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Summary. A ‘fictitious boundary method’ for computing incompressible flows with
complicated small-scale and/or time-dependent geometric details is presented. The
underlying technique is based on a special treatment of Dirichlet boundary condi-
tions, particularly for FEM discretizations, together with so-called ‘iterative filtering
techniques’ in the context of hierarchical multigrid approaches such that the flow can
be efficienctly computed on a fixed computational mesh while the solid boundaries
are allowed to move freely through the given mesh. The presented method provides
an easy way of incorporating geometrically complicated objects and time-dependent
boundary components into standard CFD codes to simulate (at least) the qualita-
tive flow behaviour of complex configurations. Furthermore, higher accuracy can be
reached via local mesh adaptation techniques which might be based on local (coarse)
mesh adaptation or mesh deformation techniques to avoid expensive (global) grid
reconstruction.

We explain the mathematical and algorithmic details and provide numerical ex-
amples based on the FeatFlow [13] software for incompressible flow to illustrate qual-
itatively and to examine quantitatively the presented fictitious boundary method,
for various stationary and time-dependent configurations. In particular, we com-
pare with standard approaches which use geometrically adapted meshes, and with
a ‘viscosity-density blockage’ method which describes internal objects via appropri-
ate settings of the density and viscosity parameters in the Navier-Stokes equations.
Moreover, we also discuss implementation details and software techniques which can
provide very high MFLOP/s rates for such techniques in combination with special
hierarchical data, matrix and solver structures.

1 Introduction

Flow configurations with numerous complex geometrical details and/or mov-
ing interfaces and boundaries have important applications in a variety of
physical and engineering areas such as flows around objects, fluid-structure
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interaction, multiphase flows with chemical reactions, stratified flows, bubble
dynamics, melting and solidification, crystal growth, etc. The numerical in-
vestigation of these physical problems has to take into account the effect of
the complicated stationary and/or moving boundaries, and it can require a
huge amount of time for the regeneration or deformation of the computational
grid when the corresponding interfaces or boundaries are changing. Develop-
ing an accurate, effective and robust approach for tackling these problems is
necessary: The overall aim is to deal successfully with the moving interfaces or
boundaries such that the accuracy of the numerical approximation is increased
while at the same time also the computational cost is decreased.

Generally speaking, there are (at least) two major approaches to simu-
late fluid flows with complex stationary and/or moving boundaries. One of
them is a ‘body-conformal approach’ which always keeps the computational
mesh in accordance to the geometrical details. Another one is a ‘fixed grid
approach’ in which case the mesh is (arbitrarily) fixed and internal objects
are allowed to move freely through the mesh. One big advantage of such ‘fixed
grid’ approaches over the conventional ‘body-conformal’ approach is that the
computational mesh remains unchanged such that the CPU cost can be sig-
nificantly decreased - less computational effort due to saving the expensive
mesh generation - and that such techniques can be easily incorporated into
standard CFD codes which mostly allow fixed computational grids without
local adaptivity only.

In this paper, we describe a ‘fictitious boundary method’ which works on
an arbitrarily fixed grid. To be more specific, we concentrate on the prob-
lem of how to manage time-dependent domains with complicated geometri-
cal structures inside of ‘standard’ CFD software. To be even more precise,
we additionally assume that (geometrical) multigrid solvers are applied such
that appropriate techniques for a sequence of meshes have to be designed. If
‘classical’ multigrid solvers are applied, one central problem is the sufficiently
accurate approximation of complex geometries and their associated boundary
curves or surfaces in a hierarchical way. While there is ”no” problem to design
(very) fine meshes which provide all necessary information, particularly with
professional mesh generation tools, the construction of sequences of ”coarser”
meshes may be more crucial; especially if one keeps in mind that sequences
of more or less nested meshes are necessary for multigrid.

One possible approach is to start with a coarse mesh which contains al-
ready most of geometrical fine-scale details. This technique may work effi-
ciently in 2D cases, but for analogous 3D applications the resulting ”coarsest”
mesh will be in general very large (in the range of more than 10,000 - 50,000
mesh cells) such that the typical multigrid efficiency is lost due to a dominat-
ing coarse grid solver. In contrast, completely different - since non–nested -
grids in comparison to the finest mesh may be used, but the corresponding
intergrid transfer routines, which interpolate from one mesh to another, are
difficult to handle. Consequently, the resulting multigrid solver spends most
of its time with grid transfer routines on lower levels. Further, the convergence
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rates may deteriorate since they massively depend on the choice of subgrids
and corresponding transfer operators as it is well-known from algebraic multi-
grid solvers.

Taking these problems into account, we propose another approach which is
embedded into a general framework for implementing boundary conditions in
iterative solution techniques: the iterative filtering technique in combination
with fictitious boundary conditions.

‘Employ a (rough) boundary parametrization which sufficiently describes all
large-scale structures with regard to the boundary conditions. Treat all fine-
scale features as interior objects such that the corresponding components in
all matrices and vectors are unknown degrees of freedom which are implicitely
incorporated into all iterative solution steps. Hence, standard tools for grid
refinement in interior regions are easily applicable and highly accurate ap-
proximations can be obtained. Further, utilize filtering techniques to project
the corresponding vector components onto the subspace of ”correct” boundary
conditions, before and directly after each iterative substep. This additionally
ensures the typical performance of standard multigrid solvers without requir-
ing additional modifications in the software components.’

Another important aspect is the corresponding modification of standard
(geometrical) multigrid components and the resulting multigrid convergence,
in particular if we apply the filtering process depending on the mesh level.
So, we might apply mesh-dependent filters in such a way that the number
of ‘internal’ objects is decreased when the mesh is coarsened, or the shape
may become coarser due to less grid points, or it might even happen that
the coarsest configurations for flow problems around internal objects do not
contain any object: On the coarse levels, we even could perform a pure channel
simulation while the internal objects are present only on the finer meshes!
Such a technique - assuming that the typical multigrid convergence behaviour
is preserved - of modifying the geometrical details on coarser meshes could be
a very powerful tool in the context of multilevel approaches.

