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Fluid – (Rigid) Solid Interfaces

Fluid flow is modelled by the Navier-Stokes equations in Ωf(t) :

where σ is the total stress tensor in the fluid phase, which is defined as :
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Consider the flow of N solid particles in a fluid with density ρ and viscosity μ.

Denote by Ωf(t) the domain occupied by the fluid at time t, by ΩP(t) the

domain occupied by the particle at time t and let Ω = Ωf U ΩP.
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Model for Particle Motion (I)

Motion of particles is described by the Newton-Euler equations, i.e., the
translational velocities and angular velocities of the p-th particle 
satisfy:

with the mass of the p-th particle ( p =1,…,N);

the moment of inertia tensor of the p-th particle;

the mass difference between the mass       and the mass of the fluid

occupying the same volume.
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and       are the hydrodynamic forces and the torque at mass center
acting on the p-th particle:

and       are the collision or agglomeration forces.

is the position of the center of gravity of the p-th particle;                             
the boundary of the p-th particle;

is the unit normal vector on the boundary .
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Model for Particle Motion (II)
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Fluid-Particle Interaction

No slip boundary conditions at interface       between particles and fluid 
i.e., for any              , the velocity u(X) is defined by:

The position   of the p-th particle and its angle are obtained 
by integration of the kinematic equations:
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Classification

Explicit coupling

FEM-Fictitious Boundary Methods (FBM)

Eulerian approach: fixed meshes possible!

Use a (adapted) mesh that covers the whole domain where the fluid 
may be present.

Computational mesh (can be) independent of ‘internal objects’

nt nt force on solidfluid 1+nt 1+ntsolid fluid→ → →



Page 7Page 7Stefan Turek |TU Dortmund 

Force Calculation with FBM

FBM: 0/1 - reconstruction of the shape is only 1st order accurate
local grid adaptivity or alignment near interface is possible
”only” averaged/integral quantities are required

But: The FBM can only decide ”INSIDE” or ”OUTSIDE”

Idea: ‘Replace the surface integral by a
volume integral’

Hydrodynamic forces and torque acting on the i-th particle

∫∂ Γ⋅−=
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Calculation of Hydrodynamic Forces
Define auxiliary function     as

Remark: everywhere except at wall surface of the particles, and 
equal to the normal vector        defined on the global grid.

Force acting on the wall surface of the particles can be computed by
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Validation of Force Calculations

elementsLEVEL 000.2806 ≈ elementsLEVEL 000.1506 ≈

elementsLEVEL 000.1504 ≈
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Operator-Splitting Approach

→ Required: efficient calculation of hydrodynamic forces
→ Required: efficient treatment of particle interaction (?)
→ Required: fast (nonstationary) Navier-Stokes solvers (!)

1.

2.

4.

3.

Fluid velocity and pressure :

Calculate hydrodynamic forces:

Calculate velocity of particles:

Update position of particles:

The algorithm for consists of the following 4 substeps

5. Align new mesh

1+→ nn tt

( ) ( )n
p

n
p

nn
f uBCpuNSE ,, 11 Ω=++

1+n
pF

( )11 ++ = n
p

n
p Fgu

( )11 ++ =Ω n
p

n
p uf



Page 11Page 11Stefan Turek |TU Dortmund 

Grid Deformation Method

Idea : construct transformation with
local mesh area

1. Compute monitor function and

3. Solve the ODE system

new grid points:
Grid deformation preserves the (local) logical structure of the grid
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Numerical Examples
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Generalized Tensorproduct Meshes
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Numerical Examples
‘Viscous flow around a moving airfoil’ (Glowinski)
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Rotation of an Airfoil Wing
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Lift-Off for Circle
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Lift-Off for Ellipse

Velocity (dw = 0.4) Velocity (dw = 1.8)
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Numerical Examples

‘Kissing, Drafting, Thumbling’
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‘Impact of heavy balls on 2000 small particles’
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Collision Models

Theoretically, it is impossible that smooth particle-particle collisions take 
place in finite time in the continuous system since there are repulsive 
forces to prevent these collisions in the case of viscous fluids.

