

Monolithic FEM Techniques for Viscoelastic Flow

S. Turek, A. Ouazzi, H. Damanik Institute of Applied Mathematics, LS III, TU Dortmund http://www.featflow.de

ECCOMAS CFD 2010, Lissabon

Governing Equations

Generalized Navier-Stokes equations

$$\rho(\frac{\partial u}{\partial t} + u \cdot \nabla u) = -\nabla p + \nabla \cdot \sigma, \quad \nabla \cdot u = 0,$$
$$D(u) = \frac{1}{2}(\nabla u + (\nabla u)^{\mathrm{T}})$$

$$\sigma = \sigma^{s} + \sigma^{p}$$

• Viscous stress

$$\sigma^{s} = 2 \eta_{s}(D_{\text{II}}, p)D, \ D_{\text{II}} = \text{tr}(D(u)^{2}).$$

Elastic stress

$$\sigma^p + We \frac{\delta_a \sigma^p}{\delta t} = 2 \eta_p D(u).$$

Page 2

Constitutive Models (I)

Viscous stress

$$\sigma^{s} = 2 \eta_{s}(D_{\mathrm{II}}, p)D, \ D_{\mathrm{II}} = \mathrm{tr}(D(u)^{2}).$$

> Power law model

$$\eta_s(z, p) = \eta_0 z^{\frac{r}{2} - 1}, \quad (\eta_0 > 0, r > 1)$$

> Carreau model

$$\eta_{s}(z,p) = \eta_{\infty} + (\eta_{0} - \eta_{\infty})(1 + \lambda z)^{2}$$

$$(\eta_{0} > \eta_{\infty} \ge 0, r > 1, \lambda > 0)$$

> Powder flow in the quasi-static and intermediate regimes

$$\eta_s(z, p) = \sqrt{2} [\sin \phi z^{\frac{-1}{2}} + b \cos \phi z^{\frac{r-1}{2}}]$$

(ϕ is angle of internal friction, r>1)

Constitutive Models (II)

• Elastic stress

$$\sigma^p + \mathbf{W}e\frac{\delta_a \sigma^p}{\delta t} = 2\eta_p D(u)$$

> Upper/Lower convective derivative

$$\frac{\delta_a \sigma}{\delta t} = \left(\frac{\partial}{\partial t} + u \cdot \nabla\right) \sigma + g_a(\sigma, \nabla u)$$
$$g_a(\sigma, \nabla u) = \frac{1-a}{2} \left(\sigma \nabla u + (\nabla u)^{\mathrm{T}} \sigma\right)$$

 $-\frac{1+a}{2}\left(\nabla u\,\sigma + \sigma\,(\nabla u)^{\mathrm{T}}\right) \quad (a=\pm 1)$

Constitutive Models (III)

Generalized differential constitutive model

$$\sigma + \mathbf{W}e\frac{\delta_a\sigma}{\delta t} + \mathbf{G}(\sigma, D) + \mathbf{H}(\sigma) = 2\eta_p D(u)$$

- > Oldroyd $\mathbf{G} = 0, \quad \mathbf{H} = 0$
- Giesekus

 $\mathbf{G} = 0, \quad \mathbf{H} = \alpha \, \sigma^2$

Phan-Thien and Tanner

$$\mathbf{G} = 0, \quad \mathbf{H} = [\exp(\alpha \operatorname{tr}(\sigma)) - 1] \sigma$$

White and Metzner

$$\mathbf{G} = \alpha \left(2 D : D\right)^{1/2}, \quad \mathbf{H} = 0$$

Problem Reformulation

Old \rightarrow (u, p, σ^{p})

$$\left. \begin{array}{l} \rho(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + 2\eta_s \nabla \cdot D + \nabla \cdot \sigma^p, \\ \nabla \cdot \mathbf{u} = 0, \\ \Lambda \frac{\delta_{\mathbf{a}} \sigma^p}{\delta t} + \sigma^p - 2\eta_p D = 0 \end{array} \right\} \quad (1)$$

Conformation tensor \rightarrow (u, p, τ) which is positive definite by design

Replace σ^p in (1) with $\sigma^p = \frac{\eta_p}{\Lambda}(\tau - I) \rightarrow$ special discretization: TVD

$$\rho(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + 2\eta_s \nabla \cdot D + \frac{\eta_p}{\Lambda} \nabla \cdot \tau,$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\delta_a \tau}{\delta t} + \frac{1}{\Lambda} (\tau - \mathbf{I}) = 0$$
(2)

2 Observations:

- positive definite \rightarrow special discretizations like FCT/TVD
- exponential behaviour \rightarrow approximation by polynomials???

