing new points at the zero level set)
- Fast sweeping ("advancing front" upwind type formulas)
- Fast marching
- Algebraic Newton method
- Hyperbolic PDE approach
- many more.....

Maintaining the signed distance function by PDE reinitialization

$$\frac{\partial \phi}{\partial \tau} + \mathbf{u} \cdot \nabla \phi = S(\phi) \qquad \mathbf{u} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|} \quad \Leftrightarrow \quad |\nabla \phi| = 1$$

Problems:

- What to do with the sign function at the interphase? (smoothing?)
- How to handle the underlying non-linearity?
- How often to perform? (expensive → steady state)

Globally defined normal vectors

Stefan Turek

Fine-tuned reinitialization

Our reinitialization is performed in combination of 2 ingredients:

1) Elements intersected by the interphase are modified w.r.t. the slope of the distance distribution ("Parolini trick") such that

$$\left|\nabla\phi\right|=1$$

- 2) Far field reinitialization: realization is based on the PDE approach ("FBM"), but it does not require smoothening of the distance function!
- **In addition:** continuous projection of the interphase (smoothening of the discontinuous) P₁ based distance function)

$$\phi_{P_1} \xrightarrow{L_2 \text{ projection}} \rightarrow \phi_{Q_1} \xrightarrow{L_2 \text{ projection}} \rightarrow \phi_{P_1}$$

dortmund

Surface Tension: Semi-implicit CSF formulation based on Laplace-Beltrami

$$\mathbf{f}_{\mathrm{ST}} = \int_{\Omega} \sigma \mathbf{k} \hat{\mathbf{n}} \cdot \mathbf{v} \,\delta(\Gamma, \mathbf{x}) \,d\mathbf{x} = \int_{\Omega} \sigma \left(\underline{\Delta} \mathbf{x} \big|_{\Gamma} \right) \cdot \left(\mathbf{v} \,\delta(\Gamma, \mathbf{x}) \right) \,d\mathbf{x}$$
$$= -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \left(\mathbf{v} \,\delta(\Gamma, \mathbf{x}) \right) \,d\mathbf{x} = -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \mathbf{v} \,\delta(\Gamma, \mathbf{x}) \,d\mathbf{x}$$

Application of the semi-implicit time integration yields $\mathbf{x}|_{\Gamma^{n+1}} = \mathbf{x}|_{\Gamma^n} + \Delta t \mathbf{u}^{n+1}$

$$\mathbf{f}_{\mathrm{ST}} = -\int_{\Omega} \sigma \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \, \widetilde{\mathbf{x}} \Big|_{\Gamma}^{n} \cdot \underline{\nabla} \, \mathbf{v} \, d\mathbf{x} \\ - \Delta t^{n+1} \int_{\Omega} \sigma \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \, \mathbf{u}^{n+1} \cdot \underline{\nabla} \, \mathbf{v} \, d\mathbf{x}$$

Advantages

- Relaxes Capillary Time Step restriction
- "Optimal" for FEM-Level Set approach

Benchmarking

2D Bubble Benchmarks

http://www.featflow.de/beta/en/benchmarks/

Stefan Turek

3D convergence analysis for large density jumps

Benchmarking with experimental results

Experimental Set-up with AG Walzel (BCI/Dortmund)

Validation parameters:

- frequency of droplet generation
- droplet size
- stream length

Stefan Turek

Benchmarking with experimental results

Stefan Turek

Interaction of droplets with surfaces

Pourmousa 2007

Bolot et al. 2008

Next: Two phase flow (s-l) with resolved interphases

Stefan Turek

- Fluid motion is governed by the Navier-Stokes equations
- Particle motion is described by Newton-Euler equations

Fictitious Boundary Method

- Surface integral is replaced by volume integral
 Use of monitor function (liquid/solid)
- Use of monitor function (liquid/solid)
- Normal to particle surface vector is non-zero only at the surface of particles $n_p = \nabla \alpha_p$

$$F_{p} = -\int_{\Gamma_{p}} \sigma \cdot n_{p} d\Gamma_{p} = -\int_{\Omega_{T}} \sigma \cdot \nabla \alpha_{p} d\Omega_{T}$$
$$T_{p} = -\int_{\Gamma_{p}} (X - X_{p}) \times (\sigma \cdot n_{p}) d\Gamma_{p} = -\int_{\Omega_{T}} (X - X_{p}) \times (\sigma \cdot \nabla \alpha_{p}) d\Omega_{T}$$

