
The Feast Indices - Realistic evaluation of modern softwarecomponents and processor technologiesS. Turek, Chr. Becker, A. Runge and the FEAST GroupInstitut f�ur Angewandte Mathematik, Universit�at HeidelbergIm Neuenheimer Feld 294, 69120 Heidelberg, Germanyture@gaia.iwr.uni-heidelberg.de http://gaia.iwr.uni-heidelberg.de/~tureSummary. We examine the computational e�ciency of Linear Algebra components in iterative solvers for grid-oriented simulations of PDE's. While the standard sparse matrix-vector (MV) techniques show signi�cant losses ofperformance, especially on modern processors, out sparse banded components have the potential to exploit today'shigh computing power. We explain the major concepts of the Feast software which contains such highly tunedNumerical Linear Algebra basic components (Sparse Banded Blas) up to complete multigrid solvers, all beingoptimized with respect to the actual hardware platform. Based on algorithmic and computational studies, wepresent the Feast Indices which are indicators for the true performance of many modern processors, dependingon the underlying FEM space, the problem size and the implementation style. These indices allow a new ratingof the various hardware platforms with regard to di�erent mathematical solution strategies, for academic andrealistic numerical problems and ranging from `low cost' PC's up to supercomputers.1 MotivationOne current trend in the software development for PDE's, and here especially for Finite Element (FEM)approaches, goes clearly towards very sophisticated object-oriented techniques and adaptive methodsin any sense. On the other hand, the employed data and solver structures, and particularly the `matrixstructures' (for an overview, see [15] and [16]), are mostly chosen in a somewhat old-fashioned way -as `globally de�ned' types - which neglect the very speci�c performance facilities of modern hardwareplatforms. As a result, the observed computational e�ciency is often far from the expected peak ratesof (potentially available) 1 GFLOP/s nowadays, and the `real life' gap is even further increasing if oneextrapolates current hardware developments (see also the papers of U. R�ude, for instance [6]).Today, high performance calculations in this �eld seem to be reachable only by explicitly exploiting`caching in' and `pipelining' in combination with sequentially stored arrays (see [3]). While the realizationof such techniques tends to be easier for Finite Di�erence approaches, it is far from being obvious how toperform similar approaches for much more complex Finite Element codes. These discrepancies, betweenNumerics and software concepts and the available hardware, often lead to unreasonable calculation timesfor `real world' problems, e.g. (nonstationary) CFD calculations in 3D, as can be easily seen from recentbenchmark comparisons for commercial as well as research codes (for instance, see [8] and [10]). Hence,strategies for massive e�ciency enhancement are necessary, not only from the mathematical (algorithms,discretizations) but also from the software side of view. To realize some of these aims our new FEMpackage Feast (`Finite Element Analysis & Solution Tools') is under development (see [11] and [12]).In this paper, we concentrate on the aspect of testing Linear Algebra routines for the sti�ness matricesresulting from FEM discretizations. These are the most important components in the correspondingmultigrid framework which is mainly responsible for the total e�ciency of the complete simulation. Firstof all, we demonstrate the performance of typical software tools based on standard sparse MV techniques,before we explain our machine-dependent Sparse Banded Blas approaches [14] for achieving strongperformance improvements! Consequently, these techniques are the basis for our recent evaluation ofsoftware components and modern processor technologies which are collected in several types of FeastIndices. These explain, for instance, why many codes run faster on `low cost' PC's than on singleprocessors of supercomputers. However, they also demonstrate the (hidden) potential of supercomputingpower on modern (workstation) processors as employed by DEC, IBM, HP, SUN and SGI.1

2 Typical examples for performance lossesOne of the main components in iterative solvers - Krylov-space methods or multigrid - are matrix-vector(MV) applications. They are needed for defect calculations, smoothing, step-length control, etc., andoften they consume 60 - 90% of CPU time. Hereby, sparse MV concepts are the standard techniques inFEM codes (and others), also well known as `compact storage' technique: Depending on the programminglanguage, the matrix entries plus index arrays/lists/pointers are stored as long arrays or heaps, containingthe `nonzero elements' only. For an overview on applied techniques, see for instance SPARSKIT [16] andthe literature cited therein. While this sparse approach can be applied for general meshes and arbitrarynumberings of the unknowns, no explicit advantage of (possible) highly structured parts can be exploited.Consequently, a massive loss of performance with respect to the possible peak rates may be expectedsince - at least for large problems with more than 100,000 unknowns - no `caching in' and `pipelining' canbe exploited such that the higher cost of memory access will dominate the resulting MFLOP/s rates.To demonstrate this failure, we start with examples from our FeatFlow code [10] which seems to be oneof the most e�cient simulation tools for incompressible ow on general domains (see the results in [8]). Weapply FeatFlow to the following "2D ow around a car" con�guration, and we measure the resultingMFLOP/s rates for the MV multiplication inside of the multigrid solver for the momentum equation(see [10] for mathematical and algorithmic details). Here, we use the typical (for FEM approaches)`two level' (TL) numbering (old vertices preserve their numbers if the mesh is re�ned!), a version of thebandwidth-minimizing Cuthill-McKee (CM) algorithm and an arbitrary `stochastic' numbering.
Figure 1: Coarse mesh for `Flow around a car'All numbering strategies have common that, based on the standard sparse `Compact Storage Rowwise'(CSR) technique (see [16]), the cost for arithmetic operations, for storage and for the number of memoryaccesses are identical. However, the resulting timings in FORTRAN77 on a SUN ENTERPRISE E450(about 250 MFLOP/s peak performance!) can be very di�erent as Table 1 shows.computer #unknowns TL CM stochastic13,688 20 22 19SUN E450 54,256 15 17 13(� 250 MFLOP/s) 216,032 14 16 6(CSR) 862,144 15 16 4Table 1: MFLOP/s rates of sparse MV multiplication for di�erent numberingsThese and numerous similar results (see also Section 6: `The FeatFlow Benchmark') can be concludedby the following statements which are quite representative for many other numerical simulation tools:1. Di�erent numbering strategies can lead to identical numerical results and work (w.r.t. arith-metic operations and memory access), but at the same to huge di�erences in elapsed CPU time!2. Sparse MV techniques are slow (with respect to possible peak rates) and depend massively on theproblem size and the `amount' and `kind' (?) of memory access!3. In contrast to the mathematical theory, most multigrid implementations will not show a realisticrun-time behaviour which is directly proportional to the mesh level.2

To shed more light into this `strange' behaviour, we examine more carefully the computer performance for2nd order scalar PDE's on tensorproduct meshes with trilinear FEM spaces (� matrices with bandwidth27). Again, we apply di�erent numbering strategies in the sparse CSR format, however the numericalwork and the results of the MV operations are identical for all cases!computer #unknowns `rowwise' `two level' `stochastic'IBM RS6000/597 173 86 81 81(160 MHz) 333 81 55 16`P2SC' 653 81 14 8IBM RS6000/590 173 42 42 42(66 MHz) 333 41 39 27`POWER2' 653 41 17 7DEC/21164 173 54 31 29(433 MHz) 333 51 16 10`CRAY T3E' 653 49 13 8INTEL PENTIUM II 173 30 28 28(400 MHz) 333 30 26 24`ALDI PC' 653 30 23 19Table 2: MFLOP/s rates of sparse MV multiplication on tensorproduct meshesBased on such studies 1 , we can characterize more precisely the computational run-time behaviour:� The MFLOP/s rates are far away from the announced peak performance.� They depend signi�cantly on the size of the problem and the `kind of memory access'.� `Old' processors (IBM 590) can be even faster (!) than `new' ones (IBM 597).� `Supermarket' PC's can be signi�cantly faster than processors in `supercomputers' !The following Table, which now in contrast is based on the highly structured MV techniques in Feast,shows that the same application can (!) be performed much faster: We additionally exploit vectorizationfacilities and data locality. Additionally, we can even further di�er between the case of variable matrixentries (`var') and constant bands (`const') as typical for Poisson-like PDE's.computer #unknowns `var' `const' `computer `var' `const'IBM RS6000/597 173 188 480 IBM RS6000/590 102 195(160 MHz) 333 172 393 (66 MHz) 94 175`P2SC' 653 176 390 `POWER2' 94 176DEC/21164 173 103 404 INTEL PENTIUM II 51 180(433 MHz) 333 101 313 (400 MHz) 51 137`CRAY T3E' 653 101 268 `ALDI PC' 48 124Table 3: MFLOP/s rates of Sparse Banded Blas [14] MV multiplication on tensorproduct meshesSuch di�erences in performance are caused by the fact that modern processors are already sensiblesupercomputers with respect to `caching in' and `pipelining' which has been explicitely exploited by theSparse Banded Blas-based MV techniques. However, the following examples show that also the kindof arithmetic work has to be considered (`division-free Numerical Linear Algebra') and that a preciseknowledge of the cache architectures is necessary.1ALDI is a supermarket in Germany which is well-known for its cheap prices but also high-quality goods. Based originallyon household and food stu�s only, ALDI has o�ered a typical PENTIUM II/400MHz computer which has been sold outdue to its cheap price and particularly ALDI's good reputation: About 250,000 pieces in 2 weeks!3

