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Preface

The aim of this work is the numerical and computational analysis of (it-
erative) solvers for Poisson problems. Particular emphasis is made on the
following aspects:

1. Different coordinate systems:

Problems are often formulated in coordinate systems which are compati-
ble with the problem. For example, for star simulations in astrophysics,
cylindrical or spherical coordinates are preferred because they are closer to
the geometry. Choosing such special coordinate systems allows the trans-
formation to highly structured tensorproduct meshes which result in higher
computational efficiency. On the other hand, this transformation into such
coordinate systems leads to more complex coefficients in the Partial Differ-
ential Equations (PDE), such that the corresponding solvers must be tuned
appropriately due to the resulting anisotropies.

2. Different geometrical complexity:

Real life computations can be geometrically complex if the shape of the
domain has to be adequately included. Additionally, small scale structures
or boundary layers have to be approximated sufficiently accurate such that
the resulting meshes can be very anisotropic. Again, the different solvers
have to be checked with respect to their robustness behavior.

3. Different computational complexity:

Realistic computational simulations, such as in Computational Fluid Dy-
namics (CFD), can lead to very large discrete systems of equations due to
geometrical but also accuracy reasons. In light of this, a corresponding solver
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must be extremely fast to handle up to millions of unknowns and thousands
of (implicit) time steps.

Concluding all these problems, the task of this work is to develop very efficient
solvers for Poisson-like problems which can handle

e complex meshes with large anisotropies and small-scale structures

e various coordinate systems with anisotropic coefficients

while providing at the same time a significant percentage of the high comput-
ing power on modern hardware platforms to solve the resulting huge linear
systems.

To be more precise: As part of the FEAST project which is currently under
development at our institute, this work develops and studies various solvers
on generalized tensorproduct meshes, here for conforming bilinear finite el-
ement (FEM) discretization. Since the computational domain is broken up
into such smaller quadrilateral patches, the so-called 'macros’ for our solu-
tion process, these 'tensorproduct’ solvers are one of the key tools for the
performance of the numerical simulation.

Some major application fields for the FEAST software and therefore for us are
problems arising in Computational Fluid Dynamics (‘incompressible Navier
Stokes equations’) and in hydrodynamics in astrophysics. These different
physical situations have all common that the complete problem, such as for
pressure, velocity or density, can be reduced among others to Poisson-like
subproblems ('Pressure-Poisson’, "gravity problem’). Thus, for solving large
problems of this type the derived multigrid methods are an important tool.

The paper is organized as follows: The first chapter introduces the aims and
concepts of the FEAST project. Based on the described FEAST philosophy,
we introduce different types of tensorproduct meshes and give a plausible
classification with respect to anisotropies. These discretization aspects are
followed by some physical problems which are the background for our math-
ematical approaches: different coordinate systems are introduced and the
corresponding formulations are made for each of them.

In the second chapter, the components of the linear solvers and the under-
lying FEM discretization are described in more detail. Comparison between
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Gaussian elimination (single grid), Krylov-space methods and multigrid algo-
rithms is made. Hereby, we concentrate on multigrid schemes as our preferred
solvers. Finally, implementation issues, such as matrix storage and machine-
optimized Numerical Linear Algebra components for such special matrices,
are examined since they are mainly responsible for the high performance
rates of our approaches.

The third chapter contains the results of the extensive tests using the multi-
grid solvers. It will be shown that for low anisotropies all smoothers, in-
cluding Jacobi and Gaufl-Seidel preconditioning, do well for cartesian and
cylindrical coordinates. However, for larger mesh anisotropies, respectively,
for spherical coordinates, more sophisticated smoothers of tridiagonal type or
ILU have to be taken. As a conclusion we can state, that our linewise Gauf}-
Seidel variants show the best results if we take into account the numerical
and computational run-time behavior, and this for all coordinate systems.

After the final conclusions from our numerical studies, we shortly print some
of the developed software which is the basis of all our computations.



Chapter 1

Motivation and problem
description

A current trend in the numerical simulation of PDE’s, here for FEM ap-
proaches, is the use of object-oriented techniques and adaptive methods in
any sense. Unfortunately, for the structures involved for handling grid and
matrices, old-fashioned methods are still being used which ignore hardware
capabilities of modern hardware platforms. Thus peak performance rates,
today around 1 GFLOP/s, are seldom reached, and the gap to 'real life’ ap-
proaches is increasing when one takes current hardware developments into
consideration.

High performance calculations often require exploitation of caching and pipe-
lining techniques with sequential data. The implementation of theses tech-
niques is often clear for Finite Difference techniques, but for more complex
Finite Element approaches, this is not the case. This difference often leads
to unreasonable computation times for 'real life’ problems such as CFD in
3D. To help diminish this problem is one of the primary aims of the FEAST
project ('Finite Element Analysis and Solution Tools’) (see Section 1.1).

An example for performance loss is shown in the following: one of the main
components in numerical computations is Matrix-Vector (MV) operations.
They take up 60-90 percent of CPU time or more in iterative solvers. To
approach these operations, sparse methods are employed (see [10]). These



make the use of index arrays and a long array holding the 'nonzero’ elements
of the matrix. This universal sparse technique can be applied to very general
meshes with arbitrary numbering. Consequently, this storage technique can
hardly gain from the benefits of caching and pipelining and thus more time
is lost accessing memory.

In the paper [3] are computational studies for different matrix storage tech-
niques. Using our CFD code FEATFLOW, tests examine the following 'Flow
around a car’ problem.

The table below shows results for the 'two level’ (TL) numbering, the Cuthill
McKee (CM) algorithm which minimizes bandwidth and an arbitrary 'stochas-
tic’ numbering of the unknowns. All have in common the standard sparse
"Compact Storage Rowwise’ CSR technique. Cost for arithmetic operations
and memory access are identical. NEQ denotes the number of unknowns.

Computer NEQ | TL | CM | stochastic
13,688 | 20 | 22 19
SUN E450 54,256 | 15 | 17 13
(~ 250 MFLOP/s) | 216,032 | 14 | 16 6
(CSR) 862,144 | 15 | 16 4

The results of this table show that:

1. Different numbering strategies can lead to identical numerical results,
but have huge differences in CPU time.

2. Sparse MV techniques are slow and depend heavily upon problem size
and the memory access techniques employed.
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3. Multigrid runtime behavior is not that of the expected mathematical
theory which predicts a linear relationship.

For scalar PDE’s on (logical) tensorproduct meshes in 3D with trilinear FEM
spaces (matrix bandwidth=27), the following 'strange’ MFLOP/s rates are
received.

Computer NEQ | TL | CM | stochastic
IBM RS6000/597 | 17° | 86 | 81 81
(160 Mhz) 33% | 81| 55 16
"P2SC’ 65° | 81 | 14 8
IBM RS6000/590 | 173 | 42 | 42 42
(66 Mhz) 33° | 41| 39 27
"POWER2 65° | 41 | 17 7
DEC/21164 17° | 54 | 31 29
(433 Mhz) 33 | 51 | 16 10
'"CRAY T3E’ 65° | 49 | 13 8
PENTIUM II 173 | 30 | 28 28
(400 Mhz) 33% | 30 | 26 24
"ALDI PC’ 65 | 30 | 23 19

MFLOP/s rates are far away from 'peak performance’.

Size and type of memory access is significant for the MFLOP /s rates.

Even when the problem fits entirely into cache, index access leads to
losses.

Old processors (590) can be faster than new ones (597).

e Supermarket PC’s can run faster than processors in supercomputers.

In contrast, the highly structured MV techniques of FEAST, due to exploited
vectorization facilities and data locality, possess MFLOP/s rates up to 50
times better! The next table compares the use of variable matrix entries and
constant band entries on tensorproduct meshes which can be additionally
exploited by this new approach.
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Computer NEQ | 'var’ | 'const’
IBM RS6000/597 | 17° | 188 480
(160 Mhz) 333 | 172 393
P2SC’ 653 | 176 390
IBM RS6000/590 | 17° | 102 195
(66 Mhz) 333 94 175
"POWER2 653 94 176
DEC/21164 175 | 103 | 404
(433 Mhz) 333 | 101 313
'"CRAY T3E’ 653 | 101 268
PENTIUM II 173 51 180
(400 Mhz) 333 51 137
"ALDI PC’ 65° 48 124

The next table, from the 1997 Semiconductor Roadmap’, see [11], shows the
expected development of the actual processor technology. It demonstrates
that 'machine-oriented’ algorithmic and implementation techniques will be
absolutely necessary: the key techniques for the near future will be to better
exploit data locality, internal parallelism and vectorization.

1997 National Technology Roadmap for Semiconductors
Year of 1st Shipment | 1997 | 1999 | 2001 | 2003 | 2006 | 2009 | 2012
Local clock (Mhz) 750 | 1250 | 1500 | 2100 | 3500 | 6000 | 10K
Chip size (mm?) 300 | 340 | 385 | 430 | 520 620 | 750
Feature size (nm) 250 | 180 | 150 | 130 | 100 70 50
Number of chip I/O | 1450 | 2000 | 2400 | 3000 | 4000 | 5400 | 7300
Transistor/chip 11M | 21M | 40M | 76M | 200M | 520M | 1.4B

From this table, single processors will be 10-15 times faster and will possess
up to 100 times more transistors than today. This is the equivalent of packing
1000 modern PC’s into one chip and will perform better than a complete
CRAY T3E today and may reach TFLOP /s rates. Therefore, our aim in the
FEAST project is the development of special numerical and implementation
techniques to exploit this high computing power.
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1.1 The FEAST project

This work is part of the FEAST project. Its primary aim is the combination
of highly tuned Linear Algebra tools and FEM simulation strategies such as:
e consequent application of (recursive) 'Divide and Conquer’ strategies

e solution strategy SCARC as 'new’ generalized multigrid (MG) and do-
main decomposition (DD) technique

e hierarchical data and solver structures, but also hierarchical (!) matrix
structures

e integration of low level machine-optimized Linear Algebra routines for

such sparse banded matrices

and its main goal is easy implementation of many ’'real life’ problems with
special attention given to

e achieving (almost) peak performance on modern processors
e typical multigrid behavior (with respect to efficiency and robustness)
e ’low-level’ parallelization directly included

e case of modification to include concepts as adaptivity and a posteriori
error control

FEAST is designed for high-performance applications with industrial back-
ground with special attention given to Computational Fluid Dynamics (CFD).
As a result, efficiency and robustness are at the forefront of our approaches.
FORTRAN 77/90 is used which allows the adoption of the predecessor pack-
ages FEAT2D, FEAT3D and FEATFLOW. Further information on FEAST
may found in [1], [4], [13] and [14]. See also the FEATFLOW homepage at

http://www.iwr.uni-heidelberg.de/~featflow /index.html.
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One of the most important aspects in FEAST is the use of 'Divide and Con-
quer’ strategies. A ’global’ problem is subdivided into smaller independent
problems on separate 'patches’. Hereby, structured parts may be locally ex-
ploited and anisotropies are hidden. On these anisotropic 'patches’, sparse
techniques are employed. On the structured 'patches’, higher performance
is exploited. As a result, the goal is to minimize the number of sparse ar-
eas and to apply, where possible, all Numerical Linear Algebra routines to
the structured ’'patches’. The simulation tool is then realized in three major
steps:

1. The design of the skeleton for the recursive splitting into local/global
levels

2. The implementation of the typical FEM facilities on the ’low level’
patches

3. The development of 'reference element solvers’ on the highly structured
'low level” patches

The respective data, solver and matrix structures may be found in [1], [4],
[13] and [14]. The aim of this paper is to help realize the second and third
parts: The implementation of typical FEM facilities on the 'low level” patches
and particularly the development of 'reference element solvers’ on the highly
structured 'low level’ patches. In our context, these are convex quadrilaterals
(="macros’) with logically equivalent tensorproduct meshes which allow local
mesh adaption if necessary.