Stefan Turek

 $\alpha_{p}(X) = \begin{cases} 1 & \text{for} & X \in \Omega_{p} \\ 0 & \text{for} & X \in \Omega_{f} \end{cases}$

- supports HPC concepts (no computational overhead, constant data structures, optimal load balancing)
- reduces dramatically requirements put on the computational mesh
 relatively low resolution
 - Brute force \rightarrow Finer mesh resolution
 - High resolution interpolation functions
 - Grid deformation (+ monitor function)

Stefan Turek

Grid Deformation Method

Idea : construct transformation ϕ , $x = \phi(\xi, t)$ with det $\nabla \phi = f$ \implies local mesh area $\approx f$

1. Compute monitor function $f(x,t) > 0, f \in C^1$ and $\int f^{-1}(x,t) dx = |O| \quad \forall t \in [0,1]$

$$\int_{\Omega} f^{-1}(x,t) dx = |\Omega|, \quad \forall t \in [0,1]$$

2. Solve($t \in [0,1]$)

$$\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \Big|_{\partial \Omega} = 0$$

3. Solve the ODE system

$$\frac{\partial}{\partial t}\phi(\xi,t) = f(\phi(\xi,t),t)\nabla v(\phi(\xi,t),t)$$

new grid points: $x_i = \phi(\xi_i, 1)$

Grid deformation preserves the (local) logical structure of the grid

Stefan Turek

Generalized Tensorproduct Meshes

Stefan Turek

Operator-Splitting Approach

The algorithm for $t^n \rightarrow t^{n+1}$ consists of the following 4 substeps

- 1. Fluid velocity and pressure: $NSE(u_f^{n+1}, p^{n+1}) = BC(\Omega_p^n, u_p^n)$
- 2. Calculate hydrodynamic forces: F_p^{n+1}
- 3. Calculate velocity of particles: $u_p^{n+1} = g(F_p^{n+1})$ (collision model) 4. Update position of particles: $\Omega_p^{n+1} = f(u_p^{n+1})$
- 5. Align new mesh
- \rightarrow Required: efficient calculation of hydrodynamic forces \rightarrow Required: efficient treatment of particle interaction (?)
- \rightarrow Required: fast (nonstationary) Navier-Stokes solvers (!)

Benchmarking and Validation

Free fall of particles:

- Terminal velocity
- Different physical parameters ٠
- Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2010, accepted

technische universität dortmund

Sedimentation of many Particles

3D simulations with more complex shapes

Sedimentation of particles in a complex domain

Stefan Turek

Geometrical representation of the twinscrews → Fictitious Boundary Method

In cooperation with: UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

- Fast and accurate description of the rotating geometry
- Applicable for conveying and kneading elements
- Mathematical description available for single, double- or triplet-flighted screws
- Surface and body of the screws are known at any time
- Mathematical formulation replaces external CADdescription
- Non-Newtonian and temperature dependent physical properties

Shear dependent viscosity

Heat dissipation due to high shear rates

Library of conveying and mixing elements

Stefan Turek

Meshing strategy – Hierarchical mesh refinement

Pre-refined regions in the vicinity of gaps

Stefan Turek

technische universität dortmund

Stefan Turek

Challenges

- Adaptive time stepping + dynamical adaptive grid alignment/ALE.
- Coupling with turbulence models.
- Deformable particles/fluid-structure interaction.
- Analysis of viscoelastic effects.
- Benchmarking and experimental validation for many particles.

(Preliminary) State-of-the-Art

- Numerical efficiency?
 → OK
- Parallel efficiency?
 → OK (tested up to appr. 1000 CPUs on NEC / commodity clusters)
 → More than 10.000 CPUs???
- Single processor efficiency?
 → OK (for CPU)
- 'Peak' efficiency?
 - $\rightarrow NO$
 - → Special *unconventional* FEM Co-Processors

UnConventional HPC

- CELL multicore processor (PS3),
 7 synergistic processing units @ 3.2 GHz,
 Memory @ 3.2 GHz
 - ≈ 218 GFLOP/s

 GPU (NVIDIA GTX 285): 240 cores @ 1.476 GHz, 1.242 GHz memory bus (160 GB/s)
 ≈ 1.06 TFLOP/s

UnConventional High Performance Computing (UCHPC)

Poisson problem solver tests

	4	21	9	\mathcal{P}_2
L	N	non-zeros	N	non-zeros
4	576	4552	2176	32192
5	2176	18208	8448	128768
6	8448	72832	33280	515072
7	33280	291328	132096	2078720
8	132096	1172480	526336	8351744
9	526336	4704256	2101248	33480704
10	2101248	18845696	-	-

technische universität

dortmund

 $-\Delta u = 0 \quad \text{in } \Omega,$

u = 0 on Γ_1

u = 1 on Γ_2

Huge Potential for the Future ...