Computer #unknowns `classic' `var' `const'IBM RS6000/597 652 33 32 33(160 MHz) 2572 32 32 33`P2SC' 10252 32 32 33 `classic' `var' `const'144 130 14180 105 15080 106 150Table 4: MFLOP/s rates for tridiagonal preconditioners in `classical' formulation, compared with theSparse Banded Blas versions from Feast for `variable' and `constant' matrix entries. The left tableshows the results obtained from traditional implementations with division, while the right table givesthe rates without division. It is obvious that divisions in an algorithm can signi�cantly degradate theperformance if compared with pure addition/multiplication-based algorithms.
0

20

40

60

80

100

120

140

160

180

0 20000 40000 60000 80000 100000 120000
POS(Y,N) for N=4225

20

25

30

35

40

45

50

55

60

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
POS(Y,N) for N=1050625Figure 2: MFLOP/s rates of DAXPY operations based on machine-optimized performance libraries: Weonly vary the di�erence POS in the relative position to each other of the both vectors to be added. Theresults for the SUN E450 (left, 1 MByte L2-cache) are representative for processors with 1-fold associativecache architectures: The actual performance of such `simple' Numerical Linear Algebra tasks of BLAS1-type depends massively on the relative position POS and varies between 160 and 3 (!!!) MFLOP/s althoughboth small vectors �t completely into cache! The right �gure shows similar losses of performance for theCRAY T3E, here for long vectors. These examples demonstrate that such failures can be only avoidedby a hardware-speci�c and user-de�ned memory managment!To make this point clear: The use of tensorproduct meshes does not (!!!) automatically guarantee higherperformance; all proposed optimization strategies with respect to data structures, algorithmic re-design,programming language, cache architectures and memory managment must be considered!The following Table 5 shows the expected development of the (actual) processor technology and demon-strates that such `machine-oriented' algorithmic and implementation techniques will be absolutely nec-essary: The explicit handling of data locality, internal parallelism and vectorization, in contrast to mini-mizing the memory access at the same time, will be the key techniques for the next years.Year of 1st shipment 1997 1999 2001 2003 2006 2009 2012Local clock (MHz) 750 1250 1500 2100 3500 6000 10KTransistors/chip 11M 21M 40M 76M 200M 520M 1.4BTable 5: Excerpts from the `1997 Semiconductor Roadmap' [18]Then, it might get really possible to exploit more adequately the performance of future processors whichtend to be even more powerful - as single processors with up to 1 TFLOP/s - than the complete CRAYT3E today! On the other hand, neglecting these features may not only lead to non-signi�cant performanceacceleration, but even performance degradation is possible as the previous tables have shown (comparethe `old' IBM 590 with the `new' IBM 597. At the moment, most of today's sparse implementations (seealso Section 6: `The FeatFlow Benchmark') would favourize the use of `cheap' INTEL-based computersonly. This development might lead to an economic (for certain companies) and much more to a scienti�cdesaster as the performance rates will show. 4

3 Description of the Feast projectFeast is based on the following concepts (see [11] and [12] for details) which shall enable the combinationof such highly tuned Linear Algebra tools with very sophisticated FEM simulation strategies:� consequent application of (recursive) `Divide and Conquer' strategies� hierarchical data and solver structures, but also hierarchical (!) `matrix structures'� frequent use of machine-optimized low level Numerical Linear Algebra routinesThe result shall be a exible FEM package for many `real life' problems with special emphasis on:� (closer to) peak performance on modern processors� typical multigrid behaviour (with respect to e�ciency and robustness)� parallelization and vectorization directly included on `low level'� open for di�erent adaptivity concepts and a posteriori error controlIn contrast to many other approaches which aim to develop software for research or education topics, ourapproach is clearly designed for high performance applications with industrial background, especially inCFD. Consequently, our main emphasis lies on the aspects 'e�ciency' and 'robustness' and less on topicsas `easy implementable' or `most modern programming language'. Therefore, FORTRAN77/90 is usedsuch that (for us absolutely necessary) the transparent access to the data structures is possible. Further,this makes it possible to adopt many reliable parts of the predecessor packages Feat2d, Feat3d andFeatFlow. One of the most important principles in Feast is the consequent application of Divideand Conquer strategies. The solution of a `global' problem is recursively split into smaller independentsubproblems on `patches' as part of the complete set of unknowns. There are two major aims in thissplitting procedure which can be performed by hand or via self{adaptive strategies:� Find and exploit locally structured parts� Find and hide locally anisotropic partsWhile on such `anisotropic' parts the usual sparse techniques will be applied, we try to exploit themuch higher performance on the other - highly structured - patches. Consequently, the intention is tominimize the number of `sparse areas' and to apply preferably all Numerical Linear Algebra tasks onsuch `structured patches'. Then, the major three tasks for realizing such a simulation tool are:1. The design of the `skeleton' for the recursive splitting into local/global levels2. The implementation of the typical FEM facilities on the `low level' patches3. The development of `reference element solvers' on the `low level' patchesThe corresponding data, solver and matrix structures are described in the papers [11], [12] and particularlyin [2]. The aim of this work is a (careful) description of the third task: Optimization of the `referenceelement solvers' and the corresponding Numerical Linear Algebra tools on the `low level' patches. Inour context, these are quadrilaterals (2D), resp., hexaeders (3D) which are discretized with (logicallyequivalent) tensorproduct meshes. That means, we can (!) apply linewise or rowwise numbering, but thelocal mesh size may vary arbitrarily! This optimization procedure is split into two tasks:Themanual task of algorithmic design and corresponding implementation w.r.t. optimal MFLOP/s ratesThe numerical task to derive `optimal' multigrid convergence with respect to e�ciency and robustness5

While the numerical task, the optimization of multigrid convergence rates for di�erent FEM spaces,problem sizes, (PDE) problem types and mesh topologies (but on tensorproduct meshes!) is currentlyexamined in [1], we show recent results of the `MFLOP/s optimization' in this paper (see also [14] forthe technical details of the Sparse Banded Blas. To be precise, we provide the reader with:1. `Optimal' MFLOP/s rates for di�erent Numerical Linear Algebra tasks on generalized tensorproductmeshes (for bilinear and trilinear FEM!)2. Evaluation of many modern processors with respect to the `real' performance of such di�erent basictasks up to complete multigrid algorithms4 Description of the Numerical Linear Algebra componentsAll following ratings and the test software (ptest.f) are part of the Internet and can be downloadedfrom our Homepage. In this paper, we publish the �rst version of more or less complete results for(almost) all modern hardware platforms. Since everybody has access to the data, everybody is invitedto check new processors or di�erent software environments to look for improved Feast Indices ! Ourhope is that this (permanent) process of testing and rating of new hardware components gets into anautomatic loop if su�ciently many `test persons' participate. On the one hand, some `pressure' on thevendors is generated, for instance to provide the users with optimal compiler options. On the other hand,there is a fair `competition' possible between the various hardware con�gurations. So, the user and also`client' of such products has the chance to compare the di�erent test environments with regard to his ownapplications and with respect to the true cost/performance relation. To provide this kind of informationis de�nitely one of the aims of the subsequent Feast Indices !We will not explain the underlying tests in all details, and we will not show the results of all comparisons:These are part of the Diploma Thesis of A. Runge [7], resp., see also [14] and our Homepage! Therefore,in short terms only, the following Linear Algebra tasks are the basic components of the Feast Indices :4.1 DAXPY-like applicationsBeside the (standard) linear combination DAXPY, we also apply the (variable) linear combination DAXPYVy(i) = �(i)x(i) + y(i) which is important in banded MV multiplications on vector computers. Addi-tionally, we check the (indexed) variant DAXPYI y(i) = �(i)x(j(i)) + y(i) . Here, the scaling factor � isa vector acting on the components of the vector x which depend on the index i via an index vector j(i).We apply two tests with di�erent index vectors j(i) which simulate moderate and stochastic jumps inthe numberings. These tests are quite good representants for the complete sparse MV applications.The arithmetic work count for all DAXPY-like variants is de�ned as 2�N , with N the number of vectorcomponents, such that the corresponding MFLOP/s rates are determined via:2�NCPUTIME � 1064.2 Variants of MV multiplicationsAssuming a (generalized) tensorproduct mesh with M vertices in each space dimension, the resultingnumber of unknowns is M2 (2D), resp., M3 (3D) if we consider vertex-oriented discretizations: Hereconforming bilinear, resp., trilinear FEM! Assuming the typical 9{point, resp., 27{point stencil for thecorresponding matrices, the resulting storage cost and hence the measure for the MFLOP/s rates are6