It is quite understandable that such an approach might work well even
for the nonlinear Navier-Stokes equations, since the essential background idea
for our applied nonlinear solution schemes of quasi-Newton type is the strong
separation between nonlinear treatment and linear solution tools. Our
approach approximates nonlinear effects on the finest mesh only, while multi-
grid is exclusively applied to solve linear subproblems in a preconditioning
step. Consequently, we have to take care that at least the finest mesh is suffi-
ciently accurate to describe all important physical effects. However, the coarser
meshes are – roughly spoken – only involved to ”provide some spectral ap-
proximation for the acceleration of matrix problems” for the performed linear
multigrid. In this context, multigrid is only applied as very efficient linear pre-
conditioning tool, separated from the discretization aspects regarding the
nonlinearity. This is a very essential difference to direct nonlinear multigrid
approaches which require the approximation of analogous nonlinear problems
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on the coarser meshes, too. Then, due to the separation of both tasks, we can
apply standard multigrid tools without any modification and we can guar-
antee at least the fast treatment of the linear subproblems in each nonlinear
iteration step.

This approach may not be the best for some other problems in which
case nonlinear multigrid approaches can lead to better results. However, our
experience in the case of the incompressible Navier–Stokes equations shows
explicitely that this ”separation approach” seems to be superior. One reason is
that typically the nonlinear convergence behaviour is only determined by the
strength of the nonlinearity on the continuous level, that means the Reynolds
number, while mesh dependent effects are of (almost) no importance. Hence,
quasi-Newton schemes might be superior in comparison to nonlinear multigrid
approaches for such problem configurations.

Before we describe and analyse the corresponding numerical details in the
next section, we provide an example for applying this technique in the case of a
prototypical simulation of moving flaps in a channel. Figure 1 shows the norm
of the velocity as well as corresponding ‘Particle Tracing’ snapshots for simu-
lating the incompressible Navier-Stokes equations in a channel configuration
while the movement of the ‘flaps’ is analytically prescribed. All simulations
are computed on a fixed mesh such that the moving flaps are described via
the fictitious boundary conditions only and their position is incorporated via
the iterative filtering technique (from [12]).

2 Concepts for fictitious boundary conditions

2.1 The incompressible Navier-Stokes resp. Boussinesq equations

All following concepts for integrating boundary conditions into CFD soft-
ware for incompressible flow problems are realized in the FeatFlow software
[13] which is based on (nonconforming) FEM discretizations, adaptive im-
plicit time-stepping, nonlinear Newton-like methods, (geometrical) multigrid
solvers (for velocity, temperature and pressure separately as well as for all
physical quantities simultanously) on quite arbitrary domains. There exist
special solvers in the framework of the so-called ‘pressure Schur complement’
methodology (see [8]) which can be directly applied as stationary approaches
(‘CCnD’) as well as in fully nonstationary configurations (‘PPnD’) following
operator splitting ideas. The software is realized for n = 2 as well as n = 3
dimensions; however, in this paper we mainly restrict to the 2D variants which
already contain all important numerical features (Remark: The corresponding
3D realizations in FeatFlow do exist, too [13]).

For the following considerations, let Ω be a bounded domain with a piece-
wise smooth boundary Γ . The equations to be solved are the incompressible
Navier-Stokes, resp., Boussinesq equations
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Fig. 1. Prototypical application of the fictitious boundary conditions for ‘moving
flaps in a channel’ (from [12])

ρ
∂ u

∂ t
+ ρu · ∇u = f −∇p + ν∇2u + ρ jT , ∇ · u = 0

∂ T

∂ t
+ u · ∇T = νT∇

2T

where u is the velocity, p the pressure, ν the kinematic viscosity coefficient, ρ
the density, f source term which may include the gravitational force, νT the
diffusion coefficient for T which is the prototype for a transported quantity
such as temperature, density, viscosity, etc., j is the unit vector in the y-
direction. The Boussinesq approximation for the buoyancy forces is assumed
to be valid; i.e., only small temperature excursions from the mean temperature
are admitted. If we neglect the quantity T , resp., if j = 0 such that u and p
are independent of T , we obtain the incompressible Navier-Stokes equations.
The above equations are to be solved with u(x, t) = u∂(x, t) on parts of
the boundaries of the flow domain where u∂(x, t) is the prescribed boundary
velocity, including time-dependent moving boundaries.

2.2 Iterative filtering techniques

For a better illustration of these techniques which are not restricted to the
Navier-Stokes equations, we consider the following abstract continuous prob-
lem given in operator notation which - for reasons of simplicity - may be linked
to a typical second-order PDE (for instance, Poisson problem),
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Au = f . (1)

For a general variational approach, let V be a Hilbert space with inner
product (·, ·) and corresponding norm ‖ · ‖, and let a(· , ·) be a bilinear form.
We seek a solution to the following variational problem:

Find u ∈ V, such that: a(u, ϕ) = (f, ϕ) ∀ϕ ∈ V . (2)

This problem is approximated by a finite element method using a sequence
of finite dimensional subspaces ”Vh ⊂ V ” (also nonconforming FEM are al-
lowed) parameterized by a discretization parameter h, such that the discrete
problems read as usually:

Find uh ∈ Vh, such that: ah(uh, ϕ) = (fh, ϕ) ∀ϕ ∈ Vh . (3)

In matrix-vector notation, we derive the discrete linear system

AhUh = Fh . (4)

Further, we assume that the continuous problem is defined with corre-
sponding boundary conditions B(u) = g on a boundary part Γ . Let be B a
boundary operator which involves a combination of function values and par-
tial derivatives of u on Γ . In the following we imagine for simplicity that we
perform Dirichlet boundary values u = g on Γ . Then, besides the possiblity of
applying a typical penalty approach, there are the following three possiblities
after the discretization process to involve these boundary conditions into the
solution process of the matrix-vector problem (4). In all cases, we assume that
the matrix Ah (and also Uh and Fh) has not yet incorporated any boundary
condition which in fact corresponds to the corresponding natural boundary
condition due to the partial integration involved, for instance

∂nu = 0 on Γ = ∂Ω . (5)

Further, let Sh(Γ ) denote all degrees of freedom, resp., all components of
the solution vector Uh, which are related to the boundary Γ . For example,
in the case of bilinear finite elements these are the nodes on Γ (or better: on
Γh as an approximation to Γ ), while for the nonconforming rotated bilinear
elements (see [6]) the edges on Γ , resp., on Γh are associated. Then, we can
proceed as follows to apply Dirichlet boundary conditions:

1) Fully explicit treatment:
We eliminate in Ah all rows and columns belonging to Sh(Γ ). Additionally,
we modify all components of the right hand side vector Fh not belonging to
Sh(Γ ) according to this elimination process. Further, we may prescribe the
correspondingly prescribed Dirichlet values for all these components of the
vectors Uh and Fh which belong to Sh(Γ ). But this step is not necessary
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since all components of Sh(Γ ) are treated as being well-known and hence do
not longer belong to the set of unknowns. This process is often performed if
direct solvers (Gaussian elimination) are applied. However, problems arise if
the right hand sides change since corresponding modifications due to (then
already) eliminated matrix elements of Ah have to be repeated. As a further
consequence, two different matrices may be needed if the same operator A
is required with two different boundary conditions, for instance Dirichlet val-
ues for the momentum equations and natural settings for associated Poisson
problems in the incompressible Navier-Stokes equations.

