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Summary. We examine the computational efficiency of Linear Algebra components in iterative solvers for grid-
oriented simulations of PDE’s. While the standard sparse matrix-vector (MV) techniques show significant losses of
performance, especially on modern processors, out sparse banded components have the potential to exploit today’s
high computing power. We explain the major concepts of the FEAST software which contains such highly tuned
Numerical Linear Algebra basic components (SPARSE BANDED BLAS) up to complete multigrid solvers, all being
optimized with respect to the actual hardware platform. Based on algorithmic and computational studies, we
present the FEAST INDICES which are indicators for the true performance of many modern processors, depending
on the underlying FEM space, the problem size and the implementation style. These indices allow a new rating
of the various hardware platforms with regard to different mathematical solution strategies, for academic and
realistic numerical problems and ranging from ‘low cost’ PC’s up to supercomputers.

1 DMotivation

One current trend in the software development for PDE’s, and here especially for Finite Element (FEM)
approaches, goes clearly towards very sophisticated object-oriented techniques and adaptive methods
in any sense. On the other hand, the employed data and solver structures, and particularly the ‘matrix
structures’ (for an overview, see [15] and [16]), are mostly chosen in a somewhat old-fashioned way -
as ‘globally defined’ types - which neglect the very specific performance facilities of modern hardware
platforms. As a result, the observed computational efficiency is often far from the expected peak rates
of (potentially available) 1 GFLOP/s nowadays, and the ‘real life’ gap is even further increasing if one
extrapolates current hardware developments (see also the papers of U. Riide, for instance [6]).

Today, high performance calculations in this field seem to be reachable only by explicitly exploiting
‘caching in’ and ‘pipelining’ in combination with sequentially stored arrays (see [3]). While the realization
of such techniques tends to be easier for Finite Difference approaches, it is far from being obvious how to
perform similar approaches for much more complex Finite Element codes. These discrepancies, between
Numerics and software concepts and the available hardware, often lead to unreasonable calculation times
for ‘real world’ problems, e.g. (nonstationary) CFD calculations in 3D, as can be easily seen from recent
benchmark comparisons for commercial as well as research codes (for instance, see [8] and [10]). Hence,
strategies for massive efficiency enhancement are necessary, not only from the mathematical (algorithms,
discretizations) but also from the software side of view. To realize some of these aims our new FEM
package FEAST (‘Finite Element Analysis & Solution Tools’) is under development (see [11] and [12]).

In this paper, we concentrate on the aspect of testing Linear Algebra routines for the stiffness matrices
resulting from FEM discretizations. These are the most important components in the corresponding
multigrid framework which is mainly responsible for the total efficiency of the complete simulation. First
of all, we demonstrate the performance of typical software tools based on standard sparse MV techniques,
before we explain our machine-dependent SPARSE BANDED BLAS approaches [14] for achieving strong
performance improvements! Consequently, these techniques are the basis for our recent evaluation of
software components and modern processor technologies which are collected in several types of FEAST
INDICES. These explain, for instance, why many codes run faster on ‘low cost’ PC’s than on single
processors of supercomputers. However, they also demonstrate the (hidden) potential of supercomputing
power on modern (workstation) processors as employed by DEC, IBM, HP, SUN and SGI.



2 Typical examples for performance losses

One of the main components in iterative solvers - Krylov-space methods or multigrid - are matrix-vector
(MV) applications. They are needed for defect calculations, smoothing, step-length control, etc., and
often they consume 60 - 90% of CPU time. Hereby, sparse MV concepts are the standard techniques in
FEM codes (and others), also well known as ‘compact storage’ technique: Depending on the programming
language, the matrix entries plus index arrays/lists/pointers are stored as long arrays or heaps, containing
the ‘nonzero elements’ only. For an overview on applied techniques, see for instance SPARSKIT [16] and
the literature cited therein. While this sparse approach can be applied for general meshes and arbitrary
numberings of the unknowns, no explicit advantage of (possible) highly structured parts can be exploited.
Consequently, a massive loss of performance with respect to the possible peak rates may be expected
since - at least for large problems with more than 100,000 unknowns - no ‘caching in’ and ‘pipelining’ can
be exploited such that the higher cost of memory access will dominate the resulting MFLOP /s rates.

To demonstrate this failure, we start with examples from our FEATFLOW code [10] which seems to be one
of the most efficient simulation tools for incompressible flow on general domains (see the results in [8]). We
apply FEATFLOW to the following ”2D flow around a car” configuration, and we measure the resulting
MFLOP/s rates for the MV multiplication inside of the multigrid solver for the momentum equation
(see [10] for mathematical and algorithmic details). Here, we use the typical (for FEM approaches)
‘two level’ (TL) numbering (old vertices preserve their numbers if the mesh is refined!), a version of the
bandwidth-minimizing Cuthill-McKee (CM) algorithm and an arbitrary ‘stochastic’ numbering.
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Figure 1: Coarse mesh for ‘Flow around a car’

All numbering strategies have common that, based on the standard sparse ‘Compact Storage Rowwise’
(CSR) technique (see [16]), the cost for arithmetic operations, for storage and for the number of memory
accesses are identical. However, the resulting timings in FORTRAN77 on a SUN ENTERPRISE E450
(about 250 MFLOP/s peak performance!) can be very different as Table 1 shows.

computer #unknowns || TL | CM || stochastic
13,688 20 22 19
SUN E450 54,256 15 17 13
(~ 250 MFLOP/s) 216,032 14 16 6
(CSR) 862,144 15 16 4

Table 1: MFLOP/s rates of sparse MV multiplication for different numberings

These and numerous similar results (see also Section 6: ‘The FEATFLOW Benchmark’) can be concluded
by the following statements which are quite representative for many other numerical simulation tools:

1. Different numbering strategies can lead to identical numerical results and work (w.r.t. arith-
metic operations and memory access), but at the same to huge differences in elapsed CPU time!

2. Sparse MV techniques are slow (with respect to possible peak rates) and depend massively on the
problem size and the ‘amount’ and ‘kind’ (?) of memory access!

3. In contrast to the mathematical theory, most multigrid implementations will not show a realistic
run-time behaviour which is directly proportional to the mesh level.



To shed more light into this ‘strange’ behaviour, we examine more carefully the computer performance for
2nd order scalar PDE’s on tensorproduct meshes with trilinear FEM spaces (~ matrices with bandwidth
27). Again, we apply different numbering strategies in the sparse CSR format, however the numerical
work and the results of the MV operations are identical for all cases!

computer #unknowns || ‘rowwise’ | ‘two level’ | ‘stochastic’
IBM RS6000/597 173 86 81 81
(160 MHz) 333 81 55 16
‘P2SC’ 65° 81 14 8
IBM RS6000/590 173 42 42 42
(66 MHz) 333 41 39 27
‘POWER?2’ 65° 41 17 7
DEC/21164 173 54 31 29
(433 MHz) 333 51 16 10
‘CRAY T3E’ 653 49 13 8
INTEL PENTIUM II 173 30 28 28
(400 MHz) 33° 30 26 24
‘ALDI PC’ 65° 30 23 19

Table 2: MFLOP /s rates of sparse MV multiplication on tensorproduct meshes

Based on such studies ! , we can characterize more precisely the computational run-time behaviour:
b

e The MFLOP/s rates are far away from the announced peak performance.
e They depend significantly on the size of the problem and the ‘kind of memory access’.
e ‘Old’ processors (IBM 590) can be even faster (!) than ‘new’ ones (IBM 597).

e ‘Supermarket’ PC’s can be significantly faster than processors in ‘supercomputers’!