identical for all following techniques, independent of the kind of MV multiplication! The test programptest.f examines 8 di�erent basic implementations (plus various blocking techniques, see [14] for thetechnical details) which all are designed to exploit potentially `caching in' and `vectorization' facilities.The MV-V results correspond to the case of arbitrary matrix entries, while MV-C represents the case ofconstant band entries as typical for Poisson-like problems on (in each `local direction') equidistant meshes.Additionally, we perform measurements for a corresponding sparse MV application in the CSR formatas described above. We examine three variants of numberings: Linewise numbering but neverthelessindexed access (SPARSE), `two level' numbering (FEAT) as typical for semi-adaptive FEM simulationswithout local adaptivity, and �nally `stochastic' numbering (ADAP) of the unknowns being representativefor fully adaptive approaches. To make this point clear: All MV applications are performed for the samematrix! We only vary the storage and access techniques, hereby exploiting the tensorproduct structureor not, taking into account the case of constant entries or not. However, in all cases we de�ne the workcount to measure the MFLOP/s rates as:18�NCPUTIME � 106 (in 2D) resp., 54�NCPUTIME � 106 (in 3D)Moreover, we test the performance of matrix-vector multiplications with tridiagonal matrices which arebasic tools for certain preconditioners as the `linewise GS' schemes below. Again, we check in ptest.fthe MFLOP/s rates for variable and constant entries, and they are determined via:6�NCPUTIME � 1064.3 Tridigonal-based preconditionersAssuming tensorproduct meshes, the application of `inverse' tridiagonal matrices as preconditioners(TRIS) can be easily performed and provides rather good convergence properties with respect to meshanisotropies (see [1]). We apply the `division-free' variants from the previous Section, with various block-ing strategies, again for variable and constant matrix entries. The MFLOP/s rates are de�ned as:5�NCPUTIME � 106Additionally, this tridiagonal preconditioner can be combined with the described tridiagonal MV multi-plications to work as `linewise Gau�-Seidel' (TRIGS) or `linewise ADI' preconditioners (see [14]). Takinginto account the convergence studies in [1], these schemes are our actual favourites as multigrid smootherswith regard to numerical and computational e�ciency. The MFLOP/s rates are de�ned as:11�NCPUTIME � 106 (in 2D) resp., 29�NCPUTIME � 106 (in 3D)4.4 Smoothers in multigridBased on the previously described DAXPY-like operations, the MV multiplications and the proposed tridi-agonal preconditioners, we can determine the MFLOP/s rates of the corresponding smoothing operatorswhich all are written and implemented in the following general notation:xl+1 = xl � !C�1(Axl � b)7

Here, A and C are matrices in RN�N , with C being the preconditioner, and xl; xl+1; b are N{dimensionalvectors. The parameter ! is an arbitrary relaxation factor while the indices l and l + 1 are the usualcounters in iterative procedures. Our candidates for the preconditioner C are:� C = diag(A) corresponds to Jacobi iteration (� DAXPYV)� C = TRIS(A) corresponds to tridiagonal preconditioners, resp., linewise variants of Jacobi� C = TRIGS(A) corresponds to the `lower+tridiagonal' preconditioner, resp., linewise Gau�-SeidelThere are several reasons why we explicitly use and optimize this form of the basic iteration which is incontrast to many `red-black' or other `multi-colouring' approaches:1. This general form allows the independent splitting into the three tasks MV multiplication, precon-ditioning and linear combination which all have been optimized with respect to `caching in' and`pipelining'.2. The explicit use of the complete defect Axl�b is advantageous in certain techniques for implementingcomplicated or `moving' boundary conditions (see [10]).3. All components in standard multigrid, i.e., smoothing, defect calculation, step-length control, gridtransfer, are included in this basic iteration.As an example, the MFLOP/s rates for `linewise GS' smoothing S-TRIGS(N) which consists of DAXPY, MVand TRIGS (taking into account the case of variable (V) or constant (C) entries) are calculated separatelyon each mesh level, corresponding to problem size N . They read in 3D:MFLOPS�TRIGS(N) := (54 + 29 + 2)�N(54�NMFLOPMV (N) + 29�NMFLOPTRIGS(N) + 2�NMFLOPDAXPY (N))� 106In an analogous way, the corresponding MFLOP/s rates for Jacobi or tridiagonal smoothing are esti-mated, based individually on the previously calculated rates in 2D and 3D with respect to the underlyingNumerical Linear Algebra components.4.5 Complete multigrid cycleFinally, we can (recursively) determine the MFLOP/s rates for a standard multigrid cycle, consisting ofm total smoothing steps (including pre- and postsmoothing steps; here: m = 2), defect calculation, gridtransfer and coarse grid approximation. As an example, the actual rates for `Line GS' smoothing on levell with N(l) unknowns read for the corresponding multigrid variant M-TRIGS(N(l)) in 3D:MFLOPM�TRIGS(N(l)) := 1:5� (85m+ 54 + 18)�N(l)(85m�N(l)MFLOPS�TRIGS(N(l)) + 54�N(l)MFLOPMV (N(l)) + 9�2�N(l)MFLOPDAXPY (N(l)) + 0:5� (85m+54+18)�N(l)MFLOPM�TRIGS(N(l�1)))� 106The factor 1.5 is achieved from the recursion through the applied W-cycle and can be analogously deter-mined for other cycles and the 2D case (see [7] for the details).8

4.6 Measurements of classical sparse applicationsIn 3D we have directly included a sparse MV multiplication for the same matrix as before, which resultsfrom a trilinear FEM discretization of a scalar Poisson-like problem and which leads to a (maximum)matrix stencil of 27. Then, the total number of vertices, resp., unknowns is de�ned as N := M3. Allmatrix entries are sequentially stored in a long array (we perform FORTRAN77!), and as usual for theCSR format (see [16]) we employ two additional index arrays for accessing the load vector. We examine 3variants of numberings: Linewise numbering but nevertheless indexed access (SPARSE), a simulated `twolevel' numbering (FEAT) as typical for semi-adaptive FEM simulations without local adaptivity (whichallows maximum di�erences in the numbering of O(M2)), and �nally a `stochastic' numbering (ADAP) ofthe unknowns (allowing jumps in the numbering of two neighboured vertices of order O(M3)) which isrepresentative for fully adaptive approaches. Then, in all cases we de�ne the MFLOP/s rates as before:54�NCPUTIME � 106Unfortunately, we have missed this direct inclusion of sparse MV application in 2D (now we cannotchange anymore!) such that we have to simulate the analogous behaviour for the sparse (CSR) MVmultiplication via the indexed DAXPY routines DAXPYV and DAXPYI. As in the 3D case, we allow forthe index vector that jumps of order O(M) (remember: N := M2 in 2D!) or O(M2) can occur whichcompare well with the FEAT, resp., the ADAP results from the 3D case. These 2D tests correspond to ourolder `Elch Tests' which have been described in [9].5 The Feast IndicesBefore we explain more in detail all auxiliary indices and how to compute them, we present alreadythe �nal result: The actual version of the `total' Feast Index ! They show our `total' evaluationof most of the available processors and allow di�erent speci�c rankings with respect to the explainedimplemenation techniques and applied data structures for standard conforming FEM. Most of the notationin the following tables and �gures should be self-explanable; if not so, take a look at [7].