2) Semi-implicit treatment:
We replace only those rows of Ah by rows of the identity matrix which cor-
respond to Sh(Γ ). The other rows and columns remain unchanged. Further,
during an initialization process only, we have to prescribe the given Dirichlet
values for all these components of the vectors Uh and Fh which belong to
Sh(Γ ). This setting guarantees in combination with iterative solvers that the
resulting solution vectors always satisfy the prescribed boundary conditions.
This approach seems to be the most common in the framework of iterative
solution tools. Although the components of Sh(Γ ) cannot change their value,
they belong explicitly to the set of unknowns and are treated by each compo-
nent of the iterative solver (e.g., smoothing, prolongation, restriction, defect
calculation, preconditioning). Again, two different matrices may be needed
when two different boundary conditions, for instance Dirichlet and natural
conditions, are prescribed for the same operator A.

3) Fully implicit treatment:
We do not modify Ah which consequently is the Neumann matrix due to natu-
ral boundary conditions (see [3]). Again, we have to prescribe the given Dirich-
let values for all these components of the vectors Uh and Fh which belong to
Sh(Γ ), but before and after each iteration step (filtering). All components of
the solution vectors have to be treated as unknowns by all components of
the iterative solvers. This approach is the most general for iterative solution
techniques. Even if different boundary conditions are involved with the same
operator A, we can always work with only one matrix Ah. Only the performed
filtering operator has to be changed.

While the use of direct solution tools often requires the application of the
fully explicit treatment, all three approaches are equivalent if iterative solvers
are applied, and lead to exactly the same results. We prefer the fully implicit
treatment since this is the most general approach for multigrid solvers and
finite element approaches. One important component inside is the projection
filter which administrates the boundary setting for all vector components of
Sh(Γ ) during the iterative procedure. This tool will be shown to be the essen-
tial trick for easy implementations of complicated boundary value settings, in
particular for small-scale details due to complicated geometrical boundaries
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and time-dependent moving boundary parts, and also with respect to several
boundary components for discretely divergence-free FEM [11].

Before we examine more carefully the numerical and algorithmic prop-
erties of this approach w.r.t. accuracy and robustness, hereby analysing
particularly the corresponding multigrid convergence behaviour, we shortly
present another (well-known) ‘fictitious boundary condition’ method which
does not necessarily capture (internal) geometrical objects via the computa-
tional mesh, too. Moreover, it does not require (complicated) modifications
of the source code due to changing bilinear forms for incorporating a typi-
cal penalty approach or for applying boundary conditions: it only prescribes
problem-adapted input parameters. In the following, we use specific values
for density and viscosity inside of the incompressible Navier-Stokes equations
which act as the corresponding filter to satisfy - approximately - the cor-
responding Dirichlet boundary conditions, at least for homogeneous no-slip
conditions.

2.3 Density-viscosity blocking techniques

Since the value of the density or viscosity inside of the Navier-Stokes equations
determines the state of fluid, the fluid changes into the state of solid when
the values of density or viscosity become infinity. Motivated by this idea, we
can use ‘huge’ values for the density or viscosity parameters to mark a solid
body which is positioned in the flow field. So, we can view it as another ficti-
tious boundary method. The difference is that in the previous ‘mesh blockage’
method, the mesh in the area occupied by a solid body is blocked, while in the
‘density-viscosity’ blockage method, the density or viscosity parameter inside
of the stationary and/or moving solid body is ‘blocked’.

It is obvious that this method is the easiest way to incorporate complicated
fine-scale structures into the code, since no geometrical adaptations have to be
performed and no changes in the code due to implementing boundary condi-
tions are necessary: Only the parameter values for density and viscosity have
to be prescribed in an appropriate way! However, it is also well-known that
multigrid-like solvers have problems with strongly discontinuous coefficients.
Moreover, the influence of the ‘strength’ of the discontinuity, that means the
size of the values for the ‘solid’ viscosity, resp., density, onto the resulting
solution, in particular w.r.t. physically interesting values directly on the sur-
face of the interior objects, is not clear. And, probably the most important
criticism, choosing finite parameters for density and viscosity as an approx-
imation for the ‘infinite’ values of a real solid leads to penetration from the
surrounding flow into this object since the corresponding - implicitely given -
natural boundary conditions on the interface between the solid and the sur-
rounding liquid do not enforce that u · n = 0 is valid. However, this internal
diffusion is mainly related to the actual size of viscosity and density, and the
time scale for observing such perturbations may be much larger than the ac-
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tual time interval for the calculation. These considerations will be subject of
our subsequent numerical analysis.

3 Numerical tests: Qualitative analysis

In this section we will show several applications of the fictitious boundary
methods in order to illustrate their flexibility and their qualitative behaviour
for quite complex configurations; a precise comparative study and quantita-
tive examination will be part of the next section. Here, we concentrate on
the main characteristics w.r.t. flexibility and applicability in the context of
incompressible flow simulations.

3.1 Numerical Examples for the ‘Iterative Filtering’ technique

Flow generated by an oscillating heated plate in an enclosure box.

In the first example, we consider a unit square with an interior heated plate
which is fixed at the center of the box (see Fig. 2). The length of the plate
is 0.6, thickness is 0.04. The enclosure boundary conditions consist of no-slip
walls, and constant cold temperature (T = 0) at horizontal and vertical walls
while the surface of the plate is held at a constant hot temperature (T = 15).
The fluid is initially at rest.