The following Table, which now in contrast is based on the highly structured MV techniques in FEAST,
shows that the same application can (!) be performed much faster: We additionally exploit vectorization
facilities and data locality. Additionally, we can even further differ between the case of variable matrix
entries (‘var’) and constant bands (‘const’) as typical for Poisson-like PDE’s.

computer #unknowns || ‘var’ | ‘const’ ‘computer ‘var’ | ‘const’
IBM RS6000/597 173 188 480 IBM RS6000/590 102 195
(160 MHz) 333 172 393 (66 MHz) 94 175
‘P2SC’ 653 176 390 ‘POWER?2’ 94 176
DEC/21164 173 103 404 INTEL PENTIUM II 51 180
(433 MHz) 333 101 313 (400 MHz) 51 137
‘CRAY T3E’ 65° 101 268 ‘ALDI PC’ 48 124

Table 3: MFLOP /s rates of SPARSE BANDED BLAS [14] MV multiplication on tensorproduct meshes

Such differences in performance are caused by the fact that modern processors are already sensible
supercomputers with respect to ‘caching in’ and ‘pipelining’ which has been explicitely exploited by the
SPARSE BANDED BLAS-based MV techniques. However, the following examples show that also the kind
of arithmetic work has to be considered (‘division-free Numerical Linear Algebra’) and that a precise
knowledge of the cache architectures is necessary.

LALDI is a supermarket in Germany which is well-known for its cheap prices but also high-quality goods. Based originally
on household and food stuffs only, ALDI has offered a typical PENTIUM II/400MHz computer which has been sold out
due to its cheap price and particularly ALDI’s good reputation: About 250,000 pieces in 2 weeks!



Computer #unknowns || ‘classic’ | ‘var’ | ‘const’ ‘clagsic’ | ‘var’ | ‘const’
IBM RS6000/597 652 33 32 33 144 130 141
(160 MHz) 2572 32 32 33 80 105 150
‘P2SC’ 10252 32 32 33 80 106 150

Table 4: MFLOP/s rates for tridiagonal preconditioners in ‘classical’ formulation, compared with the
SPARSE BANDED BLAS versions from FEAST for ‘variable’ and ‘constant’ matrix entries. The left table
shows the results obtained from traditional implementations with division, while the right table gives
the rates without division. It is obvious that divisions in an algorithm can significantly degradate the
performance if compared with pure addition/multiplication-based algorithms.
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Figure 2: MFLOP /s rates of DAXPY operations based on machine-optimized performance libraries: We
only vary the difference P0OS in the relative position to each other of the both vectors to be added. The
results for the SUN E450 (left, 1 MByte L2-cache) are representative for processors with 1-fold associative
cache architectures: The actual performance of such ‘simple’ Numerical Linear Algebra tasks of BLAS1-
type depends massively on the relative position POS and varies between 160 and 3 (!!!) MFLOP /s although
both small vectors fit completely into cache! The right figure shows similar losses of performance for the
CRAY T3E, here for long vectors. These examples demonstrate that such failures can be only avoided
by a hardware-specific and user-defined memory managment!

To make this point clear: The use of tensorproduct meshes does not (!!!) automatically guarantee higher
performance; all proposed optimization strategies with respect to data structures, algorithmic re-design,
programming language, cache architectures and memory managment must be considered!

The following Table 5 shows the expected development of the (actual) processor technology and demon-
strates that such ‘machine-oriented’ algorithmic and implementation techniques will be absolutely nec-
essary: The explicit handling of data locality, internal parallelism and vectorization, in contrast to mini-
mizing the memory access at the same time, will be the key techniques for the next years.

Year of 1st shipment | 1997 1999 2001 2003 2006 2009 2012
Local clock (MHz) 750 1250 1500 2100 3500 6000 10K
Transistors/chip | 11M 21IM 40M 76M 200M 520M 1.4B

Table 5: Excerpts from the ‘1997 Semiconductor Roadmap’ [18]

Then, it might get really possible to exploit more adequately the performance of future processors which
tend to be even more powerful - as single processors with up to 1 TFLOP/s - than the complete CRAY
T3E today! On the other hand, neglecting these features may not only lead to non-significant performance
acceleration, but even performance degradation is possible as the previous tables have shown (compare
the ‘old” IBM 590 with the ‘new’ IBM 597. At the moment, most of today’s sparse implementations (see
also Section 6: ‘The FEATFLOW Benchmark’) would favourize the use of ‘cheap’ INTEL-based computers
only. This development might lead to an economic (for certain companies) and much more to a scientific
desaster as the performance rates will show.



3 Description of the FEAST project

FEAST is based on the following concepts (see [11] and [12] for details) which shall enable the combination
of such highly tuned Linear Algebra tools with very sophisticated FEM simulation strategies:

e consequent application of (recursive) ‘Divide and Conquer’ strategies
e hierarchical data and solver structures, but also hierarchical (!) ‘matrix structures’

e frequent use of machine-optimized low level Numerical Linear Algebra routines

The result shall be a flexible FEM package for many ‘real life’ problems with special emphasis on:

¢ (closer to) peak performance on modern processors

e typical multigrid behaviour (with respect to efficiency and robustness)
e parallelization and vectorization directly included on ‘low level’

e open for different adaptivity concepts and a posteriori error control

In contrast to many other approaches which aim to develop software for research or education topics, our
approach is clearly designed for high performance applications with industrial background, especially in
CFD. Consequently, our main emphasis lies on the aspects ’efficiency’ and 'robustness’ and less on topics
as ‘easy implementable’ or ‘most modern programming language’. Therefore, FORTRANT77/90 is used
such that (for us absolutely necessary) the transparent access to the data structures is possible. Further,
this makes it possible to adopt many reliable parts of the predecessor packages FEAT2D, FEAT3D and
FEATFLOW. One of the most important principles in FEAST is the consequent application of Divide
and Conquer strategies. The solution of a ‘global’ problem is recursively split into smaller independent
subproblems on ‘patches’ as part of the complete set of unknowns. There are two major aims in this
splitting procedure which can be performed by hand or via self-adaptive strategies:

e Find and exploit locally structured parts

e Find and hide locally anisotropic parts

While on such ‘anisotropic’ parts the usual sparse techniques will be applied, we try to exploit the
much higher performance on the other - highly structured - patches. Consequently, the intention is to
minimize the number of ‘sparse areas’ and to apply preferably all Numerical Linear Algebra tasks on
such ‘structured patches’. Then, the major three tasks for realizing such a simulation tool are:

1. The design of the ‘skeleton’ for the recursive splitting into local/global levels
2. The implementation of the typical FEM facilities on the ‘low level’ patches

3. The development of ‘reference element solvers’ on the ‘low level’ patches

The corresponding data, solver and matrix structures are described in the papers [11], [12] and particularly
in [2]. The aim of this work is a (careful) description of the third task: Optimization of the ‘reference
element solvers’ and the corresponding Numerical Linear Algebra tools on the ‘low level’ patches. In
our context, these are quadrilaterals (2D), resp., hexaeders (3D) which are discretized with (logically
equivalent) tensorproduct meshes. That means, we can (!) apply linewise or rowwise numbering, but the
local mesh size may vary arbitrarily! This optimization procedure is split into two tasks:

The manual task of algorithmic design and corresponding implementation w.r.t. optimal MFLOP /s rates

The numerical task to derive ‘optimal’ multigrid convergence with respect to efficiency and robustness



While the numerical task, the optimization of multigrid convergence rates for different FEM spaces,
problem sizes, (PDE) problem types and mesh topologies (but on tensorproduct meshes!) is currently
examined in [1], we show recent results of the ‘MFLOP /s optimization’ in this paper (see also [14] for
the technical details of the SPARSE BANDED BLAS. To be precise, we provide the reader with:

1. ‘Optimal’ MFLOP /s rates for different Numerical Linear Algebra tasks on generalized tensorproduct
meshes (for bilinear and trilinear FEM!)