FEAT−Index

0

25

50

75

100

125

150

175

200

225

21264 WS/KAP

PWR3 (200)

21264 WS (500)

PWR2/597 (160)

PWR2/397 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

PWR2/590 (66)

CRAY T3E (433)

ORIGIN 200

ULTRA60 (300)

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

R10000 (195)

Pentium II (400)

PWR/580

ULTRA1 (140)

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 3: The `total' Feast Index: The graphical and table-based presentation of the speci�c 3Dand 2D values is given in the Appendix: The performance in 2D is smaller than in 3D, due to the morecompact matrices (see the Conclusions). Keep in mind that these are averaged MFLOP/s rates onlywhich may signi�cantly di�er from the results for speci�c problem sizes!9

The �rst term determines the kind of processor, followed by some additional denotations: PWR for IBMPOWER2 or POWER3 processors, model 590 or whatever; 21264 or 21164 denotes the ALPHA chip inDEC's, with or without KAP preprocessor, being a workstation model (WS), a PC (under LINUX, butusing the executable code from the workstation) or a PC under LINUX with the EGCS F77 compiler;ULTRA stands for SUN computers; ORIGIN, resp., R8000 and R10000 denote SGI's; PII and PProdenote Pentium II and Pentium Pro architecture; PPC/F50 denotes the PowerPC version F50 by IBM.In brackets, further details about the actual clock rate are given. More information about the precisede�nition of the tested computers can be obtained from [7], or look at our Homepage!In the following Sections, we will discuss only some of the `auxiliary' indices in detail, while a much morecomplete description of the results in 3D and in 2D is given in the Appendix: In most cases, the 2Dresults allow the same qualitative and even quantitative conclusions. Only in such cases that signi�cantdi�erences between 2D and 3D results occur, we explicitly state the corresponding results. Additionally,keep in mind that the indices, or better the ranking of computers, will change since new processors ordi�erent con�gurations (compiler, operating system, etc.) will be added. Therefore, check out the givenInternet address! This Web-page contains also a full-color presentation of the results which may be helpfulin better viewing the indices.All calculations for the evaluation of the included MFLOP/s rates are performed for several levels l of(global) mesh re�nement. We set for the number N(l) of unknowns:N(1) = 652 ,N(2) = 1292 ,N(3) = 2572 ,N(4) = 5132 ,N(5) = 10252 (in 2D)N(1) = 173 ,N(2) = 333 ,N(3) = 653 (in 3D)Higher re�nement levels in 2D are somewhat unrealistic. Furthermore, the storage cost are alreadyfar beyond typical cache sizes such that the e�ect of further increasing the problem size can be easilyextrapolated. In 3D, one may state that level l = 3 with N(3) = 653 = 274; 625 unknowns does not seemto correspond to a `�ne' mesh width, but one has to take into account that on this level 3 the storageof the sti�ness matrix (bandwidth 27!) plus index arrays for the sparse techniques consumes already(almost) 128 MByte of RAM! This example shows that we discuss not only di�erences with respect tocomputing e�ciency but also with regard to storage cost. Based on the MFLOP/s rates for the basic andcomposite Numerical Linear Algebra components from the previous Section, we can de�ne the following(auxiliary) indices which are part of the shown Feast Indices.5.1 The sparse Feat and Adap IndicesThese indices are measures for the computational e�ciency with respect to classical sparse techniques,and they are based on the previously de�ned MFLOP/s rates for di�erent numberings in the sparse(CSR) MV multiplication. As typical for all following indices, the rates from the di�erent levels l areweighted by special factors c(l). These are for the Feat Index in 2D and in 3D:c(5)=60% , c(4)=25% , c(3)=10% , c(2)=4% , c(1)=1% resp., c(3)=80% , c(2)=16% , c(1)=4%and for the Adap Index:c(5)=40% , c(4)=30% , c(3)=15% , c(2)=10% , c(1)=5% resp., c(3)=75% , c(2)=20% , c(1)=5%While the de�nition of both indices in 3D is straightforward, we have to do some modi�cations in the 2Dcase as explained before. To be precise, the resulting total Feat Index in 2D is calculated as an averagebetween the DAXPYV and DAXPYI values (with `moderate' jumps of order O(M)), and in 3D between theSPARSE and FEAT values. Analogously, the Adap Index in 2D is the average between both DAXPYI values10

(with the two kinds of allowed jumps in numberings!) and in 3D between the FEAT and ADAP values. Allthese values are summed up with the special weighting factors accordingly to each mesh level.The corresponding results of the Feat and Adap Indices can be found in the Appendix: The computa-tions demonstrate the dependence on the problem size and the kind of indexed access due the describednumbering strategies: The resulting MFLOP/s rates are quite slow compared with the following resultsfor performing the Sparse Banded Blas-like MV multiplication with the same (!!!) matrix. BesideDEC's and IBM's top models, the SGI's and particularly the PENTIUM's lead to (relatively) good re-sults. However, we compare 20 MFLOP/s as best values with less than 10 MFLOP/s for many otherprocessors! In contrast, POWER2 models (IBM) and older DEC's (21164, CRAY T3E) deteriorate onthe �nest level 3 to about 10 MFLOP/s only! This shows impressively that some of our `preferred' ma-chines may have more or less problems with the described sparse techniques since the underlying cachearchitectures lead to massive cache misses and hence to performance losses! Further increasing of thenumber of unknowns can lead to even still slower performance results!5.2 The Daxpy IndexFor calculating the Daxpy Index, the DAXPY rates are averaged over all mesh levels. The correspondingweights for each mesh level are di�erently de�ned, in 2D as well as in 3D:c(5)=70% , c(4)=20% , c(3)=6% , c(2)=3% , c(1)=1% resp., c(3)=82% , c(2)=15% , c(1)=3%5.3 The Feast-mv-v and Feast-mv-c IndicesThese MFLOP/s rates are based on our optimized Sparse Banded Blas software [14] and have tobe compared with the previous sparse Feat and Adap Indices. Feast-mv-v denotes the results withvariable matrix entries while Feast-mv-c measures the even higher MFLOP/s rates for the (special) caseof constant band entries (see the explanations in the previous Section). Like the Daxpy Index, theyare also part of the subsequent Feast-v and Feast-c Indices (see later). The corresponding weightingfactors c(i) are identical as for the described Daxpy Index!The following Figure 4 shows the corresponding 3D results for the di�erent matrix-vector multiplications(MV-C, MV-V, FEAT, ADAP) on the �nest mesh level 3: Performance di�erences of almost a factor of 50get visible for certain computers as the IBM PWR2's! While modern workstation processors show a hugepotential of supercomputing power for `structured' data, they loose for `unstructured' data in combinationwith sparse MV techniques, particularly compared with PENTIUM's. The complete presentation of theseindices is part of the Appendix.5.4 The Feast-mglgs-v and Feast-mglgs-c IndicesThese MFLOP/s rates estimate the resulting performance of one complete multigrid sweep with 1 pre-and 1 postsmoothing step. The examined variants in ptest.f are Feast-mgjac-v and Feast-mgjac-c for Jacobi smoothing, Feast-mgtri-v and Feast-mgtri-c for tridiagonal smoothing and our pre-ferred combination Feast-mglgs-v and Feast-mglgs-c with the described `line Gau�-Seidel' (TRIGS)smoother: They are the most essential part of the subsequent Feast-v and Feast-c Indices. Thecorresponding weighting factors c(i) are again identical as for both previous indices.The subsequent Figure 5 shows the corresponding results for complete Sparse Banded Blas multigridalgorithms which are optimized with respect to numerical e�ciency and robustness (see [1]). They arerecently our `best' multigrid work horses on such tensorproduct meshes. In the case of `constant' bandsin the matrices (see the results in the Appendix), the results further improve signi�cantly!11

MV/C Level 3 3D
0

100

200

300

400

500

600

700

800

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/V − Level 3 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAT − Level 3 3D
0

10

20

30

40

50

60

70

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

ADAP − Level 3 3D
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 4: The �gures show the MFLOP/s rates for the discussed MV multiplications (MV-C, MV-V,FEAT, ADAP) on mesh level 3 in 3D! There are huge di�erences possible of up to a factor of 50 ifdi�erent MV techniques are applied to the same matrix!12

MGLGS/V−total 3D
0

25

50

75

100

125

150

175

200

225

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 3 3D
0

25

50

75

100

125

150

175

200

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 2 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 1 3D
0

50

100

150

200

250

300

350

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 5: Feast-mglgs-v Index in 3D: The �rst row shows the Feast-mglgs-v Index, followed bythe speci�c results for the M-TRIGS routines on the di�erent mesh levels. The computations show thatnot only MV multiplications can be e�ciently applied, but also complete multigrid algorithms with avery robust smoother inside which works very e�cient for regular as well as very anisotropic meshes (see[1]). Again, the results are measured MFLOP/s rates.13

5.5 The `auxiliary' Feast-v and Feast-c IndicesThese indices measure the resulting performance of our Sparse Banded Blas tools if they are purelyapplied on meshes which consist of macros (� quadrilaterals/hexaeders) only and which all are discretizedvia the described generalized tensorproduct meshes. For recent examples and actual test implementationsof the Feast package, see [2] and [4]. Both indices are averaged values, that means 50% Feast-mglgs-v ,25% Feast-mgtri-v , 10% Feast-mgjac-v , 10% Feast-mv-v and 5% Daxpy , resp., the analogousvalues for the `C'-versions. Again, each mesh level is di�erently weighted via:c(5)=70% , c(4)=20% , c(3)=6% , c(2)=3% , c(1)=1% resp., c(3)=82% , c(2)=15% , c(1)=3%Figure 6 shows the corresponding 3D results which are `averaged estimates' for the processors if purelyapplied to the highly structured patches on the low level parts of Feast. In the Appendix, we givea direct comparison between the corresponding 2D and 3D results which demonstrates the potentiallyhigher MFLOP/s rates in the 3D applications due to the `wider' matrices. Since the typical bandwidthis 27 instead of 9 in 2D only, the applied cache strategies seem to work better! Moreover, they also givean impression of the di�erence in the resulting computing performance if such tensorproduct strategies- Feast-c and Feast-v - can be applied in comparison to the standard sparse techniques (see theFeat and Adap Indices). However, these are only averaged MFLOP/s rates while the actual di�erencewith respect to a special problem size may be even much greater as the previous examples have shown!
FEAST/C−total 3D