Problem Reformulation

Replace τ in (2) with $\tau = \exp \psi$

$$\rho(\frac{\partial u}{\partial t} + u \cdot \nabla u) = -\nabla p + 2\eta_s \nabla \cdot D + \frac{\eta_p}{We} \nabla \cdot (\exp \psi),$$

$$\nabla \cdot u = 0,$$

$$\frac{\delta_a(\exp \psi)}{\delta t} + \frac{1}{We} (\exp \psi - I) = 0$$
(3)

Gradient of exponential of $\Psi \rightarrow ???$ Solvers $\rightarrow ???$

Experiences:

- Stresses grow exponentially
- Conformation tensor is positive by design

Idea:

> Decompose the velocity gradient inside the stretching part

$$\nabla u = \Omega + B + N\tau^{-1}$$

Take the logarithm as a new variable $\psi = \log \tau$ using eigenvalue decomposition $\psi = R \log(\lambda_{\tau}) R^T$

LCR for Oldroyd-B Model

LCR Equations for Different Models U technische universität dortmund

LCR equations

$$\begin{split} \rho(\frac{\partial}{\partial t} + u \cdot \nabla)u &= -\nabla p + \nabla \cdot (2\eta_s(D_{\mathrm{II}}, p)D(u)) + \frac{\eta_p}{\mathrm{We}} \nabla \cdot e^{\psi}, \\ \nabla \cdot u &= 0, \\ (\frac{\partial}{\partial t} + u \cdot \nabla)\psi - (\Omega\psi - \psi\Omega) - 2\mathrm{B} &= \frac{1}{\mathrm{We}}f(\psi). \end{split}$$

-I).

> Oldroyd-B model
$$f(\psi) = (e^{-\psi})$$

Giesekus model

$$f(\boldsymbol{\psi}) = (e^{-\boldsymbol{\psi}} - I) - \boldsymbol{\alpha} e^{\boldsymbol{\psi}} (e^{-\boldsymbol{\psi}} - I)^2.$$

Numerical Techniques

- FEM techniques have to handle the following challenging points
 - Stable FE spaces for velocity/pressure and velocity/extra-stress fields → Q2/P1/Q2 or Q1(nc)/P0/Q1(nc) (new: Q2(nc)/P1/Q2(nc))
 - > Special treatment of the convective terms $\mathbf{u} \cdot \nabla \mathbf{u}$, $\mathbf{u} \cdot \nabla \sigma$
 - → Edge-Oriented/interior penalty EO-FEM, TVD/FCT
 - High Weissenberg number problem (HWNP) via LCR
- Solvers have to deal with different sources of nonlinearity
 - \succ nonlinear viscosity \rightarrow Newton method via divided differences
 - \succ strong coupling of equations \rightarrow monolithic multigrid approach
 - complex geometries and meshes

FEM Discretization

- High order $Q_2/Q_2/P_1^{
 m disc}$ for velocity-stress-pressure
 - > Advantages:

Inf-sup stable for velocity and pressure

$$\sup_{u \in [H_0^1(\Omega)]^2} \frac{\int_{\Omega} \nabla \cdot u \, q \, dx}{\|u\|_{1,\Omega}} \ge \beta_1 \|q\|_{0,\Omega} \quad \forall q \in L_0^2(\Omega)$$

> High order: good for accuracy

Discontinuous pressure: good for solver

- Disadvantages:
 - Stabilization for same spaces for stress-velocity
 - > a single d.o.f. belongs to four elements

Compatibility condition between the stress and velocity spaces via EO-FEM !

Edge-Oriented FEM stabilization for

convection dominated problem

$$J_u = \sum_{ ext{edge E}} \gamma_u^* h_E^2 \int_E [
abla u] : [
abla v] ds$$

$$J_{\sigma} = \sum_{\text{edge E}} \gamma_{\sigma} h_E^2 \int_E [\nabla \sigma] : [\nabla \tau] ds$$

Efficient Newton-type and multigrid solvers can be easily applied !

Nonlinear Solver

• Damped Newton results in the solution of the form

$$R(\mathbf{x}) = 0, \quad \mathbf{x} = (u, \sigma, p)$$
$$\mathbf{x}^{n+1} = \mathbf{x}^n + \omega^n \left[\frac{\partial R(\mathbf{x}^n)}{\partial \mathbf{x}}\right]^{-1} R(\mathbf{x}^n)$$

• Inexact Newton: Jacobian is approximated using finite differences

$$\begin{bmatrix} \frac{\partial R(\mathbf{x}^n)}{\partial \mathbf{x}} \end{bmatrix}_{ij} \approx \frac{R_j(\mathbf{x}^n + \epsilon e_j) - R_i(\mathbf{x}^n - \epsilon e_i)}{2\epsilon}$$
$$\begin{bmatrix} \frac{\partial R(\mathbf{x}^n)}{\partial \mathbf{x}} \end{bmatrix} = K + K^* =: \tilde{K}$$
$$= \begin{bmatrix} \tilde{A} + \tilde{A}^* & B + B^* \\ B^T & 0 \end{bmatrix}$$

Typical saddle point problem !