2. Evaluation of many modern processors with respect to the ‘real’ performance of such different basic
tasks up to complete multigrid algorithms

4 Description of the Numerical Linear Algebra components

All following ratings and the test software (ptest.f) are part of the Internet and can be downloaded
from our Homepage. In this paper, we publish the first version of more or less complete results for
(almost) all modern hardware platforms. Since everybody has access to the data, everybody is invited
to check new processors or different software environments to look for improved FEAST INDICES ! Our
hope is that this (permanent) process of testing and rating of new hardware components gets into an
automatic loop if sufficiently many ‘test persons’ participate. On the one hand, some ‘pressure’ on the
vendors is generated, for instance to provide the users with optimal compiler options. On the other hand,
there is a fair ‘competition’ possible between the various hardware configurations. So, the user and also
‘client’ of such products has the chance to compare the different test environments with regard to his own
applications and with respect to the true cost/performance relation. To provide this kind of information
is definitely one of the aims of the subsequent FEAST INDICES !

We will not explain the underlying tests in all details, and we will not show the results of all comparisons:
These are part of the Diploma Thesis of A. Runge [7], resp., see also [14] and our Homepage! Therefore,
in short terms only, the following Linear Algebra tasks are the basic components of the FEAST INDICES :

4.1 DAXPY-like applications

Beside the (standard) linear combination DAXPY, we also apply the (variable) linear combination DAXPYV

‘y(z) = a(i)z(i) + y(i) ‘ which is important in banded MV multiplications on vector computers. Addi-

tionally, we check the (indexed) variant DAXPYI ‘y(z) = a(i)z(j(?)) +y(i) ‘ Here, the scaling factor « is

a vector acting on the components of the vector # which depend on the index i via an indez vector j(i).
We apply two tests with different index vectors j(i) which simulate moderate and stochastic jumps in
the numberings. These tests are quite good representants for the complete sparse MV applications.

The arithmetic work count for all DAXPY-like variants is defined as 2 x N, with [N the number of vector
components, such that the corresponding MFLOP /s rates are determined via:

2x N
CPUTIME x 106

4.2 Variants of MV multiplications

Assuming a (generalized) tensorproduct mesh with M vertices in each space dimension, the resulting
number of unknowns is M? (2D), resp., M? (3D) if we consider vertex-oriented discretizations: Here

conforming bilinear, resp., trilinear FEM! Assuming the typical 9-point, resp., 27-point stencil for the
corresponding matrices, the resulting storage cost and hence the measure for the MFLOP/s rates are



identical for all following techniques, independent of the kind of MV multiplication! The test program
ptest.f examines 8 different basic implementations (plus various blocking techniques, see [14] for the
technical details) which all are designed to exploit potentially ‘caching in’ and ‘vectorization’ facilities.
The MV-V results correspond to the case of arbitrary matrix entries, while MV-C represents the case of
constant band entries as typical for Poisson-like problems on (in each ‘local direction’) equidistant meshes.

Additionally, we perform measurements for a corresponding sparse MV application in the CSR format
as described above. We examine three variants of numberings: Linewise numbering but nevertheless
indexed access (SPARSE), ‘two level’ numbering (FEAT) as typical for semi-adaptive FEM simulations
without local adaptivity, and finally ‘stochastic’ numbering (ADAP) of the unknowns being representative
for fully adaptive approaches. To make this point clear: All MV applications are performed for the same
matrix! We only vary the storage and access techniques, hereby exploiting the tensorproduct structure
or not, taking into account the case of constant entries or not. However, in all cases we define the work
count to measure the MFLOP /s rates as:

18 x N fin 2D) res 54 x N
1n r .
CPUTIME x 10° P GPUTIME x 10°

(in 3D)

Moreover, we test the performance of matrix-vector multiplications with tridiagonal matrices which are
basic tools for certain preconditioners as the ‘linewise GS’ schemes below. Again, we check in ptest.f
the MFLOP /s rates for variable and constant entries, and they are determined via:

6 xN
CPUTIME x 106

4.3 Tridigonal-based preconditioners

Assuming tensorproduct meshes, the application of ‘inverse’ tridiagonal matrices as preconditioners
(TRIS) can be easily performed and provides rather good convergence properties with respect to mesh
anisotropies (see [1]). We apply the ‘division-free’ variants from the previous Section, with various block-
ing strategies, again for variable and constant matrix entries. The MFLOP /s rates are defined as:

5x N
CPUTIME x 106

Additionally, this tridiagonal preconditioner can be combined with the described tridiagonal MV multi-
plications to work as ‘linewise Gauf-Seidel’ (TRIGS) or ‘linewise ADI’ preconditioners (see [14]). Taking
into account the convergence studies in [1], these schemes are our actual favourites as multigrid smoothers
with regard to numerical and computational efficiency. The MFLOP/s rates are defined as:

11x N fin 2D) res 29 x N
1n r .
CPUTIME x 10° P GPUTIME x 10°

(in 3D)

4.4 Smoothers in multigrid

Based on the previously described DAXPY-like operations, the MV multiplications and the proposed tridi-
agonal preconditioners, we can determine the MFLOP/s rates of the corresponding smoothing operators
which all are written and implemented in the following general notation:

o4 =2t — O~ (A2l — D) ‘




Here, A and C are matrices in RV XY, with C' being the preconditioner, and z!, z!*!, b are N—-dimensional
vectors. The parameter w is an arbitrary relaxation factor while the indices [ and [ + 1 are the usual
counters in iterative procedures. Our candidates for the preconditioner C' are:

e C = diag(A) corresponds to Jacobi iteration (x DAXPYV)
e (' = TRIS(A) corresponds to tridiagonal preconditioners, resp., linewise variants of Jacobi

e (' = TRIGS(A) corresponds to the ‘lower+tridiagonal’ preconditioner, resp., linewise Gauf3-Seidel

There are several reasons why we explicitly use and optimize this form of the basic iteration which is in
contrast to many ‘red-black’ or other ‘multi-colouring’ approaches:

1. This general form allows the independent splitting into the three tasks MV multiplication, precon-
ditioning and linear combination which all have been optimized with respect to ‘caching in’ and
‘pipelining’.

2. The explicit use of the complete defect Az!—bis advantageous in certain techniques for implementing
complicated or ‘moving’ boundary conditions (see [10]).

3. All components in standard multigrid, i.e., smoothing, defect calculation, step-length control, grid
transfer, are included in this basic iteration.

As an example, the MFLOP /s rates for ‘linewise GS’ smoothing S-TRIGS (N) which consists of DAXPY, MV
and TRIGS (taking into account the case of variable (V) or constant (C) entries) are calculated separately
on each mesh level, corresponding to problem size N. They read in 3D:

(54429 +2) x N

( 54X N 29X N 2xX N ) X 106

MFLOPs_trigs(ny := n n
MFLOPyvy (N MFLOPrrigs(n) MFLOPpaxpy(N)

In an analogous way, the corresponding MFLOP/s rates for Jacobi or tridiagonal smoothing are esti-
mated, based individually on the previously calculated rates in 2D and 3D with respect to the underlying
Numerical Linear Algebra components.

4.5 Complete multigrid cycle

Finally, we can (recursively) determine the MFLOP /s rates for a standard multigrid cycle, consisting of
m total smoothing steps (including pre- and postsmoothing steps; here: m = 2), defect calculation, grid
transfer and coarse grid approximation. As an example, the actual rates for ‘Line GS’ smoothing on level
I with N(I) unknowns read for the corresponding multigrid variant M-TRIGS(N(1)) in 3D:

MFLOPy _rriGgs(N@)) =

1.5 x (85m + 54 + 18) x N(I)

( 85m X N (1) 54x N (1) + 9x2X N(l) +0.5 x
MFLOPs_rtr1gs(n()) MFLOPy v (N(1)) MFLOPpaxpy(N(1)) : M

(85m+54+18) x N (1) 6
FLOPM—TRIGS(N(Z—I))) x 10

The factor 1.5 is achieved from the recursion through the applied W-cycle and can be analogously deter-
mined for other cycles and the 2D case (see [7] for the details).