0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAST/V−total 3D
0

25

50

75

100

125

150

175

200

225

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 6: Feast-v and Feast-c Indices in 3D5.6 The `total' Feast IndicesThe �nal Feast Indices can be collected which are de�ned as follows. The corresponding `total' FeastIndex - as average of both 2D and 3D Feast Indices - had been shown in the beginning of this Section.Feast := 60% Feast-v + 20% Feast-c + 15% Feat + 5% Adap14

6 (Excerpts from) The FeatFlow BenchmarkBefore we come to the conclusions from the previous Feast Indices , we still have to discuss the followingmajor question in this context of benchmarking:How realistic is our evaluation of the processors via the Feast Indices, if we compare withresults from realistic applications, particularly computed with `production codes'?The FeatFlow Benchmark is such set of test calculations which are very similar to the mentioned CFDBenchmark `ow around a cylinder' [8]. The interesting aspects are the total CPU cost for each computertype, and how they are distributed to the separate tasks in a CFD code, i.e., mesh generation, assemblingof matrices and right hand sides, solving linear subproblems or postprocessing steps.The precise con�gurations are described at our Homepage; here we only provide the reader with the mostimportant details. The complete description with all mathematical details of discretization and solvercan be found in [10]: We apply a coupled multigrid approach with the so-called Vanka smoother in adirect steady solver (CC3D), and the discrete projection scheme as nonstationary scheme (PP2D). Allcalculations are performed with the nonconforming rotated multilinear �nite elements. Additionally, weapply stabilization techniques of upwind (UPW) or streamline di�usion (SD) type for the convective term,and we use SOR as smoother in the multigrid solver for the scalar subproblems if applying the projectionscheme. The following abbreviations for the elapsed time in seconds are used, with total denoting thecomplete elapsed CPU time:PRO � mesh generation, initialization phase and postprocessingLC � modi�cations of matrices (in sparse storage technique) or right hand sidesMAT � CPU time for matrix generationsC-MG � elapsed time for multigrid in the CC3D test with the Vanka smootherU-MG � CPU times for solving velocity, resp., pressure subproblems via multigridP-MG if the discrete projection scheme PP2D is appliedExemplarily, we show the results of some selected computers for the direct stationary approach CC3Dand for the nonstationary scheme PP2D. All tests require about 128 Mbyte of RAM. The complete resultscan be found at our Homepage in the Internet. All `FeatFlow users' are invited to participate at thisspecial computer benchmark which is part of the freely-available FeatFlow software such that the runof this set of tests can be easily performed by everybody.Type total PRO LC MAT C-MGIBM RS6000/PWR3 (200 MHz) 603 5 17 113 468IBM RS6000/597 (160 MHz) 755 7 21 182 545HP C240 (240 MHz) 974 7 36 148 783DEC WS 21164 (500 MHz) 1029 5 59 159 804PC PENTIUM II (400 MHz) 1307 8 46 307 947SUN ULTRA 60 (300 MHz) 1368 6 41 231 1089IBM RS6000/590 (66 MHz) 1510 16 43 407 1043SUN ULTRA 450 (250 MHz) 1623 8 50 276 1289SGI R10000 (195 MHz) 1936 11 75 215 1634Table 6: (Selected) results for test case CC3D{SDThis Vanka smoother inside of the coupled multigrid solver CC3D (for velocity and pressure simul-tanously) is a memory-access intensive process which explains why the tested IBM's, HP's and DEC'sare only slightly faster than the Pentium II PC! The rates are quite in good agreement with the previoussparse Feat and Adap Indices and show that for such kind of `index-oriented' techniques PENTIUMII processors lead to very satisfying results, particularly regarding the cost/performance relation!15

Type total PRO LC MAT U-MG P-MGIBM RS6000/PWR3 (200 Mz) 789 12 49 71 388 269IBM RS6000/597 (160 MHz) 954 13 50 129 428 334DEC WS 21164 (500 MHz) 1342 7 107 95 639 539HP C240 (240 MHz) 1344 14 96 130 640 464SUN ULTRA 60 (300 MHz) 1597 16 110 135 783 552PC PENTIUM II (400 MHz) 1861 14 129 140 920 658IBM RS6000/590 (66 MHz) 1867 29 99 298 831 609SUN ULTRA 450 (250 MHz) 2087 20 134 163 1051 717SGI R10000 (195 MHz) 2701 19 213 188 1276 1000Table 7: (Selected) results for test case PP2D{UPWIn contrast, PP2D is based on operator-splitting ideas which require the numerous solution of scalarPDE problems for the velocity, resp., the pressure components. Since these kinds of tasks require muchmore arithmetic operations in comparison to memory accesses, the processors of type IBM, HP, DECand SUN are signi�cantly faster than the Pentium II processor. However, since this code is implementedwithout the optimized Sparse Banded Blas MV tools, we are still far away from the potentiallyavailable performance rates from the previous Feast Indices. These studies indicate how the futuregeneration of CFD solvers has to look like, such that very sophisticated and powerful numerical methodscan be combined with the available high performance rates on recent processors. For a mathematical andalgorithmic discussion of such concepts, look at [10] and [13]! Having exclusively such simulation resultswith sparse techniques, there would not be any need for other processors than INTEL's!7 Conclusions from the Feast Indices2D vs. 3D indices: The results from the 2D tests compared with the analogous measurements in 3Dare very similar: The IBM processors and the new DEC 21264 are the best, with respect to the totalranking and in most cases with regard to the speci�c auxiliary indices, too! However, the correspondingMFLOP/s rates are in 3D somewhat higher, at least for processors with `large' (level2) caches. Theexplanation might be that the applied matrices are less `sparse', with 27 instead of 9 bands, such thatcache-blocking strategies can be better optimized. On the other hand, computers `without' large secondlevel (L2) cache, as for instance the IBM PWR2's and probably pure vector computers, do not improve!As a consequence, these IBM workstations based on the PWR2 and the P2SC processors might befavourable for codes which have not yet incorporated such cache-based optimization strategies. Onthe other hand, also for certain nonconforming FEM approximations or cell-centered discretizationswhich generally lead to even more sparse matrices (with 5- or 7{point stencils only!), these kinds ofprocessors may be the `winners'. In contrast, for higher order discretizations as bi- or triquadratic(FEM) discretizations, the cache-oriented processors will even more improve!`Optimality' of the indices: The following results have been directly provided by the vendors suchthat we assume that `optimal' compiler options and hardware components have been utilized:� DEC 21264 and DEC 21164 workstation with 400 MHz� IBM POWER3 and P2SC, IBM F50 (PowerPC)� SGI ORIGIN 2000 with 250 MHz� SUN ULTRA 60 with 300 MHz and 360 MHz� HP V2250 16