In practice, however, particles can contact or even overlap each other
in numerical simulations since the gap can become arbitrarily small 
due to unavoidable numerical errors.
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Repulsive Force Collision Model

For the particle-particle collisions (analogous for the particle-wall collisions), the 
repulsive forces between particles read:

Handling of small gaps and contact between particles

Dealing with overlapping in numerical simulations

The total repulsive forces exerted on the i-th particle by the other particles 
and the walls can be expressed as follows:
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Examples
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Efficient Data Structures
sfodelementsL ...000.100.1000.2203 ≈≈

sfodelementsL ...000.600.17000.530.35 ≈≈
sfodelementsL ...000.400.4000.8804 ≈≈

Required: Efficient flow solver (for small        )???tΔ

DEC/COMPAQ EV6,  833 MHz
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In this model, proposed by Maury, the lubrication forces for particle –
particle collisions (particle – wall collisions) are estimated by :

A Many Body Lubrication Model
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Ω j

ijD

ojD

Fig. 1. Particle-Particle and Particle-Wall collision
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Particle motion:

Φ i is the body force.

Numerical example:
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Particle Agglomeration
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Examples
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3D Examples
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Challenges

Adaptive time stepping + dynamical adaptive grid alignment/ALE
Coupling with turbulence models.
Deformable particles/fluid-structure interaction.
Analysis of viscoelastic effects.
Benchmarking and experimental validation for many particles.
Why tensorproduct-like meshes and r-adaptivity???.



Page 30Page 30Stefan Turek |TU Dortmund 

Hardware-oriented Numerics

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ 

algorithms on 1 CPU

FEM for 8 Mill. 
unknowns on 
general domain, 
1 CPU, Poisson
Problem in 2D
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Numerics on special hardware

• CELL multicore processor (PS3),        
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,              
Memory @ 3.2 GHz

• GPU (NVIDIA GTX 285):              
240 cores @ 1.476 GHz,            
1.242 GHz memory bus (160 GB/s)                  
≈ 1.06 TFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))
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Example: Sparse MV on TP Grid

40 GFLOP/s, 140 GB/s on GeForce GTX 280

0.7 (1.4) GFLOP/s on 1 core of Xeon E5450
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Alternative Forceless Model

1. The Navier-Stokes equations are solved everywhere with different densities for
the fluid and the rigid body.

2. In a postprocessing step the solution for the rigid body is projected from a fluid
motion onto the motion of a rigid body.

3. The rigid body is moved according to the velocity calculated in the postprocessing
step. Start the next time step n+1 at Step 1.

An alternative model, based on the work of Patankar, allows to
simulate the flow of rigid particles in a fluid
without the explicit calculation of the hydrodynamic forces!

The general idea of the model can be summarized as follows:
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Fluid Motion Model
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Consider the flow of a solid particle with density ρs in a fluid with density ρf  and

viscosity ν. Denote by Ωf(t) the domain occupied by the fluid at time t, by ΩP(t) the

area occupied by the particle at time t and let Ω = Ωf U ΩP.

The fluid flow is modelled by the Navier-Stokes equations with the
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Projection onto Rigid Motion
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The quantities that govern the motion of a rigid body are its translational velocity u

and its angular velocity ω. In the projection step we calculate these quantities from

the solution of the fluid.

The projection onto rigid body motion is realized as follows:

The velocity inside the rigid body in the next time step n+1 is then set to:
1111 ++++ ×+= nnnn PinrUu ω
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Advantages of the New Method

• No explicit calculation of the hydrodynamic forces.
• The calculation of the particle motion requires only the evaluation of 

two integrals.
• Better integration results by using the penalty method.
• The model is capable of handling non-rigid bodies or very

complicated geometries by adding a level-set function

Summary and further capabilites of the new method:
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Penalty Method

2ρ

1ρ

Using the usual FBM-approach we
get a function that is non-continuous
on an element.

By using a penalty approach we can
smooth this function to make it
continuous, which will give more
accurate results during integration.

This is done by calculating the area
that fluid and respectively particle
occupy and setting the value for the
element to:
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Rotating Disc Example
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Examples
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Particulate Flow Example
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Sedimentation Example