A principle strategy of FEAST is to do as much as possible on such (log-
ically equivalent) tensorproduct meshes (m*m) for general quadrilaterals.
This work studies several multigrid solvers in generalized coordinates for
these geometries. We use conforming finite elements that have their degrees
of freedom defined in the vertices. For individual elements, a 2x2 Gauflian
formula for integration is used to compile a 'nine-star’ matrix. Also avail-
able for the matrix compilation is the method that employs the trapezoid
rule. This can result in the typical five-star’ matrix as often found in Finite
Difference Methods.

For the program to be feasible to use for realistic needs three basic require-
ments are needed for the multigrid solver:
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1. The basic fixed point iteration 2'*! = 2! — C~1(Ax! — b) the precon-
ditioned Richardson iteration. This procedure is at the heart of the
smoothing and takes up the largest part of CPU time. It must be op-
timally implemented not only for domain shape, aspect ratio, etc, but
also for the platform on which the program is run, to optimize vec-
tor operations with cache considerations. The numerical convergence
behavior of this iteration is directly related to the iteration matrix

M=1-wC1A
and hence to the more or less clever choice of C.

2. Problems to be solved are massive (up to about 100,000 unknowns and
more), thus high CPU-cost arise so optimizations must be employed
where possible.

3. The program should be robust and stable in order to challenge grids
with extreme aspect-ratios and varying physical situations.

What we hope to gain is:

e less storage amount: since vertices are numbered row-(column-)wise
fewer index tables are required and potentially even the storage of com-
plete matrices can be saved.

e 'reference element’ solvers: the complete problem is divided into smaller
problems on our 'patches’ that can be individually optimized and con-
trolled via a priori studies.

To ensure robustness, all parts of this work are based upon tested and opti-
mized routines of FEAST. Each subprogram has been optimized for optimal
efficiency and performance: matrix-vector, vector-vector, prolongation, re-
striction, cache, etc. Therefore, the aim is multigrid on one quadrilateral,
which is triangulated via a generalized tensorproduct mesh!
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1.2 Generalized tensorproduct meshes

A typical example used in CFD simulations is a 2d channel, shown on the
next page, with an obstacle for a fluid moving towards the right. One can
expect the most 'turbulence’ near the obstacle, thus a higher refinement in
this region is preferable. Each small 'patch’ could be solved for independently.
The first figure shows the initial ‘'macro’ mesh with 22 'macros’. The next
figure shows the mesh after 2 global refinements. Below is shown the area
closest to the circle magnified and besides it one 'macro’, three times refined
with anisotropic refinement towards the circle.
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In the figure below is a rough discretization of the 'Flow around a car’ problem
with 106 'macros’.

Below are a few typical 'macros’ from the problem. Elements far away from
the car do not necessarily need a special refinement and can be close to
isotropically refined. On the other hand, elements nearer to the car and
boundaries may need more adaptation due to boundary effects. Here, the
refinement is made in direction of the car and of boundaries which lead to
higher aspect ratios for these 'macros’. For given aspect ratios an appropriate
solver has to be chosen to optimize speed and/or memory requirements.
On each 'macro’ different refinements and levels may be used to optimize
approximation and memory use.

elements far behind near corners of car closer to corners
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near top or bottom closer behind or directly behind or
of car + borders in front of car in front of car

top and bottom behind and behind and
of car +borders above car in front of car

The next figures show special refinements of a square domain on different
levels. Such meshes are used for calculations for accretion disks in astronomy.
However, we used here different scaling for better showing of the mesh, and
we did not adapt precisely to the physics. The star is located on the left
side of the mesh where the x-axis represents the radius from the star and the
y-axis extends from the equator plane. Refinement is made a distance away
from the star to better approximate effects stemming from shock phenomena.
The computations would be made using cylindrical or spherical coordinates,
but on generalized tensorproduct meshes.
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The local refinement of a quadrilateral (='macro’) is described via a routine
defined by the following algorithm which is shown here for that case that a
line with endpoints [z, 21| is to be refined L times. The generalization to
arbitrary quadrilaterals is straightforward (see [9]).

Procedure grid — refine” (vy, vy, v3)

For 1=0,...,LL

9

1. 1=0: Initialization
e set xg =2

2. 1=1: First refinement
o 1l =z

o ol imny(ad + 2?)

o zl:=uxl

3. 1>1: Main steps

® Ty =2
-1 -1
I ._ Ty Xy
& T =1 D)
1. -1, - -1
& Iy =T, ; 1=1,...,2
-1 -1
l T tT, s -1
L] in-I—l = %, Z—].,...72 —].
4. 1=L: Last refinement
1.
e 1= 2
-1 -1
I . Ty Xy
[ ] :ﬁl — V3 2
A | . -1
° Ty, T 1=1,...,2
-1 -1
T, Hx. . _
® Toiiq = 2l+1§ =1, 7211—1
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With this routine one has a maximum aspect ratio of 0.5/1/11/§’1u3 for re-
finement in one direction and (1 — pus)/v1vs ‘vs for refinements done in

both directions, where the v, are refinement parameters equal or finer to the

. parameters. For the condition that 2 < 1y — 4 < g — 15 < 1 — v3,

P) B 3 )

. . ylué_lug\zo—zl\

the smallest interval is h,;m = —25=r——
h _ (1—viv2)|zo—21]
maxr — 21—1 .

and the greatest interval is

A few examples of the refined elements (up to 4 refinements) used for the
multigrid method can be seen below.
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Figures show (0.5, 1.0, 1.0)-, (0.5, 0.5, 0.5)- and bi(0.5, 0.5, 0.5)-refinement
of a square domain on levels 2.3,4.

The quadrilaterals have to be convex, and the coordinates of each of the cor-
ners may be freely defined. The refinement within the element is controlled
via the three parameters from above.

The grid is numbered row-wise and a function that 'transposes’ the grid is
available for row- or columnwise numbering for tridiagonal/ADI precondi-
tioned solvers. Since the grid has row-wise numbering, it lends itself well
on implementing band-structure matrix techniques, thus the use of the opti-
mized band routines from FEAST can be employed. Also, the matrix allows
for realizing block-solve technique implementations as shown in the previous
examples.

Aspect ratios (AR) play an important role in the behavior of the implemented
solvers. The classical aspect-ratio used is found by making a fraction of the
2 lengths found when measuring the distance of the two opposing midpoints
of an element. The maximum over all elements is taken and if it is less than
1, it is inversed so that the AR is always greater than 1. Another definition
of aspect ratio can be made be taking the quotient of the lengths of two
opposing sides.

The figures below show the classical and new aspect ratios for the same
respective element and demonstrate why we had to modify the definition of
aspect ratio. Further examples can be found in section 3.2.

m3

m4 m2

p2
mi
p

_ /m3—m1| |m4d—m2|
ARclassical_max( |md—m2|° \m37m1\)

— p2—-pl| |p4—p3| |pd—pl] [p3—p2| ,
AR”ew_max(\p%pN’ Ip2—p1|* |p3—p2|’ \p4fp1\’ARdasmal)
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1,1 1.79, 5

[HRRRN

[T

The stiffness matrix is directly defined by the weights/distances of each grid
point. For elongated elements, factors in one direction may become very
small. For example, for row-wise numbering, for elements narrow with re-
spect to the x-coordinates and wide with respect to the y-coordinates, the
corresponding matrix will converge to a tridiagonal matrix with coefficients
corresponding to the x-direction only.

Since a domain can have many regions with more and less activity, one ex-
pects most activity behind objects or along walls, thus different logical refine-
ment strategies are employed. Then, the complete domain is subdivided into
smaller macros and each of these mini-domains is solved for separately and
reassembled then to solve the global problem (see [9]). However, the robust
and efficient process on each of these macros, respectively 'mini-domain’, is
our task in the following.
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1.3 Examples for physical configurations

1.3.1 Incompressible Navier-Stokes equation

The Navier Stokes equation has a real-life character and all the mathematical
complexities and difficulties which makes it attractive for further numerical
study. The incompressible Navier Stokes equation (plus boundary/initial
conditions) is written as

uy —vAu+uVu+Vp=f, V-u=0

with velocity u and pressure p, so u; represents the time derivative of u,
A the Laplace operator and V- the divergence and V the gradient opera-
tors, respectively. A typical approach to solving such problems is to employ
projection-like methods (see [12]).

After performing space and time discretization, the corresponding problem
in each time step can be written in matrix form (3:5)(%) = (7) where S is
the matrix holding the coefficients for u, B equals the gradient (V)matrix
and BT is the divergence matrix. A typical strategy is the following: An
intermediate value « for u at a new time level is found by solving

Sﬂ - f - kBpolda

where k denotes the time step. Here, S represents the momentum equa-
tion with or without linearization strategies. Then we update the pressure
("Pressure-Poisson problem’) via:

1
—Ahq = —BT’LNL
k
Finally, the new pressure and the new 'divergence-free’ velocity vectors are

updated. The parameter o is in the range (0,2], typically o = 1.
Prew = Pold T 0q;  Upewy = U — kBq
and we can define the values on the new time level as p,.,, and U,eq .
As typical benchmarks show (see [12]), the major task in many codes is to
solve this Pressure-Poisson problem, which is typically situated on huge and

complex meshes, and the process in fully nonsteady simulations has to be
repeated very often.
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1.3.2 Astrohydrodynamics

In astrohydrodynamics, simulations of stars, accretion disks, or even the rings
of Saturn are of current interest to researchers and mathematicians!