All other processors have been tested by us. So, everybody is invited for improving the indices of thesemodels (and also the `vendor-tested' versions). In particular, the use of other FORTRAN compilers (F90,EGCS, GNU-FORTRAN, etc.) or di�erent programming languages appears to be interesting and, infact, such tests have been already performed by us (see [7]). For instance, compare in 3D the MFLOP/srates of DEC-PC and DEC-LINUX which are identical computers. While on the DEC-PC variant, theexecutable code has been compiled on a workstation environment with the original DEC compiler andthen copied to the PC-target computer, in the case of the DEC-LINUX con�guration the executable codehas been directly generated via the EGCS F77 compiler and then executed under LINUX. The di�erencesare very signi�cant!Further improvements do not have to be to restricted to examine the hardware components, it willbe also interesting to modify the test software ptest.f. So far, we have implemented in the SparseBanded Blas several versions with di�erent blocking strategies, and we have tested some speci�edblocking parameters: However, some modi�cations of these routines are allowed and even desired, as longas they are applicable to such special 9-point, resp., 27-point matrices which arise from conforming FEMdiscretizations on generalized tensorproduct meshes! Additionally, the speci�c adaption with respect tocertain machine-dependent values as the precise cache sizes or number of registers has not been applied upto now. Hence, there is still a large potential to gain further improvements for such low level NumericalLinear Algebra routines. Look also at the `data locality' research project of U. R�ude et al., which is welldescribed at http://wwwbode.informatik.tu-muenchen.de/Par/arch/cache/index.html and whichcontains a lot of further literature and activities in this �eld.Feast Indices vs. application- and problem-speci�c results: The shown Feast Indices - totalor auxiliary - are only averaged values. For many applications, it might appear to be much morerealistic if the corresponding results for speci�c tasks and particularly for di�erent problem sizes areexplicitely considered. Then, the observed di�erences between the processors may be much larger thanthe Feast Indices do indicate! For instance, the DEC 21164 processor shows excellent performancefor `small' problems, with dramatic losses of performance if the problem size increases. So, it mightbe much more favourable to work on `many' small patches (with 500 MFLOP/s) instead of `few' largerpatches, with 50 MFLOP/s only. Therefore, watch out for your own speci�c problem con�guration! Theprevious FeatFlow Benchmark has shown that the corresponding results are signi�cantly dependingon the numerical method and solution algorithm, and that the di�erences in the resulting performancemay be much weaker. Nevertheless, keep in mind that those FeatFlow results have been obtained viaclassical sparse techniques only, in contrast to the architecture-optimized results of the Feast Indices!Additionally, if one performes similar tests with recent object-oriented languages, as for instance C++,you should compare with those optimized Feast results which really exploit the FORTRAN facilities.So, there is a good chance for a true comparison of FORTRAN77 with C++ or similar!IBM POWER2 and POWER3: While the tested POWER2 and especially P2SC variants showan excellent behaviour for the sparse banded techniques, they demonstrate dramatic losses of per-formance for the sparse applications! As explained before, they seem to be quite robust withrespect to `cache-optimized' problems, while they may `loose' against processors with larger cache-architectures if the matrices get less sparse. Therefore, they belong to our favourites for applicationsin Feast - and also FeatFlow - which are mainly based on the described generalized tensorprod-uct meshes on the lowest level.In contrast, the new POWER3 processor appears to be a very robust and e�cient `work horse' whichcan be applied for classical sparse as well as for our optimized highly structured Numerical LinearAlgebra components. This computer is beside the DEC 21264 the clear winner at the moment!IBM PowerPC F50: This `low cost' model can be viewed as rival of PENTIUM II PC's, with respectto price and performance. Therefore, look at our ratings of the PENTIUM world!DEC 21164 and 21264, CRAY T3E: The older 21164 processor shows huge performance problems17

as soon as the problem size increases: Up to now, none of our cache-optimization strategies seemsto work �ne, in contrast to (almost) all other platforms. Similar problems are valid for the CRAYT3E (Stuttgart) which is based on a variant of the 21164 processor. It might be necessary thatfurther optimizations are performed directly by CRAY!On the other hand, the new 21264 processor improves in a signi�cant way: Having the same clockrate of 500 MHz, the speed-up is almost a factor of 3! Using the KAP preprocessor, the performancecan be further increased, however it is not clear to us if this additional speed-up can be achieved inmore complex numerical simulations, as for instance in FeatFlow. Nevertheless, with or withoutthis KAP preprocessor, the DEC 21264 chip is the clear winner beside the IBM POWER3 processor!HP, SGI and SUN: The performance of the `top models' of these vendors - and probably the prices, too- is very similar. The processors seem to be quite robust with respect to sparseMV applications whilethey cannot achieve the same high MFLOP/s rates for highly structured data as IBM and DEC. Onthe other hand, it might be expected that the prices are correspondingly cheaper, too. Therefore,these models are typical `mid-range work horses' for most numerical simulations, especially duringcode development and code testing. However, it is not clear if they will provide the computingpower which seems to be necessary for many `real life' problems. At the moment, we are not sureabout the `real' quality of the HP V2250; we can only hope that the corresponding 3D test will beperformed to guarantee a better rating of this model!INTEL PENTIUM II: One of our problems with this processor is that we could not get into contactwith INTEL to let them perform their own optimizations, maybe with special compiler options!Additionally, we could only apply the (freely available) EGCS F77 compiler. At the moment, thisprocessor type seems to be quite `insensible', regarding cache optimization strategies as well as withrespect to performance degradation through sparse MV techniques. Based on the cheapest price,this hardware selection is the clear winner if highly unstructured data and sparse MV techniquesare applied, for instance in fully adaptive FEM simulations. However, this is more due to the hugelosses of the other processors than based on the own high performance: We compare 20 MFLOP/swith less than 10 MFLOP/s's! On the other hand, we have not �gured out so far `good' optimizationstrategies for highly structured data such that our measured performance values are often slowerby a factor of 5 and even more! Nevertheless, we claim that for most available software tools whichare based on sparse techniques (or which do not use FORTRAN or C!), the choice of PENTIUM IIprocessors may be preferable.Actually, the speci�c choice of optimal (?) hardware can be determined via following `thumb rules':� For fully unstructured data and corresponding sparse MV techniques, all hardware platforms showslow performance only. The implementation of corresponding tools is quite easy and straightforward,especially if available software tools as for instance SPARSKIT [16], SPARSEBLAS [15], NISTBLAS[17] or similar are employed. So, the time and work for the `code development' may be quite fast,but it seems to be impossible to obtain high performance rates since the resulting e�ciency ismainly due to the cost of memory access and less due to the possible performance of the processors.Therefore, we recommend the use of PENTIUM PC's since they are by far the cheapest ones!Additionally, the choice of the programming language might appear to be quite unimportant sinceno special facilities can be exploited, not even by FORTRAN! Nevertheless, our experience is thateven for such applications FORTRAN77 tools can be signi�cantly faster than C++ codes!� On the other hand, if one spends more time and work in software concepts and correspondinglyin special numerical approaches which are able to exploit `caching in' and `pipelining', the use ofmodern workstation processors and corresponding optimized FORTRAN compilers is advisable! Atthe moment, only these hardware/software combinations seem to be able to really exploit a higherpercentage of today's high performance rates. However, as the Feast project shows, the design18

and development of such simulation tools can be much harder, but the �nal gain in CPU time andhence the gain of validity for the simulation data will be great!Based on the actual Feast Indices, we clearly prefer both IBM's and DEC's top models. Thedi�erence in single processor performance appears to be a factor of 10 in the maximum, such thatone might propose to take 10 processors of a slower type to gain similar performance. However, keepin mind that parallelization is always a hard job, with regard to numerical design, implementationtasks and also stability of the hardware! If one really would be successful to apply a completenumerical simulation with several hundreds of MFLOP/s on one single processor with 4 GByteRAM, it will be very hard to beat this performance on a parallel system, especially if very `strong'numerical components are used which are often speci�cally adapted for sequential runs!� The performance of future processors will change, but looking at the `historical' development itseems that certain processor characteristics remain preserved: The IBM processors have been andstill are very e�cient for highly structured data, while SUN, SGI or HP are the typical `robust workhorses' for all kind of numerical simulations. So, we believe that the speci�c characteristics of thedi�erent processor families will remain valid in some sense for the next future!Therefore, we end with the following �nal remarks:1. Do not base your rating of computers exclusively on the clock rates or other technical details!2. Make your own tests or look at performance ratings which are representative for your speci�c ap-plications and needs!3. Always keep in mind that there are numerous hidden traps to loose computing performance. In fact,it is and it will be even more and more di�cult to achieve a signi�cant percentage of the growingpeak rates on modern processors!8 AcknowledgementsThe recent state of the Feast Indices is due to the `successful' work of many people. Let me mentionthe Feast group and especially Alex Runge who is the major person to evaluate and particularly to`prepare' the speci�c results in text-based and graphical ways.Additionally, we were very pleased about the `spontaneous' participation of the processor vendors andthe help of many other persons: Markus Zahn from `Rechenzentrum der Universit�at Augsburg', MatthiasClaus from `Rechenzentrum der TU Chemnitz', Arnd Meyer from `Universit�at Chemnitz', Uli R�ude from`Universit�at Augsburg', Brigitte M�ollenho� from `Rechenzentrum der Universit�at Heidelberg', RainerWehrse from `Universit�at Heidelberg', Juan Porta, Holger Holtho� and Christoph Pospiech from IBM,Werner H�ohn from HP, Ralf Lange from SGI, Ulrich Gr�af from SUN, Joseph Pareti from DEC/COMPAQand many more. In advance, let us already thank all `future test persons' !Without their help, the more or less complete data bank with respect to today available computer systemswould not have been possible. On the other hand, also the next generation of processors, computermemory and compilers has to be continuously tested. If therefore su�ciently many `test persons' activelyparticipate in this processor benchmarking, there is a good chance to create a quite simple but neverthelessrealistic rating of modern hardware platforms, particularly in addition to the well-known LINPACK orSPEC benchmarks. So, please feel free to contribute `new' indices to this new data bank which togetherwith the required software can be found under the FeatFlow Homepage:http://www.iwr.uni-heidelberg.de/~featflow19