Cold

Cold

Cold

ColdHot

Hot

Fig. 2. Description of the ‘heated plate in a box’ problem

The time-dependent position of the plate is prescribed by a sinusoidally
oscillating rotation with angle velocity ω = 0.05πsin(0.1πt) (t is the time).
We use the fictitious boundary method which does not take care about the
employed mesh. Instead, we just need to generate a simple mesh for the whole
box, and then use a corresponding filter procedure to represent those elements
which are occupied by the plate. Fig. 3, Fig. 4 and Fig. 5 give snapshots for the
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contour plots of the norm of velocity, temperature and pressure distributions,
respectively. From these pictures, we can see that the fluid motion in the box
is initiated by the oscillating rotation of the plate, and the vortex shedding
and circulation is generated periodically in the box.

(a) t = 9.44 (b) t = 12.23 (c) t = 14.02

(d) t = 15.85 (e) t = 17.91 (f) t = 19.99

Fig. 3. Oscillating rotation of a heated plate in a box: norm of velocity

Flow generated by an oscillating cylinder in a channel.

The following flow configuration has been chosen to demonstrate the fictitious
boundary method for a configuration in which case the flow is disturbed by a
transversely oscillating circular cylinder such that vortex shedding is observed.
Here, we simulate a cylinder undergoing a sinusoidally transverse oscillation
with explicitely specified amplitudes and frequencies. The computational do-
main size is (L × H)=(2.2 × 0.41), L being the length of the channel, and
H is the width of the channel. The location of the cylinder center (x0, y0)
is (0.8, 0.2) relative to the left bottom corner of the domain. The cylinder
diameter D is equal to 0.2. No-slip condition is prescribed on the walls. The
fluid in the channel is initially at rest. The cylinder oscillates sinusoidally such
that the location of its center (xc, yc) is given by xc(t) = x0 + Asin(2πft);
yc(t) = y0, where t is the time, and A = 0.6 and f = 0.5 are the amplitude and
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(a) t = 9.44 (b) t = 12.23 (c) t = 14.02

(d) t = 15.85 (e) t = 17.91 (f) t = 19.99

Fig. 4. Oscillating rotation of a heated plate in a box: temperature

frequency of the oscillation, respectively. A nonuniform mesh is used in the
simulation such that enhanced resolution is provided in the cylinder vicinity
and in the wake. In the horizontal direction, improved resolution is provided
up to three diameters on either side of the cylinder location, which is adequate
to cover the near wake for all the oscillation amplitudes (see Fig. 6).

Fig. 7 gives a sequence of contour plots for velocity distributions which
show the shedding of vortices when the cylinder is oscillating in the channel.
Fig. 8 presents corresponding contour plots for the pressure distribution. From
these pictures, we can see that the flow in the channel is significantly disturbed
by the oscillating cylinder, and vortex shedding is generated periodically in
the wake of the cylinder. The range of the wake becomes longest when the
cylinder is at the end of the moving direction (t = 3.59, 4.44, 5.50), while
the flow is seriously perturbed and more complex (t = 4.01, 5.08) when the
cylinder is in the middle position of its oscillation.

3.2 Numerical Examples for ‘Density-Viscosity’ blocking

In this subsection, numerical examples for the flow around single or multiple
circular cylinders are presented by using the described density-viscosity block-
age method. We can see that the density-viscosity blockage method seems to
be a flexible and efficient tool to compute the flow with complex immersed
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(a) t = 9.44 (b) t = 12.23 (c) t = 14.02

(d) t = 15.85 (e) t = 17.91 (f) t = 19.99

Fig. 5. Oscillating rotation of a heated plate in a box: pressure

stationary boundaries. However, the numerical tests in the following Section
will show that this approach can be quite ‘dangerous’ since penetration into
the ‘solid’ cannot be avoided by this simple approach. Nevertheless, under-
standing the different time scales due to the simulation process and due to the
perturbations which are introduced by the size of the parameters, a qualitative
flow prediction with this methodology seems to be possible.

In the following simulations, the computational domain is L = 6.0 and
H = 1.2, with L and H being the length and the height of the channel. The
cylinder diameter D is equal to 0.2. No-slip is prescribed on the walls while
natural ‘do-nothing’ boundary conditions are employed at the right boundary.
A parabolic velocity U = U∞(H−y)y is prescribed at the inflow (the left part
of the channel). The Reynolds number is defined as Re = U∞D/ν. Again, a
fixed nonuniform mesh is used in the time-dependent simulation (see Fig. 6).

Fig. 9 and Fig. 10 show the numerical results for flow around a cylinder
with Re = 100. In this case, we set the value of density within the cylinder
equal to 105ρ, ρ is the normal density of the fluid. Fig. 9 (a) and (b) are the
velocity and vorticity in the region nearby the cylinder area. Fig. 10 (a) and
(b) are the corresponding pictures in the whole computational domain. We
can see that vortex shedding is initiated behind the cylinder which is imitated
by the high viscosity and density values. In Fig. 10, we set the value of the
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viscosity within the two circular cylinders into 109ν, ν is the normal viscosity
of the fluid. Fig. 10 (c) and (d) show the velocity and vorticity for the case of
Reynolds number Re = 100, respectively. We can see that the interaction of
vortices behind the wake of two cylinders is obvious and strong. Fig. 10 shows
the corresponding flow around three circular cylinder, again with Reynolds
number Re = 100. In this case, we set both the values of density and viscosity
into ‘infinity’ (105ρ and 109ν, respectively) within the three cylinder areas.
Fig. 10 (e) and (f) present the velocity and vorticity, respectively.

Fig. 6. Complete computational mesh and snapshot for actual ‘active elements’ on
the (globally) refined mesh (Remark: The filtering procedure (de-)activates edges
due to the nonconforming FEM approach for the velocity, but not pressure cells!)