4.6 Measurements of classical sparse applications

In 3D we have directly included a sparse MV multiplication for the same matrix as before, which results
from a trilinear FEM discretization of a scalar Poisson-like problem and which leads to a (maximum)
matrix stencil of 27. Then, the total number of vertices, resp., unknowns is defined as N := M?3. All
matrix entries are sequentially stored in a long array (we perform FORTRANTT!), and as usual for the
CSR format (see [16]) we employ two additional index arrays for accessing the load vector. We examine 3
variants of numberings: Linewise numbering but nevertheless indexed access (SPARSE), a simulated ‘two
level’ numbering (FEAT) as typical for semi-adaptive FEM simulations without local adaptivity (which
allows maximum differences in the numbering of O(M?)), and finally a ‘stochastic’ numbering (ADAP) of
the unknowns (allowing jumps in the numbering of two neighboured vertices of order O(M?)) which is
representative for fully adaptive approaches. Then, in all cases we define the MFLOP /s rates as before:

54 x N
CPUTIME x 108

Unfortunately, we have missed this direct inclusion of sparse MV application in 2D (now we cannot
change anymore!) such that we have to simulate the analogous behaviour for the sparse (CSR) MV
multiplication via the indexed DAXPY routines DAXPYV and DAXPYI. As in the 3D case, we allow for
the index vector that jumps of order O(M) (remember: N := M? in 2D!) or O(M?) can occur which
compare well with the FEAT, resp., the ADAP results from the 3D case. These 2D tests correspond to our
older ‘Elch Tests’ which have been described in [9].

5 The FEAST INDICES

Before we explain more in detail all auxiliary indices and how to compute them, we present already
the final result: The actual version of the ‘total’ FEAST INDEX ! They show our ‘total” evaluation
of most of the available processors and allow different specific rankings with respect to the explained
implemenation techniques and applied data structures for standard conforming FEM. Most of the notation
in the following tables and figures should be self-explanable; if not so, take a look at [7].
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Figure 3: The ‘total’ FEAST INDEX: The graphical and table-based presentation of the specific 3D
and 2D values is given in the Appendix: The performance in 2D is smaller than in 3D, due to the more
compact matrices (see the Conclusions). Keep in mind that these are averaged MFLOP /s rates only
which may significantly differ from the results for specific problem sizes!



The first term determines the kind of processor, followed by some additional denotations: PWR for IBM
POWER2 or POWERS3 processors, model 590 or whatever; 21264 or 21164 denotes the ALPHA chip in
DEC’s, with or without KAP preprocessor, being a workstation model (WS), a PC (under LINUX, but
using the executable code from the workstation) or a PC under LINUX with the EGCS F77 compiler;
ULTRA stands for SUN computers; ORIGIN, resp., R8000 and R10000 denote SGI’s; PII and PPro
denote Pentium IT and Pentium Pro architecture; PPC/F50 denotes the PowerPC version F50 by IBM.
In brackets, further details about the actual clock rate are given. More information about the precise

definition of the tested computers can be obtained from [7], or look at our Homepage!

In the following Sections, we will discuss only some of the ‘auxiliary’ indices in detail, while a much more
complete description of the results in 3D and in 2D is given in the Appendix: In most cases, the 2D
results allow the same qualitative and even quantitative conclusions. Only in such cases that significant
differences between 2D and 3D results occur, we explicitly state the corresponding results. Additionally,
keep in mind that the indices, or better the ranking of computers, will change since new processors or
different configurations (compiler, operating system, etc.) will be added. Therefore, check out the given
Internet address! This Web-page contains also a full-color presentation of the results which may be helpful
in better viewing the indices.

All calculations for the evaluation of the included MFLOP /s rates are performed for several levels [ of
(global) mesh refinement. We set for the number N(I) of unknowns:

N(1) = 652, N(2) = 1292, N(3) = 2572, N(4) = 513% ,N(5) = 1025 (in 2D)

N(1) = 173 | N(2) = 33% ,N(3) = 65° (in 3D)

Higher refinement levels in 2D are somewhat unrealistic. Furthermore, the storage cost are already
far beyond typical cache sizes such that the effect of further increasing the problem size can be easily
extrapolated. In 3D, one may state that level [ = 3 with N(3) = 653 = 274, 625 unknowns does not seem
to correspond to a ‘fine’ mesh width, but one has to take into account that on this level 3 the storage
of the stiffness matrix (bandwidth 27!) plus index arrays for the sparse techniques consumes already
(almost) 128 MByte of RAM! This example shows that we discuss not only differences with respect to
computing efficiency but also with regard to storage cost. Based on the MFLOP /s rates for the basic and
composite Numerical Linear Algebra components from the previous Section, we can define the following
(auxiliary) indices which are part of the shown FEAST INDICES.

5.1 The sparse FEAT and ADAP INDICES

These indices are measures for the computational efficiency with respect to classical sparse techniques,
and they are based on the previously defined MFLOP/s rates for different numberings in the sparse
(CSR) MV multiplication. As typical for all following indices, the rates from the different levels [ are
weighted by special factors ¢(1). These are for the FEAT INDEX in 2D and in 3D:

c(5)=60%,¢(4)=25%,¢(3)=10%,¢c(2)=4% ,c(1)=1% resp., ¢(3)=80%,¢(2)=16%,c(1)=4%
and for the ADAP INDEX:

c(5)=40%,c(4)=30%,¢c(3)=15%,¢c(2)=10% ,c(1)=5% resp., ¢(3)=75%,c(2)=20%,c(1)=5%
While the definition of both indices in 3D is straightforward, we have to do some modifications in the 2D
case as explained before. To be precise, the resulting total FEAT INDEX in 2D is calculated as an average

between the DAXPYV and DAXPYI values (with ‘moderate’ jumps of order O(M)), and in 3D between the
SPARSE and FEAT values. Analogously, the ADAP INDEX in 2D is the average between both DAXPYT values
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(with the two kinds of allowed jumps in numberings!) and in 3D between the FEAT and ADAP values. All
these values are summed up with the special weighting factors accordingly to each mesh level.

The corresponding results of the FEAT and ADAP INDICES can be found in the Appendix: The computa-
tions demonstrate the dependence on the problem size and the kind of indexed access due the described
numbering strategies: The resulting MFLOP /s rates are quite slow compared with the following results
for performing the SPARSE BANDED Bras-like MV multiplication with the same (!!!) matrix. Beside
DEC’s and IBM’s top models, the SGI's and particularly the PENTIUM’s lead to (relatively) good re-
sults. However, we compare 20 MFLOP/s as best values with less than 10 MFLOP/s for many other
processors! In contrast, POWER2 models (IBM) and older DEC’s (21164, CRAY T3E) deteriorate on
the finest level 3 to about 10 MFLOP/s only! This shows impressively that some of our ‘preferred’ ma-
chines may have more or less problems with the described sparse techniques since the underlying cache
architectures lead to massive cache misses and hence to performance losses! Further increasing of the
number of unknowns can lead to even still slower performance results!