References (see also http://gaia.iwr.uni-heidelberg.de/~ture)[1] Altieri, M.: Robuste und e�ziente Mehrgitter-Verfahren auf verallgemeinerten Tensorprodukt-Gittern, Diploma Thesis, to be published[2] Becker, Chr.: FEAST - The realization of Finite Element software for high-performance applica-tions, PhD Thesis, to be published[3] Hellwagner, H., R�ude, U., Stals, L., Wei�, Chr.: Data locality optimizations to improve the e�ciencyof multigrid methods, Proc. 14th GAMM Seminar `Concepts of Numerical Software', Kiel, January1998, NNFM, Vieweg, 1998[4] Kilian, S.: E�cient parallel iterative solvers of ScaRC-type and their application to the incompress-ible Navier-Stokes equations, PhD Thesis, to be published[5] Kilian, S., Turek, S.: An example for parallel ScaRC and its application to the incompressibleNavier-Stokes equations, Proc. ENUMATH-97, Heidelberg, October 1997, World Science Publ., 1998[6] R�ude, U.: Technological trends and their impact on the future of supercomputers, to appear in: HighPerformance Scienti�c and Engineering Computing (H.-J. Bungartz, F. Durst, Chr. Zenger, eds.),LNCSE, Springer-Verlag, 1999[7] Runge, A.: Zur realistischen Leistung von Software-Komponenten und modernen Prozessoren zurnumerischen Simulation von Partiellen Di�erentialgleichungen, Diploma Thesis, to be published[8] Sch�afer, M., Turek, S.: Benchmark computations of laminar ow around cylinder, in E.H. Hirschel(editor), Flow Simulation with High-Performance Computers II, Volume 52 of Notes on NumericalFluid Mechanics, pp. 547{566, Vieweg, 1996[9] Turek, S.: Konsequenzen eines numerischen `Elch Tests' f�ur Computersimulationen, Technical Re-port SFB 359, University of Heidelberg, 46, 1998[10] Turek, S.: E�cient Solvers for Incompressible Flow Problems: An Algorithmic Approach in View ofComputational Aspects, LNCSE 6, Springer, 1999[11] Turek, S. et al.: Some basic concepts of Feast, Proc. 14th GAMM Seminar `Concepts of NumericalSoftware', Kiel, January 1998, NNFM, Vieweg, 1998[12] Turek, S. et al.: On the realistic performance of components in iterative solvers, to appear in: HighPerformance Scienti�c and Engineering Computing (H.-J. Bungartz, F. Durst, Chr. Zenger, eds.),LNCSE, Springer, 1999[13] Turek, S. et al.: Trends in processor technology and their impact on Numerics for PDE's, to appear(available via Internet)[14] Turek, S. et al.: Proposal for Sparse Banded BLAS techniques, to appear (available via Internet)[15] BLAS Technical Forum, http://www.netlib.org/cgi-bin/checkout/blast/blast.pl[16] SPARSKIT (by Y. Saad), http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html[17] The NIST Sparse BLAS, http://math.nist.gov/spblas[18] The national technology roadmap for semiconductors, 1997 edition,http://www.sematech.org/public/roadmap/index.htm
20

Appendix: Some Feast Indices

FEAST−Index 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Computer Feast Feast-v Feast-c Feat AdapDEC-WS-21264-500MHz-KAP 240 220 476 66 47DEC-WS-21264-500MHz 203 185 387 80 54IBM-PWR3-200MHz 199 172 410 77 43IBM-PWR2SC-397-160MHz 161 153 297 58 21IBM-PWR2SC-597-160MHz 159 154 289 52 19SGI-ORIGIN2000-250MHz 127 106 275 43 36SUN-ULTRA60-360MHz 116 90 276 34 26HP-C240-240MHz 113 90 261 39 26CRAY-T3E(STUTTG.) 89 78 185 31 11IBM-PWR2-590-66MHz 86 87 140 31 17DEC-WS-21164-400MHz 84 68 187 32 22SGI-ORIGIN200-180MHz 84 71 174 34 27SUN-ULTRA60-300MHz 79 69 162 28 21DEC-PC-21164-533MHz 79 62 181 31 17DEC-WS-21164-500MHz 78 63 186 18 14HP-PA8000 75 58 179 25 15SUN-ULTRA2I-333MHz 65 51 148 28 20SGI-10K-IP25-195MHz 62 47 150 18 13SUN-ULTRA450-250MHz 59 45 138 21 14DEC-PC-21164-533MHz-EGCS 57 48 121 21 14SUN-ULTRA1-200MHz 56 44 129 23 15PENTIUMII-400MHz 52 45 102 26 21SUN-ULTRA1-140MHz 39 33 83 16 8IBM-PWR-580 39 39 63 14 7SGI-R8000-75MHz 35 25 92 11 8PENTIUMII-266MHz 35 30 69 16 14PENTIUM-PRO-200 23 18 51 10 7HP-735 19 15 45 8 5Table 8: The `total' Feast Index in 3D and its (major) auxiliary indices: The �gure gives agraphical representation of the `total' Feast Index in 3D whereat the values correspond to averagedMFLOP/s rates! Additionally, the table shows the results of the (major) auxiliary indices which havebeen explained in Section 5; their graphical presentation and a direct comparison to the 2D values isgiven later. Keep in mind that these are averaged MFLOP/s rates only which may signi�cantly di�erfrom the results for speci�c problem sizes! 21

FEAST−Index 2D
0

25

50

75

100

125

150

175

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Computer Feast Feast-v Feast-c Feat AdapDEC-WS-21264-500MHz-KAP 165 153 313 55 52IBM-PWR3-200MHz 152 140 262 85 62IBM-PWR2SC-597-160MHz 143 142 233 63 38IBM-PWR2SC-397-160MHz 142 141 233 64 38DEC-WS-21264-500MHz 132 121 248 53 49HP-V2250 118 108 229 38 34HP-C240-240MHz 89 82 166 32 30SUN-ULTRA60-360MHz 89 78 171 41 38IBM-PWR2-590-66MHz 85 88 128 36 25SGI-ORIGIN2000-250MHz 84 70 175 33 32CRAY-T3E(STUTTG.) 71 58 147 36 20SUN-ULTRA60-300MHz 68 61 122 35 32HP-PA8000 61 57 116 22 17SGI-ORIGIN200-180MHz 61 54 123 24 22DEC-PC-21164-533MHz 59 48 129 21 19DEC-WS-21164-500MHz 58 49 122 20 20DEC-WS-21164-400MHz 56 49 111 20 21SUN-ULTRA2I-333MHz 50 42 98 23 24SUN-ULTRA450-250MHz 49 42 98 19 20SUN-ULTRA1-200MHz 48 43 93 19 17PENTIUMII-400MHz 45 41 80 24 21SGI-R10000-IP25-195MHz 41 35 87 14 14PWRPC-F50-333MHz 36 31 74 12 10IBM-PWR-580 32 31 53 15 9SUN-ULTRA1-140MHz 32 29 60 13 10PENTIUMII-266MHz 29 27 51 15 13SGI-R8000-75MHz 28 23 56 13 15PENTIUM-PRO-200 17 16 33 6 6SGI-R10000-150MHz 16 12 41 5 7HP-735 16 14 32 5 5Table 9: The `total' Feast Index in 2D and its (major) auxiliary indices: The �gure gives agraphical representation of the `total' Feast Index in 2D, while the table shows the results of the (major)auxiliary indices; a direct comparison with the 3D values is given later. One remarkable result is thatthe performance in 2D is smaller than in 3D, due to the more compact matrices (see the Conclusions).22

FEAT−total 3D
0

10

20

30

40

50

60

70

80

90

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAT − Level 3 3D
0

10

20

30

40

50

60

70

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAT − Level 2 3D
0

10

20

30

40

50

60

70

80

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAT − Level 1 3D
0

25

50

75

100

125

150

175

200

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 7: Feat Index in 3D: The �rst row shows the Feat Index, followed by the speci�c results for theFEATMV routines (see Section 4) on di�erent mesh levels. The computations demonstrate the dependenceon the problem size and the kind of indexed access via the described numbering strategies (compare withthe following Adap Index!). The main results are that the resulting MFLOP/s rates are quite slowcompared with the following results for performing the Sparse Banded Blas-like MV multiplicationwith the same (!!!) matrix. Beside DEC's and IBM's top models, the SGI's and particularly thePENTIUM's lead to (relatively) good results. In contrast, POWER2 models (IBM) and older DEC's(21164, CRAY T3E) deteriorate on the �nest level 3 to about 10 MFLOP/s only! The actual orderingof the processors is due to the total Feast Index and shows impressively that some of our `preferred'machines may have more or less problems with the described sparse techniques due to massive cachemisses! Further increasing of the problem size can lead to even still slower performance results (compareLevel 3 vs. Level 1). 23