4 Numerical tests: Quantitative analysis

4.1 Numerical analysis of multigrid convergence behaviour

We start with demonstrating the related (linear) multigrid behaviour when we
apply the fictitious boundary method together with (level-dependent) filtering
processes: here and in the following, the shown coarse meshes are successively
refined by connecting opposite midpoints, and LEVMAX corresponds to the
highest number of such global refinements. In the first example (see Table 1
for the coarse mesh and a typical snapshot for the pressure), we perform - on
the same hierarchy of meshes - calculations for (linear) Stokes flow. We vary
the filtering process by applying no filter at all - that means we calculate a
simple parabolic channel flow - in comparison to prescribing the corresponding
filter for flow around a cylinder on all mesh levels. In addition, we show results
for modified configurations which apply this filtering process on highest mesh
levels only, starting from the finest level LEVMAX down to level LEVMAX -
LEVFILT: Choosing LEVFILT=1 means that only the two finest meshes corre-
spond to ‘flow around cylinder’ while choosing LEVFILT=2, resp., LEVFILT=3
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(a) t = 3.59

(b) t = 4.01

(c) t = 4.44

(d) t = 5.08

(e) t = 5.50

Fig. 7. Sequential contour plots for velocity showing the shedding of vortices
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(a) t = 3.59

(b) t = 4.01

(c) t = 4.44

(d) t = 5.08

(e) t = 5.50

Fig. 8. Sequential contour plots for the pressure distribution
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(a) velocity

(b) vorticity

Fig. 9. (Zoomed) Flow around a circular cylinder (Re = 100)

denote the cases that the three highest, resp., the four highest level in the
mesh hierarchy contain the internal object.

It seems to be sufficient to perform such filter techniques on the three or
four finest levels only while on the coarser meshes a simple channel configura-
tion (without any interior object!) can be applied. In these cases, the resulting
multigrid rates do not (significantly) differ from the case of applying this filter
on all levels: To be on the safe side, the number of smoothing steps should be
increased if the filtering process is applied on the finest mesh levels only. This
technique of modifying the geometrical details on coarser meshes - taking less
objects or coarsening the objects in a level dependent way - has shown to be
a powerful tool in the context of multilevel approaches, in particular in 3D
(see the examples in www.featflow.de/album).

In the next simulations, we employ the same hierarchy of meshes - which do
not capture the interior objects - and analyse the nonlinear and linear solution
behaviour for a low Reynolds number configurations (Re ≈ 20) such that the
direct steady solver ‘CC2D’ from FeatFlow [13] can be applied. While the
nonlinearity is treated via a standard fixed point-defect correction approach
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(a) velocity

(b) vorticity

(c) velocity

(d) vorticity

(e) velocity

(f) vorticity

Fig. 10. Flow around one, two and three circular cylinders (Re = 100)
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LEVMAX Channel Flow Circle Flow LEVFILT=3 LEVFILT=2 LEVFILT=1

3 0.13 0.12 0.12 0.12 0.12
4 0.11 0.11 0.11 0.11 0.11
5 0.11 0.13 0.13 0.20 0.64
6 0.10 0.10 0.11 0.45 0.73

Table 1. Multigrid convergence (CC2D with 4 smoothing steps) for Stokes flow

(see [8] for all details), the linear auxiliary Oseen problems are treated with
the same coupled multigrid solver as before. However, in these configurations
we vary the number of interior objects between 3 and 6. The configuration ‘6’
in Table 2 corresponds to 6 interior circles on all mesh levels, while ‘LEVEL’
denotes the case that the number of inner circles is related to the (highest)
mesh level LEVMAX. The first number in each column denotes the number
of necessary nonlinear iteration steps while the second entry corresponds to
the total number of linear multigrid sweeps involved.

These numerical tests demonstrate the predicted result that the nonlinear
solution behaviour - for this low Reynolds number - is more or less independent
of the number of interior objects and the mesh level. Moreover, the linear
multigrid solver for the auxiliary Oseen problems is robust against variations
of the filtering process and produces the typical iteration numbers as known
for standard approaches which directly integrate the interior objects into the
computational mesh.

4.2 Analysis of approximation properties: Stationary case

The aim of the following tests is a systematic examination of the approxima-
tion properties of the fictitious boundary method, particularly in combination
with the iterative filtering approach. We perform the same stationary simula-
tions (flow around cylinder, Re = 20) as before, but on several meshes which
incorporate the circle into the (coarse) mesh (CIRC1 - CIRC3) and on various
meshes which are full channel meshes (CHAN1 - CHAN4). The following Fig.
11 shows different coarse meshes with various degrees of a priori semi-adapted
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LEVMAX LEVEL 6

3 6/11 6/11
4 6/11 6/11
5 6/11 6/11
6 6/11 6/11

Table 2. Snapshots for the resulting pressure for the ‘6 circle’ configurations on the
grid level LEVMAX=6 (top) in comparison to ‘3 circles’ on grid level LEVMAX=3;
the table shows the corresponding nonlinear and linear solution behaviour.

refinements near the location of the cylinder which have been successively re-
fined via connecting opposite midpoints.

The following Table 3 shows the results for the velocity (U1,U2) and the
pressure (P) in an interior grid point which is part of all types of meshes. Addi-
tionally, we measure the ‘pressure difference’ ∆P which involves the pressure
in the point before and behind the circle. In particular, the pressure differ-
ence ∆P is a very delicate quantity since it includes the result directly on the
interface which is captured by the mesh (CIRC1 - CIRC3) or by the filtering
process (CHAN1 - CHAN4).

First of all, we calculated a reference solution (obtained on the mesh
CIRC1 with more than 1 million grid points; reference values are also well-
known since this is exactly the stationary 2D configuration of the special ‘flow
around cylinder’ benchmark [7]). Based on the reference values, we figure out
which level of refinement, that means how many mesh cells, is necessary to
obtain an approximation with less than 1%, resp., 5% error. This number
can be used as an criterion for rating the approximation properties of the
different meshes and boundary implementation techniques since it directly
addresses the required mesh width and hence the accuracy of the examined
configurations.