However:

- Numerical Simulation & High Performance Computing have to consider recent and future hardware trends, particularly for heterogeneous multicore architectures and massively parallel systems!
- The combination of 'Hardware-oriented Numerics' and special 'Data Structures/Algorithms' and 'Unconventional Hardware' has to be used!

...or most of existing (academic/commercial) CFD software will be 'worthless' in a few years!

Stefan Turek

Benchmarking

Known benchmark problem (DFG) in the CFD community

- Comparison of CFX 12.0, OpenFoam 1.6 and FeatFlow
- Drag and lift coefficients behave very sensitive to mesh resolution
- \rightarrow Ideal indicator for computational accuracy
- Five consequently refined meshes L1 (coarse), ..., L5 (fine)
- Same meshes and physical models used in all three codes

Mesh Level	# Elements
L2	6,144
L3	49,152
L4	393,216
L5	3,145,728

Stefan Turek

Benchmarking

Flow Simulation with CFD software available on the market

Case	L2 error		timing	Case	L2 error		Timing	
	C _D	CL			C _D	CL		
CFX L3	0.0152	0.0781	13420	OF L3	0.0261	0.1449	5180	
CFX L4	0.0098	0.0631	4 x 58680	OF L4	0.0067	0.0591	4 x 19500	
CFX L5	0.0029	0.0224	8 x 205600	OF L5	0.0016	0.0147	8 x 595200	

Stefan Turek

7

8

Benchmarking Flow Simulation with **FEATFLOW** FeatFlow $4 \frac{x \ 10^{-3}}{x \ 10^{-3}}$ $4 \frac{x \ 10^{-3}}{x \ 10^{-3}}$ Q2P1L5:ref Q2P1L2 ---Q2P1L3 Q2P1L4

-12_{0}^{1}	2 3	4 5 t (s)	6 7 8		
Case	L2 e	error	Timing		
	C _D	CL			
FF L2	0.0209	0.1378	2 x 5000		
FF L3	0.0029	0.0109	3 x 25000		
FF L4	0.0005	0.0015	20 x 32000		
FF L5	(ref)	(ref)	23 x 242000		

ouoo			unig	
	C _D	CL		
FF L3	0.0029	0.0109	3 x 25000	
OF L5	0.0016	0.0147	8 x 595200	
CFX L5	0.0029	0.0224	8 x 205600	

Less than 2 hours sim. time with adaptive time stepping on 3+1 processors

Same order of accuracy with **FEATFLOW** on L3 as L5 with **CFX** and **OpenFOAM** on L5! \rightarrow

High order Q2/P1 FEM + (parallel) Multigrid Solver \rightarrow

technische universität dortmund

പ

-8

-10

Stefan Turek

3D parameter study for large density jumps

Collision Models

- Theoretically, it is impossible that smooth particle-particle collisions take place in finite time in the continuous system since there are repulsive forces to prevent these collisions in the case of viscous fluids.
 - In practice, however, particles can contact or even overlap each other in numerical simulations since the gap can become arbitrarily small due to unavoidable numerical errors.

$$\begin{vmatrix} \overrightarrow{F_{ij}} \\ \overrightarrow{R_i} & \overrightarrow{P_i} \\ \overrightarrow{R_i} & \overrightarrow{R_i} \\ d_{ij} \\ \overrightarrow{R_i + R_j} & \overrightarrow{R_i + R_j + \rho} \\ d_{ij} \\ \overrightarrow{R_i + R_j} & \overrightarrow{R_i + R_j + \rho} \\ d_{ij} \\ \overrightarrow{R_i + R_j} & \overrightarrow{R_i + R_j + \rho} \\ d_{ij} \\ \overrightarrow{R_i + R_j} \\ \overrightarrow{R_i + R_j + \rho} \\ d_{ij} \\ \overrightarrow{R_i + R_j + \rho} \\ \overrightarrow{R_i + \rho}$$