5.2 The DAXPY INDEX

For calculating the DAXPY INDEX, the DAXPY rates are averaged over all mesh levels. The corresponding
weights for each mesh level are differently defined, in 2D as well as in 3D:

c(5)=70%,¢c(4)=20%,¢c(3)=6%,c(2)=3%,c(1)=1% resp., ¢(3)=82%,c(2)=15%,c(1)=3%

5.3 The FEAST-MV-V and FEAST-MV-C INDICES

These MFLOP/s rates are based on our optimized SPARSE BANDED BLAS software [14] and have to
be compared with the previous sparse FEAT and ADAP INDICES. FEAST-MV-V denotes the results with
variable matrix entries while FEAST-MV-C measures the even higher MFLOP /s rates for the (special) case
of constant band entries (see the explanations in the previous Section). Like the DAXPY INDEX, they
are also part of the subsequent FEAST-v and FEAST-C INDICES (see later). The corresponding weighting
factors c(i) are identical as for the described DAXPY INDEX!

The following Figure 4 shows the corresponding 3D results for the different matrix-vector multiplications
(MV-C, MV-V, FEAT, ADAP) on the finest mesh level 3: Performance differences of almost a factor of 50
get visible for certain computers as the IBM PWR2’s! While modern workstation processors show a huge
potential of supercomputing power for ‘structured’ data, they loose for ‘unstructured’ data in combination
with sparse MV techniques, particularly compared with PENTIUM's. The complete presentation of these
indices is part of the Appendix.

5.4 The FEAST-MGLGS-V and FEAST-MGLGS-C INDICES

These MFLOP /s rates estimate the resulting performance of one complete multigrid sweep with 1 pre-
and 1 postsmoothing step. The examined variants in ptest.f are FEAST-MGJAC-V and FEAST-MGJAC-
¢ for Jacobi smoothing, FEAST-MGTRI-V and FEAST-MGTRI-C for tridiagonal smoothing and our pre-
ferred combination FEAST-MGLGS-V and FEAST-MGLGS-C with the described ‘line Gauf3-Seidel’ (TRIGS)
smoother: They are the most essential part of the subsequent FEAST-v and FEAST-C INDICES. The
corresponding weighting factors c(i) are again identical as for both previous indices.

The subsequent Figure 5 shows the corresponding results for complete SPARSE BANDED BLAS multigrid
algorithms which are optimized with respect to numerical efficiency and robustness (see [1]). They are
recently our ‘best” multigrid work horses on such tensorproduct meshes. In the case of ‘constant’ bands
in the matrices (see the results in the Appendix), the results further improve significantly!
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Figure 4: The figures show the MFLOP/s rates for the discussed MV multiplications (MV-C, MV-V,
FEAT, ADAP) on mesh level 3 in 3D! There are huge differences possible of up to a factor of 50 if

different MV techniques are applied to the same matrix!
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Figure 5: FEAST-MGLGS-V INDEX in 3D: The first row shows the FEAST-MGLGS-V INDEX, followed by
the specific results for the M-TRIGS routines on the different mesh levels. The computations show that
not only MV multiplications can be efficiently applied, but also complete multigrid algorithms with a
very robust smoother inside which works very efficient for regular as well as very anisotropic meshes (see

[1]). Again, the results are measured MFLOP/s rates.




5.5 The ‘auxiliary’ FEAST-V and FEAST-C INDICES

These indices measure the resulting performance of our SPARSE BANDED BLAS tools if they are purely
applied on meshes which consist of macros (& quadrilaterals/hexaeders) only and which all are discretized
via the described generalized tensorproduct meshes. For recent examples and actual test implementations
of the FEAST package, see [2] and [4]. Both indices are averaged values, that means 50% FEAST-MQLGS-V |
25% FEAST-MGTRI-V , 10% FEAST-MGJAC-V , 10% FEAST-MV-V and 5% DAXPY , resp., the analogous
values for the ‘C’-versions. Again, each mesh level is differently weighted via:

c(5)=70%,c(4)=20%,¢c(3)=6%,c(2)=3%,c(1)=1% resp., ¢(3)=82%,c(2)=15%,c(1)=3%

Figure 6 shows the corresponding 3D results which are ‘averaged estimates’ for the processors if purely
applied to the highly structured patches on the low level parts of FEAST. In the Appendix, we give
a direct comparison between the corresponding 2D and 3D results which demonstrates the potentially
higher MFLOP /s rates in the 3D applications due to the ‘wider’ matrices. Since the typical bandwidth
is 27 instead of 9 in 2D only, the applied cache strategies seem to work better! Moreover, they also give
an impression of the difference in the resulting computing performance if such tensorproduct strategies
- FEAST-C and FEAST-V - can be applied in comparison to the standard sparse techniques (see the
FEAT and ADAP INDICES). However, these are only averaged MFLOP /s rates while the actual difference
with respect to a special problem size may be even much greater as the previous examples have shown!
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Figure 6: FEAST-v and FEAST-C INDICES in 3D

5.6 The ‘total’ FEAST INDICES

The final FEAST INDICES can be collected which are defined as follows. The corresponding ‘total’ FEAST
INDEX - as average of both 2D and 3D FEAST INDICES - had been shown in the beginning of this Section.

FEAST := 60% FEAST-V + 20% FEAST-C + 15% FEAT + 5% ADAP
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6 (Excerpts from) The FEATFLOW Benchmark

Before we come to the conclusions from the previous FEAST INDICES , we still have to discuss the following
major question in this context of benchmarking:

How realistic is our evaluation of the processors via the FEAST INDICES, if we compare with
results from realistic applications, particularly computed with ‘production codes’?

The FEATFLOW Benchmark is such set of test calculations which are very similar to the mentioned CFD
Benchmark ‘flow around a cylinder’ [8]. The interesting aspects are the total CPU cost for each computer
type, and how they are distributed to the separate tasks in a CFD code, i.e., mesh generation, assembling
of matrices and right hand sides, solving linear subproblems or postprocessing steps.

The precise configurations are described at our Homepage; here we only provide the reader with the most
important details. The complete description with all mathematical details of discretization and solver
can be found in [10]: We apply a coupled multigrid approach with the so-called Vanka smoother in a
direct steady solver (CC3D), and the discrete projection scheme as nonstationary scheme (PP2D). All
calculations are performed with the nonconforming rotated multilinear finite elements. Additionally, we
apply stabilization techniques of upwind (UPW) or streamline diffusion (SD) type for the convective term,
and we use SOR as smoother in the multigrid solver for the scalar subproblems if applying the projection
scheme. The following abbreviations for the elapsed time in seconds are used, with total denoting the

complete elapsed CPU time:

PRO ~ mesh generation, initialization phase and postprocessing

LC ~ modifications of matrices (in sparse storage technique) or right hand sides
MAT ~ CPU time for matrix generations

C-MG ~ elapsed time for multigrid in the CC3D test with the Vanka smoother
U-MG ~ CPU times for solving velocity, resp., pressure subproblems via multigrid
P-MG if the discrete projection scheme PP2D is applied

Exemplarily, we show the results of some selected computers for the direct stationary approach CC3D
and for the nonstationary scheme PP2D. All tests require about 128 Mbyte of RAM. The complete results
can be found at our Homepage in the Internet. All ‘FEATFLOW users’ are invited to participate at this
special computer benchmark which is part of the freely-available FEATFLOW software such that the run
of this set of tests can be easily performed by everybody.

| Type | total [ PRO | LC || MAT || C-MG |
TBM RS6000/PWR3 (200 MH7) | 603 51 17 113 468
IBM RS6000/597 (160 MHz) 755 71 21 182 545
HP C240 (240 MHz) 974 71 36 148 783
DEC WS 21164 (500 MHz) 1029 5 59 159 804
PC PENTIUM II (400 MHz) 1307 8 | 46 307 947
SUN ULTRA 60 (300 MHz) 1368 6 | 41 231 1089
TBM RS6000/590 (66 MHz) | 1510 | 16| 43| 407 | 1043
SUN ULTRA 450 (250 MHz) 1623 81 50 276 1289
SGI R10000 (195 MHz) 1936 11 75 215 1634