The results for such low Reynolds number simulations show that an appro-
priate global grid refinement (for interior control values, in particular in the
right part of the channel which is the case for the evaluation of ‘P’ and ‘U1’)
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CIRC1

CIRC2

CIRC3

CHAN1

CHAN2

CHAN3

CHAN4

Fig. 11. Different coarse meshes

as well as adequate local mesh adaptation is necessary (in particular for the
‘boundary’ quantity ∆P ). Anyway, the fictitious boundary method with the
proposed filtering techniques proves to be competitive with the standard ap-
proaches - in terms of necessary grid points, multigrid sweeps and total CPU
timing - for such typical CFD applications. In particular, the configurations
CIRC1, resp., CIRC2, and the meshes CHAN2, resp., CHAN3 in the context
of the fictitious boundary conditions give comparable results, particularly for
the weaker, but usually satisfying criterion ‘5% error’.
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5% Accuracy

CIRC1 CIRC2 CIRC3 CHAN1 CHAN2 CHAN3 CHAN5

U1 2080 5632 32768 5632 8448 9216 9088

U2 2080 352 2048 352 2112 2304 9088

P 2080 1408 8192 352 2112 2304 36352

∆P 2080 1408 2048 5632 8448 2304 9088

1% Accuracy

CIRC1 CIRC2 CIRC3 CHAN1 CHAN2 CHAN3 CHAN5

U1 8320 90112 131072 360448 33280 36864 145408

U2 2080 1408 8192 1408 33280 9216 9088

P 8320 22528 131072 1408 2112 9216 581632

∆P 33280 22528 32768 360448 135168 9216 145408

Table 3. Required number of elements to satisfy the criterion ‘5% error’, resp., ‘1%
error’ for the different meshes and control quantities

4.3 Analysis of approximation properties: Nonstationary case

In the next test cases, we examine the resulting accuracy for the same con-
trol quantities, now for a medium range Reynolds number which leads to
periodical time-dependent vortex shedding behind the cylinder. Again, this
flow configuration follows the well-known ‘flow around cylinder’ benchmark
[7] which results in Re = 100. Since we are mainly interested in the spatial
accuracy of the fictitious boundary method, in particular w.r.t. capturing the
important effects near the interior objects, we try to eliminate the temporal
discretization error by choosing very small time steps. Then, we proceed the
nonstationary simulations until a fully periodical flow behaviour of all quan-
tities has been observed. Finally, we compare the results for one period (see
Fig. 12). To be more precise, we figure out how many levels of global grid
refinement, that means the required total number of mesh cells, are necessary
to produce a flow behaviour - for one period - such that the agreement with a
previously calculated reference solution is ‘OK’, ‘GOOD’, resp., ‘PERFECT’
(see the corresponding pictures in Fig. 12).

The following Table 4 shows the resulting number of mesh cells to sat-
isfy the indicated approximation quality for the different meshes, techniques
and quantities: CIRC1 - CIRC3 represent the standard approaches which
capture the interior object directly via the mesh and appropriate boundary
parametrizations. CHAN1 - CHAN4 lead to analogous results, but for a full
channel geometry without capturing the interior objects via grid points; the
circle is described via the fictitious boundary conditions together with the
proposed filtering techniques.

The typical results from such nonstationary simulations for medium Re
numbers show that a combination of local as well as global grid adaptation is
necessary if all relevant flow scales have to be resolved. Moreover, the results
also show that for such ‘simple’ (geometrical) configurations, the fictitious
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Fig. 12. Fitting of the results w.r.t. the control quantities ‘U2’ (left) and ‘∆P ’
(right) for the different categories

boundary method leads to comparative results as the standard approaches
with ‘body-fitted’ meshes, at least if we compare the number of grid refine-
ments, resp., the required total number of mesh cells/grid points in our com-
putational mesh. Since both implementations are almost identical - the only
difference is that we have to apply the filtering process after each matrix-
vector application which however costs O(N), N the number of unknowns,
arithmetic operations only - the resulting CPU times are more or less identical
since the number of nonlinear iterations and linear multigrid sweeps is almost
the same (see Table 2). Moreover, it is obvious that the right way to get higher
(local) accuracy is via local mesh adaptivity: Since the proposed ‘fixed mesh’
approach leads to a piecewise constant approximation of the boundaries only,
the local mesh size has to be decreased in an appropriate way. Another possi-
bility is a local deformation of the grid points to align them with the boundary
segments. Using this approach, the local mesh topology (‘connectivity’) is pre-
served while a piecewise linear approximation of 2nd order accuracy can be
obtained.
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‘OK’
CIRC1 CIRC2 CIRC3 CHAN1 CHAN2 CHAN3 CHAN4

U2 8320 22528 32768 22528 8448 9216 9088

∆P 8320 22528 32768 22528 8448 9216 9088

‘GOOD’
CIRC1 CIRC2 CIRC3 CHAN1 CHAN2 CHAN3 CHAN4

U2 33280 90112 131072 90112 33792 36864 36352

∆P 33280 22528 131072 90112 33792 36864 36352

‘PERFECT’
CIRC1 CIRC2 CIRC3 CHAN1 CHAN2 CHAN3 CHAN4

U2 133120 360448 524887 360448 135168 147456 145408

∆P 133120 90112 131072 360448 135168 147456 145408

Table 4. Required number of elements to satisfy the different quality criterions for
the proposed meshes/filtering techniques

4.4 Analysis of computational efficiency

The following examples in Fig. 13 show (local) generalized tensorproduct
meshes which allow such deformations and adaptive movements of the grid
points, however without destroying the connectivity between the grid points.
Therefore, locally adapted tensorproduct-like meshes with more or less arbi-
trary non-equidistant grid stretching can be generated.

Fig. 13. ‘Deformed’ and locally adapted generalized tensorproduct meshes for cap-
turing interior interfaces (from [4])

Since our complete computational mesh is built up - on a macro level -
by a numerous collection of such generalized tensorproduct meshes, the de-
scribed mesh adaptation can be performed locally - on certain macros only -
such that only a small part of (local) stiffness matrices has to be re-assembled.
Moreover, we preserve the full flexibility of standard FEM approaches since
the macro structure is allowed to be fully unstructured while the ‘substruc-
tures’ (= macros) consist of many structured parts only which however can
be adapted via mesh deformation, mesh alignment or local mesh refinement
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with hanging node techniques (see [9]). These meshing techniques have been
currently implemented into the FEM package FEAST (see [1]) which is a basic
tool box for FEM applications on high performance computers.

The underlying main philosophy in FEAST is to recursively split the global
problem into a sequence of local problems, preferably on such macros which
allow the robust and efficient solution of the auxiliary problems not only w.r.t.
high numerical efficiency, but also in terms of very high MFLOP/s rates. The
number of arithmetic operations tends to be larger than for the standard
approach, but these local operations are cheap [9]: Data moving, not data
processing is costly ! However, these ideas must be combined with correspond-
ing hierarchical data and matrix structures, which can exploit the described
tensorproduct-like meshes on each macro to achieve the high performance
rates for the necessary Numerical Linear Algebra components in the local
(multigrid) solvers. And, the introduced fictitious boundary/iterative filtering
techniques are important ingredients since this combination allows the use of
such highly structured, generalized tensorproduct-like meshes, in particular
for time-dependent constellations!