White Dwarf

Accretion disks form when matter ascends upon a large central mass. Because
of the rotational momentum of the matter, for example in a rotating binary
star system, the matter does not fall directly onto the central mass, but
loops around following Newton’s laws and forms a ring. The ring eventually
flattens because of its self-gravity, similar to the rings of Saturn.
Computational Accretion Disk

Domain /

WwWhite —_~ X — —_
Dwarf —= —= —_— —R
o —_— —

Boundary L ayer

The basic equations in astrohydrodynamics are the continuity equation

dp 0 B
7 + a—x(gv) =0,

the Euler equation

v Jv 1dp
- A T o =
8t+08x+gdaz+v 0

and for the gravity potential ®, the Poisson equation

Ad = —AnGo.
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Again, this Poisson problem is the major aim of this work! For accretion
disks, higher refinement is preferred along the equator and near the central
star. Sometimes refinement is made a distance away from the star because a
shock may form here. The following picture shows a prototypical mesh used
for the simulation (in a 2d projection) and a cartesian representation after
transformation.
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1.4 Description of the mathematical problems

1.4.1 Boundary conditions

A possibility for boundary conditions in many CFD configurations is to define
the inflow side via Dirichlet (speed) conditions and the outflow elements
with natural Neumann boundaries, or the boundary parts could similarly be
defined via pressure-drop conditions (see [8]). The top and bottom edges
could be defined to Dirichlet conditions to simulate a wind-tunnel. Elements
far behind the car can be approximated using fewer grid points and since one
can expect the most activity near and behind the car, elements near the car
should be refined higher and in direction of the car.

There are three types of boundary conditions on the macros: Dirichlet, Neu-
mann and 'mirror’. Dirichlet conditions define a value at a border point,
these can be the speed of an incoming material or a pressure at a border,
Neumann conditions defined the change of a variable at the border. For free
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flowing fluids, this is often similar to I/g—z +p-n = 0. 'Mirror boundaries’ are
a 'combination’ of Dirichlet and Neumann conditions (see [9]).

Boundary conditions for an accretion disk might be defined as follows. At
the outer rim of the disk a small amount of material must continuously
'feed’ the accretion disk, thus Dirichlet boundary is employed here. At the
equator, 'mirror’ boundary conditions could be used (assuming top/bottom
symmetry). At the central axis, 'mirror’ boundarys are employed. This
work does calculations on 2D domains, thus for spherical and cylindrical
coordinates, symmetry is assumed around the z axis (see [6]).

1.4.2 Stopping Criteria

The iteration scheme stops if the defect D=Au-f in the Euclidean norm
ID|| < TOL. Let ¢ € Vj be the basis functions for denoting the FEM
space, then components of the defect vector fulfill:

Dy = an(un ¢f)) = (£.01)) = (Lnun — f.0}).
Now, we define the finite element residual res;, € V}, via L?-projection:
(resn, on) = (Lyun, — f,on) You € V.
The relation between the defect vector D;, and finite residual resy, is
D, = Myresy,

so we have

lIresal|® ~ > (M)~ (Dy)?,

i

1D = (D)’
(3
Mj, is thereby the mass matrix created by 'lumping’ which is equivalent to
using the trapezoid rule. If the grids are isotropic both of these expressions
are of the same order, up to a scaling factor of order of h2, but varies with in-
creasing (local) aspect-ratios. The first of the expressions is preferred because
the topologie (weighting factors) of the grid is considered, thus it represents
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a better stopping criteria for the iteration relative to the accuracy wanted
and is independent of the number of unknowns (NEQ).

The difference between the two norms is noticed in the size of the defect and
the start defect-values. For the tables below, D is the L, norm of the defect
while M represents the mass-matrices produced by

M = [ ¢;p; - dzdy and
M, = [ @ip; - pdpdz for cylindrical coordinates, and
M, = [ ip; - p*sin(9)dpdV for spherical coordinates.

As smoother in multigrid program, we take GSADI (see Section 3.1.5), and
we perform the strategy of "gain 8 digits”. The tables show the starting
residual and the convergence rates, w.r.t. the different norms involved.

GSADI, Isotropic (0.5, 1.0, 1.0), Dirichlet, smooth=2

Cart. D M M,
Level 5 6 7 5 6 7 5 | 6 | 7
iter 0 | .354+0 | .1740 | .87-1 | .1142 | . 1142 | 1142 same as M
conv. A7-1 | Ar7-1 | 71| 71 | 171 | 17-1

GSADI, Isotropic (0.5, 1.0, 1.0), Dirichlet, smooth=2
Cyl. D M M,
Level 5 6 7 5 6 7 5 6 7

iter 0 | .1940 | .96-1 | .48-1 | .27+2 | .12+2 | .85+1 | .62+1 | .62+1 | .62+1
conv. 92-1 | 1240 | .14+0 | .93-1 | .1340 | .174+0 | .92-1 | .12+0 | .1440
GSADI, Tsotropic (0.5, 1.0, 1.0), Dirichlet, smooth=2
Spher. D M M,
Level 5 6 7 5 6 7 5 6 7

iter 0 97-1 49-1 .25-1 | .2142 | 1042 | .80+1 | 3141 | .314+1 | .31+1
conv. .60-1 | .80-1 | .10+0 | .59-1 | .89-1 | .114+0 | .60-1 | .80-1 | .10+0
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GSADI, Anisotropic (0.5, 0.5, 1.0), Dirichlet, smooth=2
Cart. D M M,
Level 5 6 7 5 6 7 5 ] 6 | 7
iter 0 | .4140 | .2040 | .10+0 | 1142 | 1142 | 1142 same as M
conv. .25-1 .28-1 .29-1 .26-1 .35-1 .38-1 same as M
GSADI, Anisotropic (0.5, 0.5, 1.0), Dirichlet, smooth=2
Cyl. D M M,
Level 5 6 7 5 6 7 5 6 7
iter 0 | .2340 | .1840 | .59+40 | .79+1 | .79+1 | .80+1 | .624+1 | .62+1 | .62+1
conv. 61-1 .66-1 .68-1 .92-1 | 1140 | 1240 | .69-1 .28-1 27-1
GSADI, Anisotropic (0.5, 0.5, 1.0), Dirichlet, smooth=2
Spher. D M M,
Level 5 6 7 5 6 7 5 6 7
iter 0 | .1240 | .60-1 | .30-1 | .16+2 | .90+1 | .7841 | .314+1 | .31+1 | .31+1
conv. 46-1 .63-1 .80-1 .04-1 .82-1 .96-1 A47-1 .64-1 .80-1
GSADI, Anisotropic (0.25, 0.25, 0.5), Dirichlet, smooth=2
Cart. D M M,
Level 5 6 7 5 6 7 5 | 6 | 7
iter 0 | .4740 | .2440 | .12+0 | 1142 | . 1142 | 1142 same as M
conv. .35-1 32-1 31-1 46-1 A42-1 A48-1 same as M
GSADI, Anisotropic (0.25, 0.25, 0.5), Dirichlet, smooth=2
Cyl. D M M,
Level 5 6 7 5 6 7 5 6 7
iter 0 | .2640 | .1340 | .66-1 | .79+1 | .794+1 | .794+1 | .624+1 | .62+1 | .62+1
conv. 46-1 A48-1 46-1 .89-1 | 1140 - .55-1 .63-1 67-1
GSADI, Anisotropic (0.25, 0.25, 0.5), Dirichlet, smooth=2
Spher. D M M,
Level 5 6 7 5 6 7 5 6 7
iter 0 | .1140 | .67-1 | .34-1 | .16+2 | .90+1 | .7841 | .31+1 | .31+1 | .31+1
conv. 41-1 .58-1 .70-1 .62-1 | .1240 | .10+0 | .44-1 .64-1 74-1

The classical defect norm obviously does not incorporate the mesh geometry
and mesh size, such that with increasing the mesh level the initial defects
automatically get smaller. Concluding these results, we clearly prefer the
residual-load approach, involving the corresponding mass matrix for the fol-
lowing calculations.
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1.4.3 Coordinate systems

A coordinate system is defined by a basis. Any position in the coordinate
space is defined by a unique parameter representation.

. . . . . a?/am. —
The unit of movement e, for any direction x; is given by W/a—" or 07 /0x; =
z;
hi€,,, where h; = |07 /0x;|, i=1..3.

Let V = (?13%1 + ?28%2 + ?33%3) be an operator over a scalar field in a

coordinate system. The result of V)qb is a vector and is called grad (gradient),
and V - 7 is a scalar and is called div (divergent). Also, Laplace=A =
ﬁ . ?zdiv-grad. The change of a function due to a change in coordinates

can be written as
dp = ¢(x1 + dxy, 2 + dxs, 23 + dx3) — P21, T2, T3).

According to the Taylor-formula,

0 0 0
d)($1+dl‘1, !.E2+dl‘2, ZE3+d£C3) = ¢(£C1, To, $3)+—¢dl‘1+—¢d$2+—¢dl‘3+0(}l2)
8x1 6332 8x3

Hence, dp = V ¢ - d7 —grad¢ - d7. So, with u=¢

Au:ﬁ-ﬁ)u:div-gradu:?-(?1i+?2i 38

8x1 8x2 6333
— - —

:v(aem 0 +06m2 0 +aem3 0

hl 056’1 hg aZEQ h3 056‘3)“

N h1h2h3 8x1 hl 8x1 6332 h2 8x2 8x3 h3 6333 .

In the following we derive the typical FEM formulation of the underlying
Poisson problem with respect to the different coordinate systems.

Cartesian coordinates (x,y,z)

— ox, 0Ox 0x
? - (x,y,z) — h = (‘a_x|a|0_y‘7‘$|) - (Llal)
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So Au is ‘9“ s + 2“2 and the FEM formulation is

/(au dp 4 Ou ou dp
Oxr 0r Oy dy

Cylindrical coordinates (p, ¢, 2)
® = (pcos(9), psin(6). 2)

B = ((cos(9). sin(6). 0)|, |(—psin(9). peos(),0)[, (0,0, 1)) = (1, p.1)

o0 dody = [ fo-dody

So Au is (symmetric in ¢)
1,0 pou 0 ,pou
p(ap(lap)+0z(1az))

and the corresponding FEM formulation writes

/(8u dp  OJudyp

pdpdz = dpd
apap+azaz) pdz /ftp pdpdz

Spherical coordinates (p, 9, ¢)

X = (psin(9)cos(9), psin(9)sin(9). peos(9))

W = (|(sin(9)cos(¢), sin(0)sin(9), cos(9))).

(pcos(9)cos (). peos(9)sin(@), —psin(9))]. |(—psin(9)sin(p). psin(9)cos(4), 0)))
= (1, p, psin(?))