ADAP−total 3D
0

5

10

15

20

25

30

35

40

45

50

55

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

ADAP − Level 3 3D
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

ADAP − Level 2 3D
0

10

20

30

40

50

60

70

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

ADAP − Level 1 3D
0

25

50

75

100

125

150

175

200

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 8: Adap Index in 3D: The �rst row shows the Adap Index, followed by the speci�c resultsfor the ADAP MV routines (see Section 4) on di�erent mesh levels. Due to the even higher jumps in thenumbering of neighboured vertices, the MFLOP/s rates further decrease and are of maximum size 25(!!!) on level 3! Even both DEC's and IBM's top models show about 20 MFLOP/s only, while againthe SGI's and particularly the PENTIUM's lead to the (relatively) best results. However, we compare20 MFLOP/s as best values with less than 10 MFLOP/s for many other processors! Additionally to theprevious Feat Index, the dependence on the mesh level, resp., the problem size, gets much more clearand varies up to a factor of 10 between Level 1 and Level 3!24

MV/V−total 3D
0

25

50

75

100

125

150

175

200

225

250

275

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/V − Level 3 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/V − Level 2 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/V − Level 1 3D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 9: Feast-mv-v Index in 3D: The �rst row shows the Feast-mv-v Index, followed by thespeci�c results for the MV-V routines on the di�erent mesh levels. The computations demonstrate themuch weaker dependence on the problem size, at least for some of the processors (it is obvious that forproblems which �t completely into the cache, the rates are often better!). The main results are thatthe resulting MFLOP/s rates are essentially improved through the applied `caching in' and `pipelining'strategies, especially if compared with the previous sparse indices. Nevertheless, we expect in future evenhigher improvements if more machine-speci�c optimizations for this task are applied!25

MV/C−total 3D
0

100

200

300

400

500

600

700

800

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/C Level 3 3D
0

100

200

300

400

500

600

700

800

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/C Level 2 3D
0

100

200

300

400

500

600

700

800

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MV/C Level 1 3D
0

100

200

300

400

500

600

700

800

900

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 10: Feast-mv-c Index in 3D: The �rst row shows the Feast-mv-c Index, followed by thespeci�c results for the MV-C routines on the di�erent mesh levels. These studies show the importance ofthe main strategy in Feast : `Detect locally structured parts and exploit the correspondingly regulardata' ! More than 700 MFLOP/s are realistic which have to be compared with the previous sparse indices!26

MV/V−total 2D
0

25

50

75

100

125

150

175

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/V − Level 5 2D
0

25

50

75

100

125

150

175

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/V − Level 3 2D
0

25

50

75

100

125

150

175

200

225

250

275

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/V − Level 1 2D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Figure 11: Feast-mv-v Index in 2D: The �rst row shows the Feast-mv-v Index, followed by thespeci�c results for the MV-V routines on the di�erent mesh levels. In contrast to the previous 3D case, the`older' POWER2 architecture by IBM is superior which is equipped with much smaller L2-caches! Dueto the more compact matrices (9{point instead of 27{point matrices in 3D!), the processors with largercache sizes cannot gain the same improvements as in the 3D case. The quality of the `really old' IBM590 with 66 MHz clock rate only is surprisingly excellent if compared with many new processors!27

MV/C−total 2D
0

100

200

300

400

500

600

700

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/C − Level 5 2D
0

100

200

300

400

500

600

700

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/C − Level 3 2D
0

100

200

300

400

500

600

700

800

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MV/C − Level 1 2D
0

100

200

300

400

500

600

700

800

900

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Figure 12: Feast-mv-c Index in 2D: The �rst row shows the Feast-mv-c Index, followed by thespeci�c results for the MV-C routines on the di�erent mesh levels. Again, these rates - up to almost 900MFLOP/s - show the absolut importance of exploiting such structured patches if available. However,they also show how hard (or even impossible at the moment!) it is for certain computer architectures toachieve these high rates for large problem sizes. 28

MGLGS/V−total 3D
0

25

50

75

100

125

150

175

200

225

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 3 3D
0

25

50

75

100

125

150

175

200

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 2 3D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/V − Level 1 3D
0

50

100

150

200

250

300

350

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 13: Feast-mglgs-v Index in 3D: The �rst row shows the Feast-mglgs-v Index, followed bythe speci�c results for the M-TRIGS routines on di�erent mesh levels. The computations show that notonly MV multiplications can be e�ciently applied, but also complete multigrid algorithms with a veryrobust smoother inside which works very e�cient for regular as well as anisotropic meshes (see [1]).29

MGLGS/C−total 3D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/C − Level 3 3D
0

50

100

150

200

250

300

350

400

450

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/C − Level 2 3D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

MGLGS/C − Level 1 3D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735Figure 14: Feast-mglgs-c Index in 3D: The �rst row shows the Feast-mglgs-c Index, followed bythe speci�c results for the M-TRIGS routines on the di�erent mesh levels. Again, the demand for detectinglocally structured patches is demonstrated since complex multigrid solvers with a very high numericalcomplexity can be performed with a correspondingly excellent computational e�ciency, too.30

MGLGS/V−total 2D
0

20

40

60

80

100

120

140

160

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/V − Level 5 2D
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/V − Level 3 2D
0

25

50

75

100

125

150

175

200

225

250

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/V− Level 1 2D
0

50

100

150

200

250

300

350

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Figure 15: Feast-mglgs-v Index in 2D: The �rst row shows the Feast-mglgs-v Index, followed bythe speci�c results for the M-TRIGS routines on di�erent mesh levels. The 2D results are somewhat sloweras the 3D case, as already indicated by the MFLOP/s rates for MV-V multiplication.31

MGLGS/C−total 2D
0

25

50

75

100

125

150

175

200

225

250

275

300

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/C − Level 5 2D
0

25

50

75

100

125

150

175

200

225

250

275

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/C − Level 3 2D
0

50

100

150

200

250

300

350

400

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

MGLGS/C − Level 1 2D
0

50

100

150

200

250

300

350

400

450

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Figure 16: Feast-mglgs-c Index in 2D: The �rst row shows the Feast-mglgs-c Index, followed bythe speci�c results for the M-TRIGS routines on di�erent mesh levels. The 2D results are somewhat sloweras the 3D case, as already indicated by the MFLOP/s rates for MV-C multiplication.32

FEAST/C−total 3D
0

50

100

150

200

250

300

350

400

450

500

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAST/C−total 2D
0

25

50

75

100

125

150

175

200

225

250

275

300

325

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

FEAST/V−total 3D
0

25

50

75

100

125

150

175

200

225

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAST/V−total 2D
0

20

40

60

80

100

120

140

160

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735

FEAT−total 3D
0

10

20

30

40

50

60

70

80

90

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

FEAT−total 2D
0

10

20

30

40

50

60

70

80

90

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

Pentium Pro (200)

R10000 (150)

HP 735

ADAP−total 3D
0

5

10

15

20

25

30

35

40

45

50

55

21264 WS/KAP

21264 WS (500)

PWR3 (200)

PWR2/397 (160)

PWR2/597 (160)

ORIGIN 2000

ULTRA60 (360)

HP C240 (236)

CRAY T3E (433)

PWR2/590 (66)

ORIGIN 200

21164 WS (400)

21164 PC (533)

21164 WS (500)

HP PA8000

ULTRA60 (300)

ULTRA10 (333)

R10000 (195)

ULTRA E450 (250)

ULTRA1 (200)

21164 Linux (533)

Pentium II (400)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

HP 735

ADAP−total 2D
0

5

10

15

20

25

30

35

40

45

50

55

60

65

21264 WS/KAP

PWR3 (200)

PWR2/597 (160)

PWR2/397 (160)

21264 WS (500)

HP V2250 (236)

HP C240 (236)

ULTRA60 (360)

ORIGIN 2000

PWR2/590 (66)

CRAY T3E (433)

ULTRA60 (300)

ORIGIN 200

HP PA8000

21164 PC (533)

21164 WS (500)

21164 WS (400)

ULTRA10 (333)

ULTRA E450 (250)

ULTRA1 (200)

Pentium II (400)

R10000 (195)

PPC/F50 (333)

ULTRA1 (140)

PWR/580

Pentium II (266)

R8000 (75)

PentiumPro (200)

R10000 (150)

HP 735Figure 17: Some indices (2D vs. 3D): The reader should compare the absolute MFLOP/s results whichare somewhat higher in 3D for the Sparse Banded Blas applications in Feast.33