To demonstrate such performance considerations, we give an examples
with our FeatFlow code which is applied to a prototypical ”2D flow around a
car” configuration, and we measure the resulting MFLOP/s rates for the MV
multiplication inside of the multigrid solver for the momentum equation (see
[8] for mathematical and algorithmic details). We use the typical (for FEM
approaches) ‘two level’ (TL) numbering (old vertices preserve their numbers
if the mesh is refined), a version of the bandwidth-minimizing Cuthill-McKee
(CM) algorithm and an arbitrary ‘stochastic’ numbering. Hereby, we apply
sparse MV concepts which are the standard techniques in FEM codes (and
others), also well known as ‘compact storage’ technique: Depending on the
programming language, the matrix entries plus index arrays/lists/pointers
are stored as long arrays or heaps, containing the ‘nonzero elements’ only (for
instance, see [18] and the literature cited therein). While this sparse approach
can be applied for general unstructured meshes and arbitrary numberings of
the unknowns, no explicit advantage of (possible) highly structured parts can
be exploited. Consequently, a massive loss of performance with respect to
the possible peak rates may be expected since - at least for large problems
with more than 100,000 unknowns - no ‘caching in’ and ‘pipelining’ can be ex-
ploited such that the higher cost of memory access will dominate the resulting
MFLOP/s rates.

The following Table 5 shows that highly structured MV techniques (‘sparse
banded BLAS’ SBB [9]) can be performed much faster since we can exploit
vectorization facilities and data locality. Additionally, we can further differ
between the case of variable matrix entries (‘xxx-V’) and constant bands (‘xxx-
C’) as typical for Poisson-like PDE’s.

Summing up, restringing the grid geometry to a collection of generalized
tensorproduct meshes, complete (local) multigrid solvers with very sophisti-
cated smoothers can realized which can actually work with several hundreds
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Computer #Unknowns CM TL STO ILU-CM ILU-TL ILU-STO

8,320 147 136 116 90 76 72
DEC 21264 33,280 125 105 100 86 73 63
(667 MHz) 133,120 81 71 58 81 52 55

‘ES40’ 532,480 60 51 21 40 35 22
2,129,920 58 47 13 38 30 14
8,519,680 58 45 10 36 30 11

Computer #Unknowns STO (CM) SBB-V SBB-C MGTRI-V MGTRI-C

DEC 21264 652 178 (205) 538 795 370 452
(667 MHz) 2572 110 (224) 358 1010 314 487

‘ES40’ 10252 11 (78) 158 813 185 401

Table 5. MFLOP/s rates for sparse MV multiplication and ILU smoothing in Feat-
Flow for different numberings and grid levels; the second table shows corresponding
performance results on a generalized tensorproduct grid for the Poisson problem,
discretized by conforming bilinear FEM. We compare the standard sparse approach
(STO/CM) with the ‘sparse banded BLAS’ techniques (SBB-V/C) and correspond-
ing multigrid solvers MGTRI with very robust ‘linewise Gauß-Seidel smoothers’.

of MFLOP/s on recent hardware platforms. Moreover, we can incorporate
these ‘local structures’ into very complex FEM simulation tools on arbi-
trary domains such that modern numerical components can be applied, as
for instance adaptive meshing and a posteriori error control, or generalized
multigrid/domain decomposition solvers of SCARC type (see [9]). Since our
introduced fictitious boundary methods together with the iterative filtering
techniques allow the use of fixed, time-independent meshes - up to local adap-
tation via mesh deformation and alignement - the demonstrated high numeri-
cal efficiency of this approach can be linked with the very high computational
efficiency of corresponding data structures, such that the combination of such
numerical and algorithmic tools promises a significant performance gain for
future simulation codes.

4.5 ‘Iterative filtering’ vs. ‘Density-Viscosity blocking’

Finally, we shortly analyse the alternatively proposed fictitious boundary
method, namely the addressing of internal objects via prescribing ‘huge’ val-
ues for viscosity, resp., density. It is obvious that this approach seems to be
most straightforward since no modification of the source code is required: We
only have to prescribe ‘appropriate’ parameters in the input files. However,
there arise very severe difficulties:

1) Typically, the involved multigrid solvers have big problems if such ex-
treme discontinuities arise, in the momentum equation for the velocity (viscos-
ity and density) as well as in the corresponding Pressure-Poisson problem (see
[8]) which includes the density. In fact, if the jumps, the means the size of the
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discontinuities, is larger than 104 − 106, we observe severe convergence prob-
lems in our numerical simulations which are based on standard geometrical
multigrid components.

2) Another severe problem arises since - due to the finite parameters for
the viscosity and density - the true boundary condition u · n 6= 0 between
solid and fluid cannot be guaranteed. In practical applications, this defect
results in penetration into the interior objects and corresponding (very small)
flow velocities even inside of the ‘solids’. However, as the following example
in Fig. 14 shows, it may happen that the time scale due to such unphysical
penetration effects may be much longer than the time scale for the actual
flow simulation. Moreover, this time scale is related to the actual size of the
viscosity, resp., density changes such that jumps of size 104 − 106 and more
may lead to useful simulations. However, one has to keep in mind that larger
discontinuities, which lead to a more physical behaviour, lead to more severe
convergence problems for the involved multigrid solvers, too.

Moreover, one has to state that the evolution time for such penetration
effects is finite as soon as the interior solids are described by huge, but finite
values for density and viscosity. While for nonstationary configurations the
simulations might lead to useful results (see Fig. 14) due to the differences of
the time scales, we observe severe problems for stationary configurations: Since
standard Poiseuille flow is a corresponding solution, independent of the values
for ρ and ν (Remark: u · ∇u = 0, ν(x, y)∆u = cν(x, y) such that Cν(x, y)x is
the corresponding pressure, independent of ρ), the direct stationary approach
results in this solution, that means pure channel flow.