Table 6: (Selected) results for test case CC3D-SD

This Vanka smoother inside of the coupled multigrid solver CC3D (for velocity and pressure simul-
tanously) is a memory-access intensive process which explains why the tested IBM’s, HP’s and DEC’s
are only slightly faster than the Pentium IT PC! The rates are quite in good agreement with the previous
sparse FEAT and ADAP INDICES and show that for such kind of ‘index-oriented’ techniques PENTIUM
IT processors lead to very satisfying results, particularly regarding the cost/performance relation!
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| Type | total | PRO | LC [ MAT | U-MG | P-MG
IBM RS6000/PWR3 (200 Mz) || 789 121 49 71 388 269
IBM RS6000/597 (160 MHz) 954 13] 50 129 428 334
DEC WS 21164 (500 MHz) 1342 7 | 107 95 639 539
HP C240 (240 MHz) 1344 141 96| 130 640 464
SUN ULTRA 60 (300 MHz) [ 1597 16 | 110 | 135 783 552
PC PENTIUM II (400 MHz) || 1861 14 [ 129 | 140 920 658
IBM RS6000/590 (66 MHz) 1867 20 | 99| 298 831 609
SUN ULTRA 450 (250 MHz) || 2087 20 | 134 | 163 1051 717
SGI R10000 (195 MHz) 2701 19 [ 213 ] 188 1276 | 1000

Table 7: (Selected) results for test case PP2D-UPW

In contrast, PP2D is based on operator-splitting ideas which require the numerous solution of scalar
PDE problems for the velocity, resp., the pressure components. Since these kinds of tasks require much
more arithmetic operations in comparison to memory accesses, the processors of type IBM, HP, DEC
and SUN are significantly faster than the Pentium IT processor. However, since this code is implemented
without the optimized SPARSE BANDED BLAS MV tools, we are still far away from the potentially
available performance rates from the previous FEAST INDICES. These studies indicate how the future
generation of CFD solvers has to look like, such that very sophisticated and powerful numerical methods
can be combined with the available high performance rates on recent processors. For a mathematical and
algorithmic discussion of such concepts, look at [10] and [13]! Having exclusively such simulation results
with sparse techniques, there would not be any need for other processors than INTEL’s!

7 Conclusions from the FEAST INDICES

2D vs. 3D indices: The results from the 2D tests compared with the analogous measurements in 3D
are very similar: The IBM processors and the new DEC 21264 are the best, with respect to the total
ranking and in most cases with regard to the specific auxiliary indices, too! However, the corresponding
MFLOP/s rates are in 3D somewhat higher, at least for processors with ‘large’ (level2) caches. The
explanation might be that the applied matrices are less ‘sparse’, with 27 instead of 9 bands, such that
cache-blocking strategies can be better optimized. On the other hand, computers ‘without’ large second
level (L2) cache, as for instance the IBM PWR2’s and probably pure vector computers, do not improve!

As a consequence, these IBM workstations based on the PWR2 and the P2SC processors might be
favourable for codes which have not yet incorporated such cache-based optimization strategies. On
the other hand, also for certain nonconforming FEM approximations or cell-centered discretizations
which generally lead to even more sparse matrices (with 5- or 7-point stencils only!), these kinds of
processors may be the ‘winners’. In contrast, for higher order discretizations as bi- or triquadratic
(FEM) discretizations, the cache-oriented processors will even more improve!

‘Optimality’ of the indices: The following results have been directly provided by the vendors such
that we assume that ‘optimal’ compiler options and hardware components have been utilized:

e DEC 21264 and DEC 21164 workstation with 400 MHz
e IBM POWERS and P2SC, IBM F50 (PowerPC)
SGI ORIGIN 2000 with 250 MHz

SUN ULTRA 60 with 300 MHz and 360 MHz

HP V2250
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All other processors have been tested by us. So, everybody is invited for improving the indices of these
models (and also the ‘vendor-tested’ versions). In particular, the use of other FORTRAN compilers (F90,
EGCS, GNU-FORTRAN, etc.) or different programming languages appears to be interesting and, in
fact, such tests have been already performed by us (see [7]). For instance, compare in 3D the MFLOP /s
rates of DEC-PC and DEC-LINUX which are identical computers. While on the DEC-PC variant, the
executable code has been compiled on a workstation environment with the original DEC compiler and
then copied to the PC-target computer, in the case of the DEC-LINUX configuration the executable code
has been directly generated via the EGCS F77 compiler and then executed under LINUX. The differences
are very significant!

Further improvements do not have to be to restricted to examine the hardware components, it will
be also interesting to modify the test software ptest.f. So far, we have implemented in the SPARSE
BANDED BLAS several versions with different blocking strategies, and we have tested some specified
blocking parameters: However, some modifications of these routines are allowed and even desired, as long
as they are applicable to such special 9-point, resp., 27-point matrices which arise from conforming FEM
discretizations on generalized tensorproduct meshes! Additionally, the specific adaption with respect to
certain machine-dependent values as the precise cache sizes or number of registers has not been applied up
to now. Hence, there is still a large potential to gain further improvements for such low level Numerical
Linear Algebra routines. Look also at the ‘data locality’ research project of U. Riide et al., which is well
described at http://wwwbode.informatik.tu-muenchen.de/Par/arch/cache/index.html and which
contains a lot of further literature and activities in this field.

FEAST INDICES vs. application- and problem-specific results: The shown FEAST INDICES - total
or auxiliary - are only averaged values. For many applications, it might appear to be much more
realistic if the corresponding results for specific tasks and particularly for different problem sizes are
explicitely considered. Then, the observed differences between the processors may be much larger than
the FEAST INDICES do indicate! For instance, the DEC 21164 processor shows excellent performance
for ‘small’ problems, with dramatic losses of performance if the problem size increases. So, it might
be much more favourable to work on ‘many’ small patches (with 500 MFLOP/s) instead of ‘few’ larger
patches, with 50 MFLOP /s only. Therefore, watch out for your own specific problem configuration! The
previous FEATFLOW Benchmark has shown that the corresponding results are significantly depending
on the numerical method and solution algorithm, and that the differences in the resulting performance
may be much weaker. Nevertheless, keep in mind that those FEATFLOW results have been obtained via
classical sparse techniques only, in contrast to the architecture-optimized results of the FEAST INDICES!
Additionally, if one performes similar tests with recent object-oriented languages, as for instance C++,
you should compare with those optimized FEAST results which really exploit the FORTRAN facilities.
So, there is a good chance for a true comparison of FORTRAN77 with C++ or similar!

IBM POWER2 and POWERS3: While the tested POWER2 and especially P2SC variants show
an excellent behaviour for the sparse banded techniques, they demonstrate dramatic losses of per-
formance for the sparse applications! As explained before, they seem to be quite robust with
respect to ‘cache-optimized’ problems, while they may ‘loose’ against processors with larger cache-
architectures if the matrices get less sparse. Therefore, they belong to our favourites for applications
in FEAST - and also FEATFLOW - which are mainly based on the described generalized tensorprod-
uct meshes on the lowest level.

In contrast, the new POWERS processor appears to be a very robust and efficient ‘work horse’ which
can be applied for classical sparse as well as for our optimized highly structured Numerical Linear
Algebra components. This computer is beside the DEC 21264 the clear winner at the moment!

IBM PowerPC F50: This ‘low cost’ model can be viewed as rival of PENTIUM II PC’s, with respect
to price and performance. Therefore, look at our ratings of the PENTIUM world!

DEC 21164 and 21264, CRAY T3E: The older 21164 processor shows huge performance problems

17



as soon as the problem size increases: Up to now, none of our cache-optimization strategies seems
to work fine, in contrast to (almost) all other platforms. Similar problems are valid for the CRAY
T3E (Stuttgart) which is based on a variant of the 21164 processor. It might be necessary that
further optimizations are performed directly by CRAY!