Stefan Turek

3D Single Body Collision Model

For a single pair of colliding bodies we compute the impulse f that causes the velocities of the bodies to change:

$$\mathbf{f} = \frac{-(1+\varepsilon)(\mathbf{n}_{1}(\mathbf{v}_{1}-\mathbf{v}_{2})+\omega_{1}(\mathbf{r}_{11}\times\mathbf{n}_{1})-\omega_{2}(\mathbf{r}_{12}\times\mathbf{n}_{1}))}{\mathbf{m}_{1}^{-1}+\mathbf{m}_{2}^{-1}+(\mathbf{r}_{11}\times\mathbf{n}_{1})^{\mathrm{T}}\mathbf{I}_{1}^{-1}(\mathbf{r}_{11}\times\mathbf{n}_{1})+(\mathbf{r}_{12}\times\mathbf{n}_{1})^{\mathrm{T}}\mathbf{I}_{2}^{-1}(\mathbf{r}_{12}\times\mathbf{n}_{1})}$$

Using the impulse the f, the change in linear and angular velocity can be calculated:

 B_2

r₁₂

r₁₁

B₁

$$v_{1}(t + \Delta t) = v_{1}(t) + \frac{fn_{1}}{m_{1}}, \omega_{1}(t + \Delta t) = \omega_{1}(t) + I_{1}^{-1}(r_{11} \times fn_{1})$$
$$v_{2}(t + \Delta t) = v_{2}(t) + \frac{fn_{2}}{m_{2}}, \omega_{2}(t + \Delta t) = \omega_{2}(t) + I_{2}^{-1}(r_{12} \times fn_{1})$$

 n_1 : contact normal r_{11} : vector from center r_1 to contact point p_1

 r_{12} : contact normal r_{12} : vector from center r_2 to contact point p_1

 p_1 : contact point

Stefan Turek

3D Multi-Body Collision Model

In the case of multiple colliding bodies with *K* contact points the impulses influence each other. Hence, they are combined into a system of equations:

$$W = Ax + b, \quad W, x, b \in \mathbb{R}^{n}, M \in \mathbb{R}^{n \times n}$$

$$W, x, b \ge 0$$

$$(W_{1}x_{1}, \dots, W_{n}x_{n}) = (0, \dots, 0)$$

$$A = \delta_{i_{1}i_{k}} n_{l}^{T} \left(\frac{1}{m_{i_{k}}} 1_{3 \times 3} - r_{li_{l}}^{\times} I_{i_{k}}^{-1} r_{ki_{k}}^{\times}\right) n_{k} - \delta_{i_{1}j_{k}} n_{l}^{T} \left(\frac{1}{m_{j_{k}}} 1_{3 \times 3} - r_{li_{l}}^{\times} I_{j_{k}}^{-1} r_{ki_{k}}^{\times}\right) n_{k}$$

$$- \delta_{j_{1}i_{k}} n_{l}^{T} \left(\frac{1}{m_{i_{k}}} 1_{3 \times 3} - r_{lj_{l}}^{\times} I_{i_{k}}^{-1} r_{ki_{k}}^{\times}\right) n_{k} + \delta_{j_{1}j_{k}} n_{l}^{T} \left(\frac{1}{m_{j_{k}}} 1_{3 \times 3} - r_{lj_{l}}^{\times} I_{j_{k}}^{-1} r_{kj_{k}}^{\times}\right) n_{k}$$

The resulting problem is a linear complementarity problem (LCP), that can solved with efficient iterative methods like the projected Gauss-Seidel solver (PGS).

technische universität dortmund

Stefan Turek

Packed bed reactor simulations (BASF)

Velocity distribution

Pressure distribution

Packed bed reactor simulations (BASF)

Level	Mesh points		Velocity DOFs			Pressure DOFs			
	n_{x}	n_{yz}	n_{xyz}	n_x	n_{yz}	n_{xyz}	n_x	n_{yz}	n_{xyz}
2	155	109	16,895	308	409	126,381	154(*4)	96(*4)	59,136
3	309	409	126,381	617	1,585	977,945	308(*4)	384(*4)	473,088
4	617	1,585	977,945	1,233	6,241	7,695,153	616(*4)	1,536(*4)	3,784,704

	Case: 0.01 m/s	Case: 0.10 m/s		
Mesh/Resolution	Pressure Drop [Pa]	Pressure Drop [Pa]		
L3-a	0.178	2.91		
L3-b	0.193	3.15		
L4-a	0.207	3.39		
L4-b	0.218	3.54		