Linear Solver

technische universität dortmund

- Monolithic multgrid solver
 - > Standard geometric multigrid approach
 - \succ Full $Q_2, P_1^{
 m disc}$ restrictions and prolongations
 - Local MPSC via Vanka-like smoother

$$\begin{bmatrix} u^{l+1} \\ \sigma^{l+1} \\ p^{l+1} \end{bmatrix} = \begin{bmatrix} u^l \\ \sigma^l \\ p^l \end{bmatrix} + \omega^l \sum_{T \in h} \left[(\tilde{K} + J)_{|T} \right]^{-1} \begin{bmatrix} Res_u \\ Res_\sigma \\ Res_\rho \end{bmatrix}_{|T}$$

Coupled Monolithic Multigrid Solver !

Viscoelastic Benchmark

• Planar flow around cylinder (Oldroyd-B)

Viscoelastic Benchmark

• Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

Viscoelastic Benchmark

• Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

Solvers

• M-FEM Newton solution Oldroyd-B vs. Giesekus

> Oldroyd-B

We	Drag	NL	We	Drag	NL	We	Drag	NL
0.1	130.366	8	0.8	117.347	4	1.5	125.665	4
0.2	126.628	5	0.9	117.762	4	1.6	127.523	4
0.3	123.194	4	1.0	118.574	6	1.7	129.494	4
0.4	120.593	4	1.1	119.657	6	1.8	131.578	4
0.5	118.828	4	1.2	120.919	5	1.9	133.754	4
0.6	117.779	4	1.3	122.350	4	2.0	136.039	5
0.7	117.321	4	1.4	123.936	4	2.1	138.438	5

Giesekus

We	Drag	Peak2	NL	١	WE	Drag	Peak2	NL
5	96.943	924.45	14	(30	85.859	12010.57	4
20	89.905	4204.51	12	-	70	85.356	13773.61	4
30	88.304	6318.79	5	3	30	84.937	15502.45	4
40	87.256	8311.32	5	Ç	90	84.585	17207.87	4
50	86.476	10199.10	4	•	100	84.287	18897.95	4

Stable Newton solver !

U technische universität dortmund

New numerical and algorithmic tools are available using

- Monolithic Finite Element Method (M-FEM)
- Log Conformation Reformulation (LCR)
- ✓ Edge Oriented stabilization (EO-FEM)
- ✓ Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of viscoelastic flow

Advantages

- No CFL-condition restriction due to the full coupling
- Positivity preserving
- Higher order and local adaptivity

Page 22

Multiscale CFD Problems

Inertia turbulence

> Re>>1

Numerical instabilities + problems

Turbulence flow inside a pipe. From ProPipe

- → Turbulence Models
- \rightarrow Stabilization Techniques

Characteristics:

- > Irregular temporal behaviour and spatially disordered
- Broad range of spatial/temporal scales

Multiscale CFD Problems

Elastic turbulence

- > Re<<1, We>>1 (less inertia, more elasticity)
- Numerical instabilities + problems (HWNP)

→ Flow models: Oldroyd, Giesekus, Maxwell,...
→ Stabilization: EEME, EEVS, DEVSS/DG, SD, SUPG,...

Required: Special Numerics

Special FEM Techniques

Multigrid Solvers

Stabilization for high Re and We numbers

Implicit Approaches

Space-Time Adaptivity

Grid Deformation Methods

Newton Methods

S. Turek | FEM for LCR of viscoelastic

Page 25

Different highly developed models

Oldroyd A/B, Maxwell A/B, Jeffreys, PTT, Giesekus

... nevertheless, despite "good" models and "good" Numerics, the HWNP ("High Weissenberg Number Problem") still exists for critical We, resp., De numbers...

Fully implicit monolithic FEM Multigrid solver for LCR formulation!

S. Turek | FEM for LCR of viscoelastic

Page 27

Exponential Behaviour

Driven cavity example:

as We number changes from We=0.5 to We=1.5, the stress value jumps significantly

Solvers

Direct steady vs. non-steady approach for Giesekus

Planar Flow around Cylinder

0.01	0.1	0.1		1.0	
0.1 0.0	1 0.1	0.01	0.1	0.01	
9/2 5/3	3 10/1	7/3	14/1	10/3	
9/3 5/5	5 10/2	7/4	16/2	10/5	
9/3 5/6	5 10/3	7/5	16/2	11/5	
9/3 5/6	5 10/3	9/5	13/3	11/5	
	0.01 0.1 0.0 9/2 5/3 9/3 5/5 9/3 5/6 9/3 5/6	0.01 0.7 0.1 0.01 0.1 9/2 5/3 10/1 9/3 5/5 10/2 9/3 5/6 10/3 9/3 5/6 10/3	0.010.10.10.010.019/25/310/19/35/510/29/35/610/39/35/610/3	0.010.11.00.10.010.10.010.19/25/310/17/314/19/35/510/27/416/29/35/610/37/516/29/35/610/39/513/3	

Stable Newton and multigrid solver !