So Au is (symmetric in ¢)

1 (2 pzsin(ﬁ)ﬁ_u) N i(sm(ﬁ)a_u))
p*sin(d)  dp 1 9p” o9 1 09

and the FEM formulation reads

Ou ¢ i@_u@_ap 2 _/ 5 .
/(ap o T 200 5g) P sn(0)dpdd = [ fo - p sin(J)dpdd.
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One problem for solvers of the resulting linear systems of equations is high
refinement. Higher refinement leads to large matrices and many iterative
type solvers possess slow convergence. Another problem is the aspect ratio.
If the aspect ratio is too high, the coefficients for approximation become
small/large and many iterative solvers may not be able to handle such cases.
Additionally, a typical problem of spherical coordinates are the metric val-
ues p?sin(V). Near the z-axis, p? is very small, the same for sin(«)) near the
equator, these have the same effect as examining geometrical aspect ratios.
Therefore, in the next chapter we will examine more carefully the charac-
teristics of different solvers for linear systems, all w.r.t. the problems of
anisotropies and huge dimensions.



Chapter 2

Numerical components

2.1 Gaussian elimination and CG method

The Gaussian elimination method is a direct solver: it returns the exact so-
lution after analyzing inverse of the matrix involved. Matrices resulting from
the discretion of PDEs ("Partial Differential Equations’) are often sparse:
they have very few non-zero matrix elements. However, during the inversion
process the matrix looses its sparsity! For small linear systems this is accept-
able and returns an exact solution in short time. However, for larger systems
factorization time and storage cost become very expensive.

The Gaussian elimination method above must invert a matrix in order to
solve a problem. For huge linear systems this will not only cost a lot of
time, but also will require a lot of memory. To avoid this, iterative systems
have been proposed. The idea of CG (Conjugate Gradient) methods (see
[7]) is to minimize the error in the j'th iteration over affine space defined by
K;=span {rq,Arg,...,A7"'ry}. This is used in many Krylov-space methods.
These are iterative methods and theoretically deliver an exact solution in
NEQ (number of equations) steps. Unfortunately, the error reduction is
often related to y/cond(A) (~ 1-O(h), h mesh width), so that convergence
slows as the grid steps become smaller.

31
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2.2 Fixed-point iterations

For large systems of linear equations, using Gaussian elimination is unrealis-
tic, since the amount of memory and time required to solve it would exceed
the limits of many modern computers. For the same reason the matrices are
held in sparse format, meaning that only non-zero matrix elements are ac-
tually stored. Instead of using direct solvers, fixed-point iteration strategies
are employed. They have the form z'*! = 2! — wC~(Az! — b). The term in
the brackets is called the defect and should converge to zero.

The idea comes out of the following observation:

Az =beCr=Cr—-Av+bsr=x—C '(Axr —b)

The iteration procedure is then
o =2l — O (A —b)
= —-C'A)' +C ' =: Ba' +c.

The error is then '™ := 2!™1 — x = Bx! + ¢ — (Bx + ¢) = Be'. In order for
the defect to convergence to zero, a necessary requirement is || B|| <1.

The initial matrix A is preconditioned with a matrix C, in the hope that the
convergence of the iteration system improves. The convergence is directly re-
lated to its condition, |’;:'ﬁ|, and the strategy is for cond(C~*A) <cond(A).
Also, C~! should be quick and easy to find. Often, a parameter w is em-
ployed. For example, for C=I, if w < m then ||[I — wCA|| < 1. These
preconditioners are employed in the previous fixed-point iterations and also
in conjugate-gradient-like methods for high-frequency damping.

Let A=L+D+U, with L=lower-, D=diagonal-, and U=upper-parts of A. The
following typical choices for C are taken. The short characterization of the
resulting methods is based on the numerical studies in the following chapter.

1. Classical Richardson: C=I, w < m
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Jacobi: C=D, w > 0: The Jacobi preconditioner works best for isotropic
grids. Dirichlet/cartesian or Neumann/cylindrical situations are prefer-
able. It has optimal convergence for diagonal matrices. It has the ad-
vantage that it requires very little extra memory (or none at all!). Tt
converges very slowly like 1-O(h) for grid-step h.

GauB-Seidel /SOR: C=wL+D, w € (0,2): GauB-Seidel/SOR behaves
similar like Jacobi: Dirichlet/cartesian or Neumann/cylinder situations
are preferable. This preconditioner works optimal for lower triangu-
lar matrices arising from convection-dominated problems: -eAU+3VU
(downwind numbering). GS (GaufB-Seidel) converges also like 1-O(h)
for grid-step h.

. TRI: C=tridiagonal part of A: The TRI (tridiagonal) preconditioners

are chosen because of the idea that when one refines much stronger into
one direction, the corresponding FEM stiffness matrix converges to a
triangular matrix if appropriate renumbering is used. Therefore, the
TRI-based schemes are good candidates for large aspect ratios.

. ADI: C=alternates between the tridiagonal parts of A for row- and

columnwise numbering which may be necessary for anisotropic refine-
ments in both directions. A routine that 'virtually’ transposes the grid
is used to fetch the correct values from the main matrix and also to
permute the vectors accordingly.

. GSTRI/ADI: The GSTRI preconditioner is a combination of the Gauf}-

Seidel and tridiagonal preconditioners. It uses lower part of the main
matrix plus the diagonal plus the superdiagonal. One would expect this
method to have the advantages of both the TRI and the GS precondi-
tioners. Since it can be interpreted as linewise Gauf-Seidel, this method
is also easy to implement, works with high computational performance,
and should lead to uniformly bounded and excellent convergence rates
on isotropic as well as anisotropic meshes. These schemes tend to be
our favorites!

. ILU: C=incomplete LU factorization of A (LU without fill-in), w > 0:

The ILU preconditioner is (often) the most robust method of all. Per
definition, it avoids fill-in and is very robust with respect to anisotropic
meshes and convection dominated problems. However, the optimal
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choice of w is not clear, and the computational costs are higher than
for the previous schemes.

The direct (Gaussian) solver is based on an implementation of Lapack rou-
tines DGBTRF and DGBTRS.Since the single grid LU method results in
‘exact’ solutions independent from aspect ratios, one could suppose that we
could forget the rest. However, it has its disadvantages. The exact LU solver
for solving on one level has the following cpu-times in seconds.

LU, single grid, Cartesian, isotropic
level | unknowns | storage (RAM) | factorization time | solve time
5) 1089 1.1Mb 4.57-2 5.24-3
6 4225 7.5Mb 4.78-1 5.55-2
7 16641 54.4Mb 5.32-0 4.01-1
8 66049 414.1Mb 6.67+1 3.17+0

The time for solving increases by a factor of 7-8, factorization time increases
by 10-12, while the number of unknowns increases only by 4 for each level.
From the table, one can infer that level 9 is not only slow with respect
to factorization time, but also most likely not possible because of memory
requirements.

On the other hand, typical multigrid times and convergence rates are shown
in the next table. From these results, it can be immediately seen that the fac-
torization time for the exact LU factorization outweighs any benefits gained
from the ILU method.

MG(ILU), Cartesian, isotropic, smooth=2, eps=1e-8
NLMAX | conv.(Iter) | storage cpu-time

5 20-1 (6) | 0.4Mb 1.0-2

6 20-1 (6) | L2Mb 9.1-1

7 19-1 (6) | 4.7Mb 1.240

8 19-1 (6) | 18.5Mb 6.6-+0

9 18-1 (6) | 73.5Mb 3.0+1

The next tables show the effects of different stopping criteria and of increased
smoothing for MG(ILU). Convergence rate excelled whereas the time needed
decreased slightly.
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MG(ILU), Cartesian, isotropic, smooth=2,eps=1e-2

NLMAX | conv.(Iter) | storage cpu-time
5 282 (1) | 0.4Mb 1.0-2
6 272 (2) | L2Mb 8.0-1
7 242 (3) | 4.7Mb 181
8 202 (2) | 18.5Mb 2.340

MG(ILU), Cartesian, isotropic, smooth=4,eps=1e-2

NLMAX | conv.(Iter) | storage cpu-time
5 142 (1) | 0.4Mb 2.0-2
6 873 (1) | L2Mb 7.0-1
7 593 (1) | 4.7Mb 3.8-1
8 42-3 (1) | 18.5Mb 2.1+0
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As one can see, the direct LU method has the advantage that it returns
an ’'exact’ result in similar times on lower levels, but on higher levels, the
multigrid algorithm has timing and storage advantages.

In the following, the average timings of the other preconditioners as smoothers
are presented. For an isotropic grid, the following preconditioners have the
following timings for one multigrid iteration on Dirichlet boundary condi-
tions, 2 smoothing steps, F-cycle. The table shows, that ILU takes the
longest time to complete one multigrid step. We have to remark, that the
implementation of the matrix-vector (MV) operations is not based on the op-
timized FEAST components but on the described sparse techniques such that
further enormous speed-up, at least for TRI and GSTRI, can be expected.

CPUtime 5 6 7 8
JAC 4.17-3 | 1.62-2 | 9.26-2 | 6.61-1
TRI 6.97-3 | 3.00-2 | 1.60-1 | 9.17-1
GS 7.20-3 | 3.29-2 | 1.74-1 | 9.86-1

GSTRI |8.00-3 | 3.11-2 | 1.71-1 | 9.84-1
ILU 9.82-3 | 5.01-2 | 2.31-1 | 1.144-0

Next, the preconditioned CG-method is examined for solving problems on
one single mesh, for globally constant aspect ratios.
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The following tables are created for isotropic refining while adjusting the
rightmost x-coordinates which correspond to aspect ratios 1,10,100,1000 re-
spectively. The TRI preconditioner matrix gets closer to the exact inverse of
the main matrix as the xmax declines.

We perform CG with different preconditioning to test the sensitivity of CG
w.r.t. such mesh anisotropies.