Stefan Turek

Next: Special HPC Techniques

Stefan Turek

Example: Fast Poisson Solvers

- 'Optimized' Multigrid methods for scalar PDE problems (≈Poisson problems) on general meshes should require ca. 1000 FLOPs per unknown (in contrast to LAPACK for dense matrices with O(N³) FLOPs)
- Problem size 106 : Much less than 1 sec on PC (???)
- Problem size 1012: Less than 1 sec on PFLOP/s computer
- More realistic (and much harder) 'Criterion' for Petascale Computing in Technical Simulations

Main Component: 'Sparse' MV

 Sparse Matrix-Vector techniques ('indexed DAXPY') on general unstructured grids

DO 10 IROW=1,N

DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1

10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Fully adaptive grids

Maximum flexibility 'Stochastic' numbering Unstructured sparse matrices Indirect addressing, very slow.

• Sparse Banded Matrix-Vector techniques on generalized TP grids

Locally structured grids

Logical tensor product Fixed banded matrix structure Direct addressing (\Rightarrow fast) *r*-adaptivity

Stefan Turek

Generalized Tensorproduct Meshes

...with appropriate FBM techniques in FEATFLOW.....

technische universität dortmund

Stefan Turek

Generalized Tensorproduct Meshesdynamic CFD problems.....

technische universität dortmund

Stefan Turek

Extensive Tests show.....

- It is (almost) impossible to come close to Single Processor Peak Performance with <u>modern</u> (= high numerical efficiency) simulation tools
- Parallel Peak Performance with modern Numerics even harder, already for moderate processor numbers

Hardware-oriented Numerics (HwoN)

Main features of the FEAST approach:

- Separation of structured and unstructured data
- Parallel multigrid solver (Scalable Recursive Clustering = ScaRC)
- Treatment of scalar and vector-valued probles
- Possibility of co-processor acceleration
- Applications (FEASTFlow, FEASTSolid, *FEASTLBM, SkaLB*)

Observation: Sparse MV on TP Grid

40 GFLOP/s on GeForce GTX 280

- 0.7 (1.4) GFLOP/s on Xeon E5450
- 1M unknowns in less than 0.1 seconds!
- 27x faster than CPU

Promising results, attempt to integrate GPUs as FEM Co-Processors

Stefan Turek

Include GPUs into FEAST

- without
 - changes to application codes FEASTFLOW / FEASTSOLID
 - fundamental re-design of FEAST
 - sacrificing either functionality or accuracy
- but with
 - noteworthy speedups
 - a reasonable amount of generality w.r.t. other co-processors
 - and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

Validation based on experimental results

Jetting mode Experimental setup/results Group of Prof. Walzel (BCI/Dortmund)

Operating conditions

V _D [ml/min]	3,64	4,17	4,70	5,23	5,75
V _C [ml/min]	99,04	113,34	128,34	143,34	156,95

Validation parameters:

- frequency of droplet generation
- droplet size
- stream length

Stefan Turek

Validation based on experimental results

Monodisperse droplet generation in nozzles

'Kissing, Drafting, Thumbling' of 2 Particles

Numerical Examples

'Impact of heavy balls on 2000 small particles'

Repulsive Force Collision Model

Handling of small gaps and contact between particles

Dealing with overlapping in numerical simulations

For the particle-particle collisions (analogous for the particle-wall collisions), the repulsive forces between particles read:

$$F_{ij}^{P} = \begin{cases} 0 & \text{for} \quad d_{i,j} > R_{i} + R_{j} + \rho \\ \frac{1}{\varepsilon_{P}} (X_{i} - X_{j}) (R_{i} + R_{j} + \rho - d_{i,j})^{2} & \text{for} \quad R_{i} + R_{j} \le d_{i,j} \le R_{i} + R_{j} + \rho \\ \frac{1}{\varepsilon_{P}} (X_{i} - X_{j}) (R_{i} + R_{j} - d_{i,j}) & \text{for} \quad d_{i,j} < R_{i} + R_{j} \end{cases}$$

The total repulsive forces exerted on the i-th particle by the other particles and the walls can be expressed as follows:

$$F_{i}' = \sum_{j=1, j \neq i}^{N} F_{i,j}^{P} + F_{i}^{W}$$

Stefan Turek