On the other hand, the new 21264 processor improves in a significant way: Having the same clock
rate of 500 MHz, the speed-up is almost a factor of 3! Using the KAP preprocessor, the performance
can be further increased, however it is not clear to us if this additional speed-up can be achieved in
more complex numerical simulations, as for instance in FEATFLOW. Nevertheless, with or without
this KAP preprocessor, the DEC 21264 chip is the clear winner beside the IBM POWERS3 processor!

HP, SGI and SUN: The performance of the ‘top models’ of these vendors - and probably the prices, too
- is very similar. The processors seem to be quite robust with respect to sparse MV applications while
they cannot achieve the same high MFLOP /s rates for highly structured data as IBM and DEC. On
the other hand, it might be expected that the prices are correspondingly cheaper, too. Therefore,
these models are typical ‘mid-range work horses’ for most numerical simulations, especially during
code development and code testing. However, it is not clear if they will provide the computing
power which seems to be necessary for many ‘real life’ problems. At the moment, we are not sure
about the ‘real’ quality of the HP V2250; we can only hope that the corresponding 3D test will be
performed to guarantee a better rating of this model!

INTEL PENTIUM II: One of our problems with this processor is that we could not get into contact
with INTEL to let them perform their own optimizations, maybe with special compiler options!
Additionally, we could only apply the (freely available) EGCS F77 compiler. At the moment, this
processor type seems to be quite ‘insensible’, regarding cache optimization strategies as well as with
respect to performance degradation through sparse MV techniques. Based on the cheapest price,
this hardware selection is the clear winner if highly unstructured data and sparse MV techniques
are applied, for instance in fully adaptive FEM simulations. However, this is more due to the huge
losses of the other processors than based on the own high performance: We compare 20 MFLOP /s
with less than 10 MFLOP /s’s! On the other hand, we have not figured out so far ‘good’ optimization
strategies for highly structured data such that our measured performance values are often slower
by a factor of 5 and even more! Nevertheless, we claim that for most available software tools which
are based on sparse techniques (or which do not use FORTRAN or C!), the choice of PENTIUM II
processors may be preferable.

Actually, the specific choice of optimal (?) hardware can be determined via following ‘thumb rules’:

e For fully unstructured data and corresponding sparse MV techniques, all hardware platforms show
slow performance only. The implementation of corresponding tools is quite easy and straightforward,
especially if available software tools as for instance SPARSKIT [16], SPARSEBLAS [15], NISTBLAS
[17] or similar are employed. So, the time and work for the ‘code development’ may be quite fast,
but it seems to be impossible to obtain high performance rates since the resulting efficiency is
mainly due to the cost of memory access and less due to the possible performance of the processors.
Therefore, we recommend the use of PENTIUM PC'’s since they are by far the cheapest ones!
Additionally, the choice of the programming language might appear to be quite unimportant since
no special facilities can be exploited, not even by FORTRAN! Nevertheless, our experience is that
even for such applications FORTRANTY7 tools can be significantly faster than C++ codes!

e On the other hand, if one spends more time and work in software concepts and correspondingly
in special numerical approaches which are able to exploit ‘caching in’ and ‘pipelining’, the use of
modern workstation processors and corresponding optimized FORTRAN compilers is advisable! At
the moment, only these hardware/software combinations seem to be able to really exploit a higher
percentage of today’s high performance rates. However, as the FEAST project shows, the design
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and development of such simulation tools can be much harder, but the final gain in CPU time and
hence the gain of validity for the simulation data will be great!

Based on the actual FEAST INDICES, we clearly prefer both IBM’s and DEC’s top models. The
difference in single processor performance appears to be a factor of 10 in the maximum, such that
one might propose to take 10 processors of a slower type to gain similar performance. However, keep
in mind that parallelization is always a hard job, with regard to numerical design, implementation
tasks and also stability of the hardware! If one really would be successful to apply a complete
numerical simulation with several hundreds of MFLOP/s on one single processor with 4 GByte
RAM, it will be very hard to beat this performance on a parallel system, especially if very ‘strong’
numerical components are used which are often specifically adapted for sequential runs!

e The performance of future processors will change, but looking at the ‘historical’ development it
seems that certain processor characteristics remain preserved: The IBM processors have been and
still are very efficient for highly structured data, while SUN, SGI or HP are the typical ‘robust work
horses’ for all kind of numerical simulations. So, we believe that the specific characteristics of the
different processor families will remain valid in some sense for the next future!

Therefore, we end with the following final remarks:

1. Do not base your rating of computers exclusively on the clock rates or other technical details!

2. Make your own tests or look at performance ratings which are representative for your specific ap-
plications and needs!

3. Always keep in mind that there are numerous hidden traps to loose computing performance. In fact,
it is and it will be even more and more difficult to achieve a significant percentage of the growing
peak rates on modern processors!
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Appendix: Some FEAST INDICES
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[]J ULTRA E450 (250)
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I ULTRA1 (140)

I PWR/580

I Pentium 1l (266)
I R8000 (75)

I PentiumPro (200)

ol M 21164 WS (500) I HP 735
FEAST—-Index 3D
Computer FeasT || FEAST-V | FEAST-C FEAT | ADAP
DEC-WS-21264-500MHz-KAP 240 220 476 66 47
DEC-WS-21264-500MHz 203 185 387 80 54
IBM-PWR3-200MHz 199 172 410 7 43
IBM-PWR2SC-397-160MHz 161 153 297 58 21
IBM-PWR2SC-597-160MHz 159 154 289 52 19
SGI-ORIGIN2000-250MHz 127 106 275 43 36
SUN-ULTRAG60-360MHz 116 90 276 34 26
HP-C240-240MHz 113 90 261 39 26
CRAY-T3E(STUTTG.) 89 78 185 31 11
IBM-PWR2-590-66 MHz 86 87 140 31 17
DEC-WS-21164-400MHz 84 68 187 32 22
SGI-ORIGIN200-180MHz 84 71 174 34 27
SUN-ULTRAG60-300MHz 79 69 162 28 21
DEC-PC-21164-533MHz 79 62 181 31 17
DEC-WS-21164-500MHz 78 63 186 18 14
HP-PAS8000 75 58 179 25 15
SUN-ULTRAZ2I-333MHz 65 51 148 28 20
SGI-10K-1P25-195MHz 62 47 150 18 13
SUN-ULTRA450-250MHz 59 45 138 21 14
DEC-PC-21164-533MHz-EGCS 57 48 121 21 14
SUN-ULTRA1-200MHz 56 44 129 23 15
PENTIUMII-400MHz 52 45 102 26 21
SUN-ULTRA1-140MHz 39 33 83 16 8
IBM-PWR-580 39 39 63 14 7
SGI-R8000-75MHz 35 25 92 11 8
PENTIUMII-266MHz 35 30 69 16 14
PENTIUM-PRO-200 23 18 51 10 7
HP-735 19 15 45 8 5

Table 8: The ‘total’ FEAST INDEX in 3D and its (major) auxiliary indices: The figure gives a
graphical representation of the ‘total’ FEAST INDEX in 3D whereat the values correspond to averaged
MFLOP/s rates! Additionally, the table shows the results of the (major) auxiliary indices which have
been explained in Section 5; their graphical presentation and a direct comparison to the 2D values is
given later. Keep in mind that these are averaged MFLOP/s rates only which may significantly differ
from the results for specific problem sizes!
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B 21264 WS/KAP [ 21164 WS (500)
I PWR3 (200) I 21164 WS (400)
Il PWR2/597 (160) [[] ULTRA10 (333)
I PWR2/397 (160) [ | ULTRA E450 (250)
Il 21264 WS (500) [] ULTRAL (200)
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Il CRAY T3E (433) [ Pentium Il (266)
Il ULTRAG0 (300) [ R8000 (75)