CG(TRI), Dirichlet, Cartesian, 9-star

level x=1.0 x=0.1 x=0.01 | x=0.001

5 | .67 (47) | .30 (16) | .17 (11) | .15 (10)
time .051 .02 .016 0.014

6 | .82(92) | .56 (32) | .16 (10) | .13 (9)
time 331 A1 .045 037

7 .90 (183) | .75 (66) | .15 (10) | .12 (9)
time 3.73 1.36 .249 219

8 div. | .87 (132) | .19 (12) | .97-1 (8)
time 13.7 1.39 1.07

CG(ILU), Dirichlet, Cartesian

level x=1.0 x=0.1 x=0.01 | x=0.001

5 | 43 (22) | .37 (19) | .56-2 (4) | .46-4 (2)
time .035 .031 .01 .007

6 | 62 (39) | 59 (37) | -30-1 (6) | .11-3 (3)
time 214 .203 .044 .025

7 | 77 (72) | 77 (73) | .14 (10) | .37-3 (3)
time 2.37 2.63 .350 123

8§ | .87 (141) | .88 (147) | .36 (19) | .12-2 (3)
time 20.1 22.6 3.28 .03

Above, it can be immediately seen that convergence rates decline with in-
creasing level: this is due to the 1-O(h) behavior of Krylov methods. On the
other hand, for large aspect ratios they perfectly converge since the precon-
ditioner gets optimal. Below we show that the TRI and ILU preconditioners
in multigrid require about the same number of iterations for levels 5 through
8, and that their behavior improves for large aspect ratios.
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MG(TRI), Dirichlet, Cartesian, smooth=2, 5-star

Level | x=1.0 x=0.1 x=0.01 x=0.001

5 12 (10) | .36-2 (4) | .10-3 (3) | .10-3 (3)
time .04 .02 .02 .02

6 | .13 (10) | .11-1 (6) | .10 (3) | .10-3 (4)
time .22 12 .06 .08

7 | .13 (11) | .11-1 (6) | .10-3 (3) | .10-3 (4)
time 1.11 .68 .32 41

8 [ .13 (11) | .11-1 (6) | .40-3 (4) | .10-3 (4)
time 6.43 3.62 2.46 2.40
MG(TRI), Dirichlet, Cartesian, smooth=2, 9-star
Level | x=1.0 x=0.1 x=0.01 | x=0.001

5| 521 (7) | .18-1 (6) | .25-1 (7) | .30-1 (8)
time .04 .03 .04 .04

6 | .50-1 (7) | .30-1 (7) | .21-1 (7) | .25-1 (8)
time .16 .16 .16 .19

7| 481 (7) | 181 (6) | 17-1 (7) | .21-1 (8)
time .92 .80 91 1.07

8 | .45-1 (7) | .14-1 (6) | .10-1 (6) | .18-1 (8)
time 5.81 4.97 5.09 6.45
MG(ILU), Dirichlet, Cartesian, smooth=2, 9-star
Level | x=1.0 x=0.1 x=0.01 x=0.001

5| .382 (4) | .33-2 (4) | .20-11 (1) | 17-17 (1)
time .03 .03 .01 .01

6 .38-2 (4) | .78-2 (5) | .23-6 (2) | .30-17 (1)
time .14 A7 .02 .04

7 | 372 (4) | 812 (5) | .11-2 (4) | .75-17 (1)
time .84 1.01 .81 21

§ | .342 (4) | .12-1 (6) | .482 (5) | .33-16 (1)
time 4.48 5.33 6.29 1.19
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From the above tables, it is inferred that the MG algorithm converges much
faster than the one-grid method, particularly on fine meshes. Also, for aspect-
ratios significantly larger than 1, that the 5-Star TRI converges better than

the 9-Star TRI and for aspect-ratio of size 1 the 9-Star TRI does better.
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The refinement method used in the following tests produces a tensorproduct
grid with elements with gradually higher aspect ratios as one moves toward
the left side.

We start with the CG methods.

Single-Grid, CG(TRI), Dirichlet, Cartesian
Level | (5,1,1) | (5.5.1) | (.25..25..5)
5 .66 (47) 72 (58)
time .06 . .10

6 | .81 (92) | .85 (112) | .85 (115)
time .29 .32 .33

7| .90 (183) | .92 (242) | .92 (225)
time 3.82 5.59 5.27

§ | (>300) | (>300) (>300)

Single-Grid, CG(ILU), Dirichlet, Cartesian

Level | (.5,1,1) (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)% | (.25,.25,.5)?
5 43 (22) | .39 (21) .33 (17) .38 (20) 28 (16)
6 .62 (39) | .61 (39) .56 (33) 62 (39) .54 (31)
7 7 (72) | .78 (76) 75 (67) .79 (82) 74 (63)
8 87 (141) | .88 (157) | .87 (143) | .89 (172) .86 (130)
9 93 (278) | .95 (300) | .93 (286) (>300) .93 (286)

MG, Dirichlet, Cartesian, smooth=2, 5-star
TRI ADI
Level | (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)? | (.25,.25,.5)?
5 A1(9) | .24 (14) | .35 (19) 13 (10) 11 (9)
time .04 07 .08 .06 .05
6 A1 (10) | .24 (15) | .36 (20) .09 (9) 12 (10)
time 23 .33 43 22 23
7 10 (10) | .24 (15) | .35 (20) .09 (9) 12 (10)
time 1.06 1.57 2.15 1.08 1.19
8 10 (10) | .24 (16) | .35 (21) .09 (9) 11 (10)
time 6.05 9.61 12.52 5.39 5.76
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MG, Dirichlet, Cartesian, smooth=2, 9-star
TRI ADI

Level | (.5,1,1) (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)% | (.25,.25,.5)*

5 52-1(7) | 1340 (10) | .234+0 (14) | .87-1 (8) .93-1 (8)
time .04 .06 .08 .04 .04

6 50-1 (7) | 1340 (10) | .2340 (14) | .1040 (9) 1040 (9)
time 16 .29 40 21 .26

7 A48-1 (7) | 1340 (11) | .2240 (14) | .1140 (10) | .1440 (11)
time 97 1.71 2.16 1.35 1.58

8 A5-1 (7) | 1340 (11) | .2240 (15) | .1440 (11) | .2040 (14)
time 5.77 9.69 13.62 9.38 11.12

The above tables show the results for variable local aspect-ratios with ILU.

MG, TLU, Dirichlet, Cartesian, smooth=2

Level | (.5,1,1) (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)% | (.25,.25,.5)?

5 0.38-2 (4) | 0.30-2 (4) | 0.25-2 (4) | 0.39-2 (4) | 0.46-2 (4)
time .03 .03 .03 .03 .03

6 0.38-2 (4) | 0.38-2 (4) | 0.53-2 (4) | 0.57-2 (4) | 0.23-1 (6)
time 16 16 16 16 23

7 0.37-2 (4) | 0.42-2 (4) | 0.12-1 (5) | 0.82-2 (5) | 0.26-1 (6)
time .83 .83 1.06 1.04 1.25

8 0.34-2 (4) | 0.79-2 (5) | 0.24-1 (6) | 0.22-1 (6) | 0.28-1 (10)
time 4.75 5.89 14.03 7.04 11.66

Both 9-point (FEM) and 5-point (FD) discretions can be optimally treated

by multigrid while the 'one-level’ CG gets into trouble for fine meshes. Since
Gaussian elimination as well as CG methods have problems with such large
meshes, multigrid is our preferred solver and will be discussed in the next
section. On the other hand, the numerical results show that convergence
rates are not the optimal measure (compare ILU vs. ADI). The aspect of
optimal implementation techniques is discussed in section 1.1.
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2.3 Multigrid algorithms

The following multigrid routine needs a matrix-vector routine and a precon-
ditioner routine and several control parameters. Then, our MG algorithm
MG(.,.,.) reads:

MG (1,u?,g;) algorithm:

For problem A,z = g let 1=level, S;=smoother, P! =Prolongation, Ré’lzRestriction,
and u)=start solution.

If 1=1, MG(l,ul,g;) returns A;'g

If 1>1 perform the following steps

1. m-presmoothing steps:

o =S '=..=S"(u?)
e that means m-steps with JAC, GS, ILU, TRI, ADI, TRIGS or
ADIGS

2. Coarse grid correction:

e Restrict the defect d;=g; - A; u;”, that means g;_; = Rf‘ldl, and
solve recursively:
e ul , =MG(L1,u"}, g1)i=1,.p,u) , =0

d UZ”“ =" + lDllfluf—l

3. n - postsmoothing steps:
o T = 8P ()
e Finally set MG(l,u),g;) := u"*"*!

Prolongation and Restriction operators for the grids are required which can
be implemented via DAXPY-like operations.

Prolongation from coarse-grids to finer grids is typically realized through the
following interpolation stencil; a node at the center is added to its neighbors
with the following weights on tensorproduct meshes:
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0.25 | 0.5 0.25
0.5 | 1.0 .05
0.25 0.5 0.25

The corresponding restriction operator restricts defects from fine grids onto
coarser grids. It is realized through the next stencil, here the neighboring
nodes are summed-up, using the weights in the stencil, onto the center node.
It is the adjoint of the prolongation operator: the transposed prolongation
maftrix is equal to the restriction matrix.

These operators are, of course valid for uniformly refined spaces. The real
weights are derived from corresponding bilinear interpolation. But since out
tests on locally anisotropic meshes have shown that in such locally refined
meshes, the smoother is very strong, the standard ’isotropic’ grid transfer
seems to be sufficiently efficient.

The amount of extra memory required by each preconditioner can be seen in
the table below. NEQ is the number of unknowns for each level, NA=number
of non-zero elements in matrix. All values in the table are to be summed
over the levels used and correspond to standard implementation.

Jac -
GS -
TRI 3*NEQ
ADI 2*TRI

GSTRI | 1*TRI
GSADI | 2*TRI
ILU NA

As explained above, the multigrid algorithm is composed of several steps:
smoothing, restriction, solving and prolongation. The orders in which the
various levels appear are suggestive for the name of the cycle-type (V, W, F)
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Here is a figure of the V-cycle:
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In the W-cycle, after the coarsest level, the MG level does not immediately
go completely to the finest level, but instead goes a level upward, then down-
ward, and the towards the finest level. This movement has a "W’ appear-
ance. The F-cycle can be viewed as an intermediate combination of V- and
W-cycles.

From the table the F- and W-cycles show the best rates, the V-cycle behaves
sometimes worse:

Dirichlet, MG(JAC), isotropic, epsmg=1d-8
levels F \Y W

5| .84-1(8) | .84-1(8) | .84-1(8)

6 | .831(9) | .10 (9) 83 (9)

7 | .80-1 (9) | .11 (10) |  .80-1 (9)

8§ |71 (9) | 12 (11) | 771 (9)

0 | .74-1(9) | 2 (11) | .74-1 (9)

In the following chapter, we vary the choice of smoother: in this work several
smoothers are tested and tabled. They are Jacobi, Gauf3-Seidel, Tridiagonal,
ADI, ILU and GSTRI. The ADI method here is different from the traditional
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method: In even steps we apply the tridiagonal preconditioner from rowwise
numbering while in odd steps the matrix from the columnwise numbering is
taken. The GSTRI method used here is the GS method with an additional
super-one diagonal, that means linewise Gauf3-Seidel scheme.

Although the ILU method seems to possess the best convergence behavior
for many situations, the factorization-timing properties are very expensive
for large scale jobs, and the storage costs are large. Therefore, the aim of
the following numerical studies is the search for good smoothers with respect
to good numerical and computational behavior, and this for several mesh
aspect ratios on the different coordinate systems.