3) While the results seem to be quite useful for the velocity and pres-
sure values in interior (grid) points, it is not clear what happens in those
vertices/midpoints of the mesh which are directly on the interface between
liquid and ‘solid’ (= interior object). The examples in Fig. 15 show a com-
parison - on level 6 for CIRC1 and CHAN2 which lead to comparable grid
resolution and numbers of elements - for the values in an interior point (‘U2’,
‘P’) as well as for the pressure difference (‘∆P ’) directly on the ‘cylinder’.
While the results for ‘U2’ and ‘P’ lead to very similar results, the pressure
difference for the ‘density-viscosity blocking’ approach is completely wrong
and depends massively on the values for density and viscosity. It might be
possible to get better values by a better postprocessing, however this study
will be subject of future research.

Altogether, it appears that the use of this ‘density-viscosity blocking’
method may lead to a good agreement of the results with the exact solution,
however (up to now) only for interior grid points and the ‘right’ time scale.
Nevertheless, this approach is quite dangerous since the underlying model will
lead to wrong results - on the corresponding time scales - which however is
very hard to predict by a priori analysis. So, although this approach seems to
be very easy to implement and to integrate into existing codes, the problems
w.r.t. controlling the effects and solving the resulting systems of equations
seem to be very severe.
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Fig. 14. Nonstationary behaviour of the velocity value ‘U2’ (mesh CHAN2 and
grid level 4) for the density-viscosity jumps of order 103 (top), 104, 105 up to 106

(bottom)

5 Conclusions

We do not claim that these ‘fictitious boundary’ methods together with ‘it-
erative filtering’ techniques are superior to the typical approach of resolving
accurately small-scale structures by boundary parametrizations and corre-
sponding grid adaption. But there are situations which might require the
combination of both techniques. Our numerical experience can be concluded
in the following ”thumb rules”:
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Fig. 15. Comparative study of one period for the velocity value ‘U2’ (top), for the
pressure value ‘P’ (middle) and for the pressure difference ‘∆P ’ (bottom)

If the geometry is not too complex, approximate the boundary by cor-
responding parametrizations (as piecewisely parametrized functions) and via
adapted meshes (for instance, objects which are not too numerous and which
have a piecewise smooth surface as circles, squares, etc.).

Try to approximate the boundary parts by a ”rough” boundary parametri-
zation which contains already most of the important structure. Additionally,
apply the iterative filtering techniques to resolve the fine structures depending
on the granularity of the mesh. This approach may be useful if large-scale
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objects with complicated surfaces are approximated, for instance mountains,
buildings or car shapes with special features.

If the geometrical details are very small and numerous, perform the ficti-
tious boundary techniques as an alternative. This approach is advantageous if
many (> 100) boundary parts are required (see [12] for the example of a 3D
heating device with about 1000 small holes at the outflow and 250 apertures
in the interior) or if small-scale objects are involved (for instance, cars with
antennae).

In comparison to the other fictitious boundary condition method, based on
the ‘density-viscosity blockage’, the advantages seem to be more clear. While
such discontinuities in parameter choices always lead to trouble with approx-
imation properties (u · n 6= 0 on the interface) and robustness problems of
the involved multigrid solvers - depending on the real size of these parame-
ters - the proposed ‘iterative filtering’ procedure exhibits a much more robust
behaviour, is easily implementable and is very flexible w.r.t. various kinds of
boundary conditions. In particular for time-dependent boundary parts, for
instance moving objects in the interior, this approach shows a very advanta-
geous behaviour w.r.t. robustness, efficiency, flexibility and also accuracy if
additionally ALE techniques are included.

Summing up, the combination of local mesh adaption and iterative
filtering techniques together with fictitious boundary conditions may
lead to the following advantageous numerical behaviour if these techniques
are realized together with appropriate implementation strategies:

1. If these techniques are applied with respect to different levels of refine-
ment, the coarse mesh is allowed to consist of few elements only. If the
accuracy of approximating the complex boundary parts is simultanously
increased with refining the mesh, the full multigrid efficiency can be ob-
tained. Moreover, it is quite straightforward to perform the corresponding
modifications in standard (CFD) codes. Especially for complex 3D geome-
tries (look at www.featflow.de/album) and for ‘moving obstacles’, these
techniques provide an elegant and ‘quick’ way to obtain qualitatively ac-
curate results without paying too much for additional implementation or
extended run-time behaviour.

2. The combination of semi–adapted meshes (near boundary parts) with
these fictitious boundary techniques leads to quite accurate results, in
particular due to improved approximation results for locally orthogonal
meshes. However, it is clear that the accuracy near (curved) boundary
parts is locally of first order only due to a piecewise constant approxima-
tion of the interface: Much better results - in a quantitative meaning -
will be obtained if additionally local mesh deformation or mesh adapta-
tion concepts are applied to guarantee (at least) a linear approximation
of the boundaries. However, one has to take care that the remeshing can
be performed in a very local way since time-dependent global remeshing
can lead to disastrous CPU timings.
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3. The resulting number of unknowns is not ‘optimal’ since components cor-
responding to some parts of the boundaries with prescribed values are
explicitly involved before they are set again to the prescribed bound-
ary values. However, the employed data structures can be locally regular
such that much higher performance in terms of MFLOP/s rates on fast
computer platforms can be obtained. (See [9] for a discussion of such
approaches which are the basis of our ‘hardware-oriented techniques for
PDEs’.) The combination of appropriate hierarchical data, solver and ma-
trix structures which can combine the efficiency and accuracy of modern
adaptivity concepts and fast multigrid-domain decomposition principles
with the huge GFLOP/s rates of modern processors will be the optimal
playground for such fictitious boundary and iterative filtering techniques
in the future.

Up to now, we have applied these techniques in the case of explicitely
prescribed boundary parts, resp., movement of solids only. The even more
interesting case are free interfaces, multiphase flow, solidification and fluid-
structure interaction when the deformation and shape of internal interfaces
and boundaries is described implicitely. However, it is obvious that the pre-
sented fictitious boundary methods together with the iterative filtering
techniques can be analogously applied. The main difference is that the set
of ‘active unknowns’ for the filtering process has to be calculated in each time
step, in most applications via corresponding transport problems involving the
fluid velocity u. However, as soon as the position of the boundary parts is given
which also means the index numbers in the corresponding coefficient vector,
the filtering process can be applied in the same way. Recently, we examine
these extensions more carefully and we are implementing such techniques in
the context of fluid-structure interaction and particularly solidification and
free boundaries.
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