I ORIGIN 200 [ PentiumPro (200)
I HP PA8000 [ R10000 (150)

I 21164 PC (533) [ HP 735

FEAST-Index 2D

Computer FEAsT FEAsT-v | FEAST-C FEAT | ADAP
DEC-WS-21264-500MHz-KAP 165 153 313 55 52
IBM-PWR3-200MHz 152 140 262 85 62
IBM-PWR2SC-597-160MHz 143 142 233 63 38
IBM-PWR2SC-397-160MHz 142 141 233 64 38
DEC-WS-21264-500MHz 132 121 248 53 49
HP-V2250 118 108 229 38 34
HP-C240-240MHz 89 82 166 32 30
SUN-ULTRA60-360MHz 89 78 171 41 38
IBM-PWR2-590-66 MHz 85 88 128 36 25
SGI-ORIGIN2000-250MHz 84 70 175 33 32
CRAY-T3E(STUTTG.) 71 58 147 36 20
SUN-ULTRAG60-300MHz 68 61 122 35 32
HP-PAS000 61 57 116 22 17
SGI-ORIGIN200-180MHz 61 54 123 24 22
DEC-PC-21164-533MHz 59 48 129 21 19
DEC-WS-21164-500MHz 58 49 122 20 20
DEC-WS-21164-400MHz 56 49 111 20 21
SUN-ULTRAZ2I-333MHz 50 42 98 23 24
SUN-ULTRA450-250MHz 49 42 98 19 20
SUN-ULTRA1-200MHz 48 43 93 19 17
PENTIUMII-400MHz 45 41 80 24 21
SGI-R10000-1P25-195MHz 41 35 87 14 14
PWRPC-F50-333MHz 36 31 74 12 10
IBM-PWR-580 32 31 53 15 9
SUN-ULTRA1-140MHz 32 29 60 13 10
PENTIUMII-266MHz 29 27 51 15 13
SGI-R8000-75MHz 28 23 56 13 15
PENTIUM-PRO-200 17 16 33 6 6
SGI-R10000-150MHz 16 12 41 5 7
HP-735 16 14 32 5 5

Table 9: The ‘total’ FEAST INDEX in 2D and its (major) auxiliary indices: The figure gives a
graphical representation of the ‘total’ FEAST INDEX in 2D, while the table shows the results of the (major)
auxiliary indices; a direct comparison with the 3D values is given later. One remarkable result is that
the performance in 2D is smaller than in 3D, due to the more compact matrices (see the Conclusions).
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Figure 7: FEAT INDEX in 3D: The first row shows the FEAT INDEX, followed by the specific results for the
FEAT MV routines (see Section 4) on different mesh levels. The computations demonstrate the dependence
on the problem size and the kind of indexed access via the described numbering strategies (compare with
the following ADAP INDEX!). The main results are that the resulting MFLOP /s rates are quite slow
compared with the following results for performing the SPARSE BANDED BrAs-like MV multiplication
with the same (!!!) matrix. Beside DEC’s and IBM’s top models, the SGI's and particularly the
PENTIUM’s lead to (relatively) good results. In contrast, POWER2 models (IBM) and older DEC’s
(21164, CRAY T3E) deteriorate on the finest level 3 to about 10 MFLOP/s only! The actual ordering
of the processors is due to the total FEAST INDEX and shows impressively that some of our ‘preferred’
machines may have more or less problems with the described sparse techniques due to massive cache
misses! Further increasing of the problem size can lead to even still slower performance results (compare
Level 3 vs. Level 1).
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Figure 8: ApAP INDEX in 3D: The first row shows the ADAP INDEX, followed by the specific results
for the ADAP MV routines (see Section 4) on different mesh levels. Due to the even higher jumps in the
numbering of neighboured vertices, the MFLOP /s rates further decrease and are of maximum size 25
(") on level 3! Even both DEC’s and IBM’s top models show about 20 MFLOP/s only, while again
the SGI's and particularly the PENTIUM’s lead to the (relatively) best results. However, we compare
20 MFLOP/s as best values with less than 10 MFLOP /s for many other processors! Additionally to the
previous FEAT INDEX, the dependence on the mesh level, resp., the problem size, gets much more clear

and varies up to a factor of 10 between Level 1 and Level 3!
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Figure 9: FEAST-MV-V INDEX in 3D: The first row shows the FEAST-MV-V INDEX, followed by the
specific results for the MV-V routines on the different mesh levels. The computations demonstrate the
much weaker dependence on the problem size, at least for some of the processors (it is obvious that for
problems which fit completely into the cache, the rates are often better!). The main results are that
the resulting MFLOP/s rates are essentially improved through the applied ‘caching in’ and ‘pipelining’
strategies, especially if compared with the previous sparse indices. Nevertheless, we expect in future even

higher improvements if more machine-specific optimizations for this task are applied!
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Figure 10: FEAST-MV-C INDEX in 3D: The first row shows the FEAST-MV-C INDEX, followed by the
specific results for the MV-C routines on the different mesh levels. These studies show the importance of
the main strategy in FEAST : ‘Detect locally structured parts and exploit the correspondingly regular
data’! More than 700 MFLOP /s are realistic which have to be compared with the previous sparse indices!
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Figure 11: FEAST-MV-V INDEX in 2D: The first row shows the FEAST-MV-V INDEX, followed by the
specific results for the MV-V routines on the different mesh levels. In contrast to the previous 3D case, the
‘older’ POWER2 architecture by IBM is superior which is equipped with much smaller T.2-caches! Due
to the more compact matrices (9-point instead of 27-point matrices in 3D!), the processors with larger
cache sizes cannot gain the same improvements as in the 3D case. The quality of the ‘really old’ IBM
590 with 66 MHz clock rate only is surprisingly excellent if compared with many new processors!
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Figure 12: FEAST-MV-C INDEX in 2D: The first row shows the FEAST-MV-¢ INDEX, followed by the
specific results for the MV-C routines on the different mesh levels. Again, these rates - up to almost 900
MFLOP/s - show the absolut importance of exploiting such structured patches if available. However,
they also show how hard (or even impossible at the moment!) it is for certain computer architectures to
achieve these high rates for large problem sizes.
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Figure 13: FEAST-MGLGS-V INDEX in 3D: The first row shows the FEAST-MGLGS-V INDEX, followed by
the specific results for the M-TRIGS routines on different mesh levels. The computations show that not
only MV multiplications can be efficiently applied, but also complete multigrid algorithms with a very
robust smoother inside which works very efficient for regular as well as anisotropic meshes (see [1]).
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Figure 14: FEAST-MGLGS-C¢ INDEX in 3D: The first row shows the FEAST-MGLGS-C INDEX, followed by
the specific results for the M-TRIGS routines on the different mesh levels. Again, the demand for detecting
locally structured patches is demonstrated since complex multigrid solvers with a very high numerical
complexity can be performed with a correspondingly excellent computational efficiency, too.
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Figure 15: FEAST-MGLGS-V INDEX in 2D: The first row shows the FEAST-MGLGS-V INDEX, followed by
the specific results for the M-TRIGS routines on different mesh levels. The 2D results are somewhat slower
as the 3D case, as already indicated by the MFLOP /s rates for MV-V multiplication.
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Figure 16: FEAST-MGLGS-C INDEX in 2D: The first row shows the FEAST-MGLGS-C INDEX, followed by
the specific results for the M-TRIGS routines on different mesh levels. The 2D results are somewhat slower
as the 3D case, as already indicated by the MFLOP/s rates for MV-C multiplication.
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Figure 17: Some indices (2D vs. 3D): The reader should compare the absolute MFLOP /s results which
are somewhat higher in 3D for the SPARSE BANDED BLAS applications in FEAST.