Chapter 3

Numerical studies

3.1 Evaluation on orthogonal quadrilaterals

For all tests a zero start-solution vector (besides the boundary components)
is employed. The choice of damping parameter w is critical for the optimal
performance of the basic iteration. This value often depends not only upon
the refinement parameters used, but also on the actual grid level. Thus
choosing an optimal a-priori w-value is not always possible for all smoothers.

Tests were made using the described multigrid algorithm to gain 8 digits
accuracy w.r.t. the starting residual and usually two pre- and post-smoothing
steps were made. The problem to be solved in the tests was —Au = f.
The exact solution is u = 16z(1 — z)y(1 — y). The right hand side is then
32(z(1—xz)+y(1—y)). This problem has homogeneous boundary values on the
[0, 1] %[0, 1] domain boundary which is used for the first set of tests. However,
since we are mainly interested in the multigrid convergence behavior, the
underlying exact solution does not matter.

3.1.1 Tests on the Jacobi preconditioner

Using Dirichlet boundary conditions for cartesian and cylindrical coordinate
systems it was found from initial tests that w,, is often about w=0.7 for the

44
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(.5,1,1) configuration (see section 1.2 for the description of the refinement
parameters: (0.5,1.0,1.0) corresponds to an isotropic mesh with equidistant
refinement) and about w=0.6 for the other configurations. The following ta-
bles show the convergence rates and the resulting number of multigrid cycles.
The refinement parameters are explained in section 1.2: (0.5,0.5,1.0) denotes
a moderately anisotropic mesh, while (0.25,0.25,0.5) corresponds to very sig-
nificant local mesh distortions. ()? means refinement in both directions. See
section 1.2 for corresponding figures. Here, we calculate on a unit square,
'smooth’ denotes the number of smoothing steps.

MG(JAC), Dirichlet, Cartesian, smooth=4

Level | (.5,1.1) (5 5.1) | (.25,.25,5) | (.5,.5,1)2 | (.25,.25, .5)
5 | .281 (7) | .34 (19) | .70 (56) | .46 (26) | .80 (86)
6 | .27-1 (3) | .49 (29) | .85 (130) | .62 (43) (>150)
7 | .26-1(8) | .66 (51) | (>150) | .76 (79) (>150)
8 | .24-1 (8) | .79 (94) | (>150) | .86 (149) | (>150)

MG(JAC), Dirichlet, Cartesian, smooth=8

Level | (.5,1,1) | (:5,5.1) | (.25,.25..5) | (-5, .5,1)2 | (.25, .25, .5)°
5 | .16-1 (5) | .13 (10) | .50 (8) | .22 (13) | .64 (44)
6 |.15-1 (5) | .25 (15) | .73 (66) | .40 (22) | .83 (111)
7 | .14-1 (5) | .44 (26) | 87 (I151) | .59 (40) | .92 (260)
8 [ .15-1(6)].63 (47)| (>300) | .75 (75) (>300)

The Jacobi preconditioner did not converge for Dirichlet or Neumann bound-
ary conditions when spherical coordinates were used. This is due to the
metric-coefficients that build the matrix; they have the same effect as adding
geometrical aspect-ratios, which the Jacobi and Gauf}-Seidel preconditioners
badly approximate. Additionally, Jacobi smoothing deteriorates dramati-
cally with increasing the aspect ratios, in particular depending on the prob-
lem size.

The above tables show the effect of the number of smoothing operations, too.
Smoothing improves convergence, but on the other hand smoothing takes up
the largest percentage of the total solving time, thus increasing smoothing
operations improves the performance of the preconditioner, but also increases
the total time required for the multigrid solver.

In the following, we try to adapt the number of necessary smoothing steps to
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guarantee a multigrid convergence of about py;=0.5. As can be seen, this
number is significantly dependent on the mesh level used for non-isotropic
meshes: it has to be doubled or even more if the mesh is refined. 'Time’
denotes the elapsed CPU time.

MG (JAC), Dirichlet, Cartesian
Level (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)? | (.25,.25,.5)*
5 61-1 (7) | .34 (19) .50 (28) 46 (26) 46 (25)
smooth 2 4 8 4 14
AR 1 16 1024 24 1920
Time 3.3-2 0.12 0.30 0.17 0.42
6 .61-1 (8) | .49 (29) 49 (28) .50 (29) .51 (30)
smooth 2 4 19 6 30
AR 1 32 4096 48 7680
Time 2.9-2 0.66 2.24 0.86 4.97
7 .58-1 (8) | .49 (30) .50 (30) 49 (29) 46 (27)
smooth 2 7 41 11 80
AR 1 64 16384 96 30720
Time 0.75 6.84 38.49 9.86 61.95
8 .56-1 (8) | .50 (32) .57 (38) A7 (29) 43 (25)
smooth 2 12 &1 21 200
AR 1 128 65536 192 122880
Time 5.64 96.02 703.83 148.26 1311.82

As can be seen, the increase in CPU time is more than a factor of 4 from
level to level, as could be predicted by the performance measurements for
sparse matrix-vector applications in Section 1.

An interesting observation is that for Neumann boundary conditions at the
left (and bottom) edges, convergence rates significantly deteriorate! This
can be explained by theoretical results of Yserentant ([15]) who has analyzed
the behavior of Jacobi preconditioners on locally refined meshes toward the
boundary.
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MG(JAC), Neumann, Cartesian

Level | (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)% | (.25,.25,.5)?
5 10 (9) | .46 (26) .56 (34) A5 (25) .56 (34)
smooth 2 16 660 30 1320
Time 4.24-2 0.34 22.50 0.82 45.44
6 A1 (10) | .47 (27) (>300) .50 (29) (>300)
smooth 2 35 60
Time 0.16 3.92 7.51
7 A1 (10) | .52 (32) (>300) .54 (34) (>300)
smooth 2 70 120
Time 0.90 62.12 144.25
8 11 (10) | .53 (35) (>300) (>300) (>300)
smooth 2 150
Time 6.64 1242.95

47

Another grid was designed with refinements made toward an inner layer. For
this grid 'Dirichlet2’, smoothing operations have to be increased to reach sim-
ilar convergence results. As seen below convergence rates for the anisotropic
versions of this grid are very bad when one takes into account the number of
smoothing steps used.

MG(JAC), Dirichlet2, Cartesian

Level (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)? | (.25,.25,.5)*

5 61-1 (7) | .66 (48) A5 (24) 49 (28) .69 (53)
smooth 2 4 300 12 265

6 61-1 (8) | .50 (30) .67 (51) .54 (33) (>300)
smooth 2 16 600 24

7 .58-1(8) | .50 (31) (>300) 54 (34) (>300)
smooth 2 36 54

8 56-1 (8) | .51 (33) (>300) 46 (28) (>300)
smooth 2 80 154

From these tests, one can easily deduce where a preconditioner will have
difficulties by examining the number of smoothing steps required to reach a
desired convergence rate.
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Next, we examine cylindrical coordinates.

MG (JAC), Dirichlet, Cylinder, AR as above
Level | (.5,1,1) | (.5,.5,1) | (.25,.25..5) | (.5,.5,1)% | (.25,.25,.5)?
5 18 (12) | .35 (19) .50 (29) 49 (28) 49 (28)
smooth 2 4 12 4 20
Time 5.50-2 0.12 0.43 0.18 0.64
6 .22 (14) | .53 (33) A48 (29) .54 (34) 51 (31)
smooth 2 4 30 6 48
Time 0.23 0.77 3.41 1.05 5.78
7 .25 (16) | .49 (31) .55 (36) .54 (35) .55 (36)
smooth 2 8 60 11 100
Time 1.51 7.97 60.98 12.32 101.53
8 .28 (18) | .51 (33) .65 (51) 49 (31) .60 (43)
smooth 2 14 100 24 200
Time 11.78 115.36 1210.40 178.43 2252.57

The results for Dirichlet boundary conditions are the same as for cartesian
coordinates. Only for the isotropic case (0.5,1.0,1.0), Dirichlet calculations
behave better due to the isotropic matrix coefficients now. In contrast, Neu-
mann boundary conditions behave better in computations with cylindrical
coordinates as the following table shows: fortunately, this is the physically
more correct situation.

MG(JAC), Neumann, Cylinder

Level (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)? | (.25,.25,.5)>

5 .55-1(7) | .46 (26) .50 (29) .50 (29) .55 (33)
smooth 2 5 20 26 1320
Time 3.41-2 0.19 0.66 0.84 43.94

6 56-1 (8) | .47 (28) 51 (31) .49 (30) (>300)
smooth 2 8 42 60
Time 0.13 1.06 5.18 7.25

7 .54-1 (9) | .46 (28) .56 (37) .53 (34) (>300)
smooth 2 14 82 120
Time 0.74 11.84 86.16 115.25

8 52-1 (9) | .52 (34) (>300) (>300) (>300)
smooth 2 20
Time 5.32 170.01
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That means, there is a significant difference for the multigrid w.r.t. Dirichlet
or Neumann boundary conditions. Dirichlet behaves often better, especially
for high local aspect ratios if the mesh is strongly refined near the boundary.
Similar effects are discussed in [15] which contains a theoretical background.

Next, isotropic refinement in the x-direction is used and z,,ax is adjusted so
that the aspect-ratio is globally constant. First, we show the results on levels
5-7 for cartesian coordinates, followed by the corresponding results for the
cylindrical case. The next table shows the results from computations using
w=0.6 and w=0.7. It can be immediately seen that the results are sensitive
of the choice for w.

MG(JAC), Dirichlet, Cartesian, smooth=2
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10
5 .84-1 .29 .53 .67 .76 91
6 .83-1 27 .01 .66 .76 .92
7 .80-1 .25 48 .64 .74 .92
5 | 611 | 23 | 55 | .86 | (>300) ] (>300)
6 | 61-1 | 21 | 56 | .88 | (>300) | (>300)
7 | 581 | 18 | .56 | .88 | (>300) ] (>300)
MG(JAC), Dirichlet, Cartesian, smooth=8
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10
5) .16-1 16-1 .88-1 21 .34 .69
6 .15-1 13-1 .79-1 .20 .34 72
7 14-1 10-1 .60-1 A7 31 71
5 | 131 | 131 | 991 | 55 | (>300) | (>300)
6 | .13-1 | .10-1 | .10+40 | .60 | (>300) | (>300)
7 | 121 | 842 | .10+0 | .60 | (>300) ]| (>300)
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MG(JAC), Neumann, Cartesian, smooth=2
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10

5 14 29 52 67 76 92
6 15 27 | 50 66 75 92
7 15 25 47 | 64 74 91
5 10 23 56 88 | (>300) | (>300)
6 11 21 56 88 | (>300) | (>300)
7 11 20 56 88 | (>300) | (>300)

MG(JAC), Neumann, Cartesian, smooth=8
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10

5 | 311 | 17-1 | 751 | 21 34 72
6 | 31-1 | 141 | 681 | .19 32 72
7 | 301 | 11-1 | 59-1 | 17 30 71
5 | 29-1 | 131 | .1040 | .60 | (>300) | (>300)
6 | 281 | .11-1 | .10+0 | .60 | (>300) | (>300)
7 | 281 | 952 | .1040 | .61 | (>300) | (>300)

The tables show that aspect ratios greater than 2 lead already to problems
for Jacobi smoothing. Otherwise, the number of smoothing steps has to be
significantly increased. Again, Dirichlet boundary conditions behave slightly
better than Neumann boundary conditions, but the difference is much smaller
than compared with local anisotropies.

We come the the following conclusions:

e aspect ratio: Jacobi behaves well for aspect ratios < 2, otherwise
much more smoothing steps are required, depending on mesh level.

e boundary conditions: Dirichlet boundary conditions behave better
for cartesian coordinates especially for very local anisotropies, while
there is no big difference for cylindrical systems.

e coordinate systems: Cartesian and cylindrical behave similar, spher-
ical coordinates are impossible since the matrix coefficients correspond
to large geometrical aspect ratios.

| Use Jacobi only for very isotropic meshes (~squares)!!! |
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3.1.2 Tests on the Gauf3-Seidel preconditioner

We start with the same tests as for the JAC smoother. Again, there are often
large problems for spherical coordinates.

MG(GS), Dirichlet, Cartesian, smooth=2

Level | (5.1.1) | (5,.5.1) |(25,25,.5) ] (.5,.5,1)% | (.25..25, 5)2
5 | .23-1 (6) | .17+0 (12) | .57+0 (35) | .20+0 (16) | .70+0 (54)
6 | .22-1 (6) | .32+0 (18) | .78+0 (81) | .47+0 (27) | .86+0 (135)
7 | 211 (6) | 5240 (32) | (>150) |.66+0 (51)| (>150)
§ | .20-1 (6) | .6940 (58) | (>150) |.80+0 (97) | (>150)

MG(GS), Dirichlet, Cylinder, smooth=2

Level | (5.1.1) | (5.5.1) | (:25,.25.5) | (5,.5,1)2 | (.25,.25, .5)°
5 | .96-1 (9) | 1840 (12) | .67+0 (51) | -31+0 (17) | .79+0 (34)
6 | .12:+0 (10) | .35+0 (20) | .84+0 (125) | .50+0 (30) | (>150)
7| .14+0 (12) | 5540 (37) | (>150) | -69+0 (57) | (>150)
8 | .17+0 (13) | .72+0 (69) | (>150) | .82+0 (110) | (>150)

In order to reach convergence rates near py;g=0.5, the number of smoothing
operations has to be increased. On anisotropic meshes, the following table
for Cartesian coordinates demonstrates this, similar results could by obtained
for cylindrical and spherical coordinates.

MG(GS), Dirichlet, Cartesian, xmax=1

Level (.5,1,1) | (.5,.5,1) | (.25,.25,.5) | (.5,.5,1)? | (.25,.25,.5)*

5 23-1(6) | .17 (12) .33 (18) .29 (16) 49 (27)
smooth 2 2 4 2 4

6 22-1 (6) | .32 (18) 48 (28) AT (27) 49 (28)
smooth 2 2 6 2 10

7 21-1 (6) | .28 (17) 46 (27) 43 (25) .53 (32)
smooth 2 4 14 4 20

8 .20-1 (6) | .48 (30) .53 (34) A1 (24) .53 (38)
smooth 2 4 28 8 40

As before, the number of smoothing steps has to be doubled for each further
mesh refinement if large aspect ratios occur. However, Gauf3-Seidel behaves
clearly better than the Jacobi smoother.
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Non-isotropic grids and Neumann boundary conditions proved again to be
more difficult, also for the GS preconditioner, especially when Cartesian co-
ordinates were employed. As before, Neumann boundary conditions behave
better for cylindrical coordinates which are physically more suited.

MG(GS), Cartesian, Neumann, smooth=2

Level | (5.1.1) | (:5.5.0) | (:25..25.5) | (5,5, 1)2 | (.25,.25, 5)
5 | 45-1(7) | (>300) | (>150) | .8540 (125) | (>150)
6 | 451 (7) | (>300) | (>150) (>150) (>150)
7| 441 (7) | (>300) | (>150) (>150) (>150)
§ | 441 (7) | (>300) | (>150) (>150) (>150)

MG(GS), Cylinder, Neumann, smooth=2

Level | (5.1,1) | (5.5.1) | (.25.25.5) | (5,.5,1)% | (.25,.25,.5)2
5 | 2840 (16) | .45+0 (25) | .79+0 (85) | .85+0 (125) |  (>150)
6 | .41+0 (24) | .63+0 (46) | (>150) (>150) (>150)
7 | 5540 (37) | 7740 (32) | (>150) (>150) (>150)
8 | .68+0 (59) | (>150) (>150) (>150) (>150)

Again, we show in the following tables the number of necessary smoothing
steps to reach convergence rates of about p ~0.5 which has to be compared
with the results for the cartesian coordinates. As discussed before, the in-
crease of CPU-time is more than linear, due to cache and memory access
problems of the underlying implementation (see Section 1).



3.1. EVALUATION ON ORTHOGONAL QUADRILATERALS 53

MG(GS), Neumann(l), Cylinder, xmax=1
Level (.5,1,1) | (.5,.5,1) | (.25,.25,.5)
5 .23-1 (6) | .33 (20) .51 (30)

smooth 2 2 6
Time 4.13-2 0.13 0.38
6 .22-1 (6) | .55 (35) 54 (34)
smooth 2 2 12
Time 0.17 0.99 4.26
7 21-1 (6) | .49 (30) .58 (39)
smooth 2 4 24
Time 0.87 7.67 52.06
8 .20-1 (6) | .54 (36) (>300)
smooth 2 6
Time 5.54 84.96

Next, isotropic refinement in the x-direction is used and xmax is adjusted so
that the aspect-ratio is globally constant.

Level | AR=1 | AR=2 | AR=3

AR=5 | AR=10

MG(GS), Dirichlet, Cartesian, smooth=2

5t 23-1 34-1 14 28 42 73
6 22-1 35-1 A3 27 41 .76
7 21-1 35-1 10 24 38 .75

MG(GS), Dirichlet, Cylinder, smooth=2
Level | AR=1| AR=2 | AR=3 | AR=4 | AR=5 | AR=10
! .98-1 A7-1 12 27 41 .75
6 12 .06-1 A1 .26 40 7
7 .14 B7-1 .10 .25 .39 .76
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MG(GS), Neumann, Cartesian, smooth=2
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10

5 42-1 34-1 14 30 43 7
6 42-1 .35-1 13 27 41 7
7 42-1 .35-1 10 25 38 .76

MG(GS), Neumann, Cylinder, smooth=2
Level | AR=1| AR=2 | AR=3 | AR=4 | AR=5 | AR=10

5t 23-1 32-1 A2 27 41 .76
6 22-1 33-1 A1 .26 40 7
7 21-1 33-1 10 .25 .39 .76

MG(GS), Neumann, Spherical, smooth=2
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10

5t 10 94-1 A8 32 44 .76
6 A2 11 22 .35 AT 78
7 15 11 23 37 .49 .79

MG(GS), Dirichlet, Cartesian, smooth=8
Level | AR=1| AR=2 | AR=3 | AR=4 | AR=5 | AR=10
5) .44-2 .28-2 A43-2 A1-1 37-1 .30
6 .44-2 .25-2 .39-2 .10-1 .36-1 .34
7 A42-2 .19-2 .30-2 .86-2 .30-1 .33
MG(GS), Dirichlet, Cylinder, smooth=8
Level | AR=1 | AR=2 | AR=3 | AR=4 | AR=5 | AR=10
5 37-1 18-1 A7-1 .16-1 .32-1 .32
6 .56-1 21-1 19-1 18-1 31-1 .35
7 74-1 .22-1 24-1 .23-1 27-1 .34

We come to the conclusions for the Gaufl-Seidel smoother:

e aspect ratios: Works fine up to aspect ratio 5, otherwise more smooth-
ing steps are needed, depending on the mesh level.

e boundary conditions: Dirichlet boundary conditions behave similar
for cartesian and cylindrical, the combination Neumann /cylindrical is
slightly better than Neumann/cartesian.
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e coordinate systems: Cartesian and cylindrical behave similar for
Dirichlet boundary conditions, spherical coordinates work only for Neu-
mann conditions.

| Use GS for slightly anisotropic meshes (AR~5)!! |

3.1.3 Tests on the TRI- and ADI-preconditioners

The TRI-preconditioner possesses very good convergence rates on highly
anisotropic meshes: then, the preconditioner tends to be an exact solver!
Damping values for w range from 0.7, for isotropic configurations, to 1.0 for
extreme aspect-ratios. However, the precise 'optimal’ prediction is almost
impossible. In this work two TRI-preconditioners were produced. The first,
TRIx assumes a row-wise numbering and is optimal when refinement is made
in the x-direction. The TRIy-preconditioner is similarly defined, but for (vir-
tually) columnwise numbering. For refinements in both directions, both were
employed in an alternating ADI-strategy. The results from the TRIx or TRIy
and the ADI methods differ on isotropic grids even, such that ADI should
be preferred in many cases. We start with the cartesian case.

MG(TRIx), Dirichlet, Cartesian, smooth=2 MG (ADI)

Level | (5.1.1) | (5.5.0) | (:25.25.5) || (:5.5,1)2 | (:25..25, 5)2
5 | 52-1(7) | .1340 (10) | .23+0 (14) || .87-1(8) | .931(8)
G | 50-1 (7) | .13+0 (10) | 2340 (14) |[-11+0 (10) | .11+0 (10)
7 | 481 (7) | 1340 (11) | 2240 (14) || 2010 (13) | .28+0 (17)
§ [ 451 (7) | 1340 (11) | 2240 (15) || 2640 (16) | .40+0 (24)

The next table shows that cylindrical coordinates lead to even slightly bet-
ter convergence rates. Surprisingly, the results are better on moderately
anisotropic meshes due to the aspect ratios by the matrix coefficients. In
addition to JAC and GS calculations, TRI even works well for spherical co-
ordinates and improves for large aspect ratios. In contrast to TRIy, TRIx
does much worse due to the matrix coefficients.



56 CHAPTER 3. NUMERICAL STUDIES
MG(TRIx), Dirichlet, Cylinder, smooth=2 MG(ADI)
Level (.5,1,1) (.5,.5,1) | (.25,.25..5) || (.5,.5,1)% | (.25,.25,.5)*
5 1540 (11) | 1340 (10) | .22+0 (14) || .1240 (10) | .15+0 (11)
6 1840 (13) | 1340 (11) | .2240 (14) || .14+0 (11) | .15+0 (11)
7 2140 (14) | .1340 (11) | .22+0 (15) || .1440 (11) | .15+0 (11)
8 2340 (16) | .13+40 (11) | .2240 (15) || .13+0 (11) | .13+0 (11)
For spherical coordinates, the TRIy is used. TRIx is much worse.
MG(TRIy), Dirichlet, Spherical, smooth=2 MG(ADI)
Level (.5,1,1) (.5,.5,1) | (.25,.25..5) || (.5,.5,1)% | (.25,.25,.5)*
5 1140 (10) | .73-1 (10) | .87-1 (9) 1040 (9) .99-1 (9)
6 1340 (12) | .89-1 (11) | .87-1 (10) || .12+0 (10) | .11+0 (10)
7 A540 (13) | 1140 (11) | .92-1 (11) || .1240 (11) | .12+0 (11)
8 A740 (15) | 1340 (12) | .1240 (11) || .1240 (11) | .12+0 (11)

All results were calculated to gain 8 digits, except of level 8/(.25,.25,.5) which
was set to gain 6 digits only. Next, we apply Neumann boundary conditions

on the left and bottom, which leads to very similar results.

MG(TRIx), Neumann, Cartesian, smooth=2 MG(ADI)

Level | (5.1.1) | (5,5.1) | (:25.25.5) || (:5,.5,1)% | (.25, .25, .5)
5| 841 (8) | .13+0 (10) | .23+0 (14) || .13+0 (10) | .17+0 (11)
6 | 87-1(9) | 1340 (10) | .23+0 (14) || .17+0 (12) | 1940 (13)
7 | .86-1(9) | .13+0 (11) | 2340 (14) || .21+0 (14) | .25+0 (15)
8 | .86-1 (9) | .13+0 (11) | 2040 (11) || .23+0 (15) | .26+0 (13)

MG(TRIx), Neumann, Cylinder, smooth=2 MG (ADI)

Level | (5.1.1) | (5,.51) | (:25.25.5) || (:5,.5,1)2 | (.25, .25, 5)
5 | 46-1 (7) | .12+0 (10) | .22+0 (14) || .13+0 (10) | 2140 (13)
6 | 46-1 (7) | 12440 (11) | 2240 (14) || .1640 (12) | .18+0 (12)
7| 441 (7) | 1340 (11) | .22+0 (15) || .18+0 (13) | .19+0 (13)
8 [ .42-1 (7) | 1340 (11) | 2240 (15) || .1840 (13) | .16+0 (9)
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MG(TRIy), Neumann, Spherical, smooth=2 MG(ADI)

Level | (5.1.1) | (5.51) | (:25,.25.5) || (:5..5,1)% | (.25,.25, 5)°
5 | 951 (9) | 63-1(8) | .76-1(8) || .1040 (10) | .1140 (10)
6 | 1140 (10) | 581 (7) | 70-1(8) || 931 () | .13+0 (11)
7 [ 1440 (11) | .10+0 (10) | .62-1 (3) |[-1940 (13) | .13+0 (11)
§ | 24+0 (13) | 491 (7) | 23-1(6) |[.12+0 (11)| .13+0 (11)

The values on level 8, especially 0.26 for (.25,.25,.5) above, are 'optimal’ and
could not be improved!

Surprisingly, the ADI out-did the TRI preconditioners, in some cases even
on isotropic meshes! This is the result of the following table.

MG(ADI), Dirichlet, Cartesian, smooth=2
Level | (.5,1,1) | (5,.5,1)] (.25,.25,.5)

5 | 32-1 | .61-1 79-1

6 | 311 | .76-1 91-1

7 | 30-1 | .86-1 991

§ | 30-1 | .10+0 891
MG (ADI), Neumann, Cartesian, smooth=2
Level | (5,1,1) | (5.5.1) |  (.25,.25..5)

5 46-1 1040 1540

6 46-1 1340 1840

7 45-1 1640 1740

8 45-1 1840 9540

MG(ADI), Dirichlet, Cylinder, smooth=2

Level | (5,1,1) | (5.5,1) | (.25,.25..5)
5 | 1240 | .88 92-1
6 | .15+0 | .91-1 99-1
7 | 1840 | .89-1 91-1
8 | 2140 | .86-1 65-1
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MG(ADI), Neumann, Cylinder, smooth=2
Tevel | (.5,1,1) | (.5,5,1) | (.25,.25,5)

5) .28-1 .00-1 67-1

6 .28-1 .02-1 .64-1

7 27-1 .05-1 63-1

8 27-1 .52-1 62-1
MG (ADI), Dirichlet, Spherical, smooth=2
Tevel | (.5,1,1) | (:5,5,1) |  (.25,.25,.5)

5 1240 .95-1 1440

6 1540 A1+40 1540

7 18+0 1440 1740

8 .20+0 .16+0 1840
MG(ADI), Neumann, Spherical, smooth=2
Level | (.5,1,1) | (5.5.1) | (.25,.25,.5)

5) 1740 1040 2940

6 2340 .92-1 1340

7 2940 1940 1240

8 4540 1440 A140

Next, isotropic refinement in the x-direction is used and xmax is adjusted
so that the aspect-ratio is globally constant. All convergence results are
‘optimal” w.r.t. the chosen damping parameters w, even if they show sudden
convergence problems on the finest level only.
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AR— 1 2 3 10 100 | 1000
Level |
MG(TRIx), Dirichlet, Cartesian, smooth=2

5) .02-1 | .28-1] .29-1 | .26-1 | .23-1 | .18-1 | .25-1 | .30-1

6 .50-1 | .23-1 | .25-1 | .25-1 | .25-1 | .17-1 | .21-1 | .25-1

7 48-1 | .19-1 | .20-1 | .20-1 | .20-1 | .1&8-1 | .17-1 | .21-1
MG(TRIx), Dirichlet, Cylinder, smooth=2

5 1540 | .35-1 ] .33-1 | .32-1 | .28-1 | .21-1 | .32-1 | .39-1

6 A8+0 | .40-1 | .33-1 | .31-1 | .31-1 | .22-1 | .25-1 | .35-1

7 2140 | .35-1 | .32-1 | .29-1 | .27-1 | .28-1 | .24-1 | .31-1
MG(TRIy), Dirichlet, Spherical, smooth=2

5 A140 | .43-1 | .45-1 | .46-1 | .45-1 | .44-1 | .43-1 | .1840

6 A3+0 | .54-1 | .47-1 | .55-1 | .55-1 | .59-1 | .53-1 | .3240

7 .15+0 | .66-1 | .54-1 | .56-1 | .56-1 | .62-1 | .63-1 | .53+0
MG(TRIx), Neumann, Cartesian, smooth=2

AR— 1 2 3 4 5) 10 100 | 1000

5) .84-1 | 42-1 | 48-1 .39-1 | .39-1 | .50-1 | .37-1 | .41-1

6 .86-1 | .30-1 | .41-1 | .38-1 | .36-1 | .44-1 | .33-1 | .37-1

7 .86-1 | .25-1 | .35-1 | .36-1 | .33-1 | .33-1 | .29-1 | .33-1
MG(TRIx), Neumann, Cylinder, smooth=2

5 45-1 | .34-1 ] .36-1 | .35-1 | .42-1 | .63-1 | .43-1 | .48-1

6 45-1 | .23-1 | .37-1 | .40-1 | .39-1 | .47-1 | .38-1 | .44-1

7 43-1 | .19-1 | .33-1 | .39-1 | .37-1 | .42-1 | .35-1 | .38-1
MG(TRIy), Neumann, Spherical, smooth=2

5 .95-1 | .42-1 | .43-1 | 41-1 | .39-1 | .36-1 | .58-1 | .50-1

6 1240 | .50-1 | .46-1 | .44-1 | .42-1 | .43-1 | .68-1 | .60-1

7 1440 | .83-1 | .80-1 | .78-1 | .76-1 | .75-1 | .63-1 | .1540

99
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MG(ADI), Dirichlet, Cartesian, smooth=2
AR— 1 2 3 4 5 10 100 1000
! 32-1 | .32-1 | .30-1 | .35-1 | .35-1 | .57-1 | .1240 | .1140
6 31-1 | .29-1 | .33-1 | .36-1 | .37-1 | .69-1 | .1140 | .1040
7 30-1 | .26-1 | .24-1 | .32-1 | .34-1 | .62-1 | .90-1 | .10+0
MG (ADI), Dirichlet, Cylinder, smooth=2
D 1240 | .46-1 | .40-1 | .42-1 | .41-1 | .69-1 | .14+0 | .1740
6 A540 | .568-1 | .45-1 | .43-1 | .42-1 | .85-1 | .1240 | .16+0
7 A8+0 | .69-1 | .44-1 | .42-1 | .40-1 | .68-1 | .1140 | .14+0
MG(ADI), Dirichlet, Spherical, smooth=2
D A2+40 | .58-1 | .48-1 | .47-1 | .47-1 | .b1-1 | .46-1 | .60-1
6 A540 | .71-1 | .59-1 | .55-1 | .55-1 | .61-1 | .56-1 | .88-1
7 A8+0 | .73-1 | .64-1 | .58-1 | .56-1 | .63-1 | .78-1 | .11+0

MG (ADI), Neumann, Cartesian, smooth=2
AR— 1 2 3 4 5) 10 100 1000

5 46-1 | .30-1 | .38-1 | .43-1 | .46-1 | .82-1 | .1340 | .1240

6 46-1 | .28-1 | .34-1 | .39-1 | .42-1 | .93-1 | .1240 | .1140

7 45-1 | .26-1 | .30-1 | .35-1 | .38-1 | .84-1 | .1140 | .1240
MG(ADI), Neumann, Cylinder, smooth=2

5 28-1 | .27-1 | .33-1 | .36-1 | .44-1 | .76-1 | .1540 | .1740

6 28-1 | .28-1 | .31-1 | .40-1 | .43-1 | .96-1 | .1440 | .1640

7 27-1 | .26-1 | .28-1 | .37-1 | .40-1 | .89-1 | .1340 | .1640

MG (ADI), Neumann, Spherical, smooth=2
A7+0 | 981 | 91-1 | .88-1 | .85-1 | .86-1 | .93-1 | .59-1
2340 | 1240 | .1140 | .10+0 | .114+0 | .10+0 | .97-1 | .43-1
7 2940 | 1640 | .15+0 | .15+0 | .15+0 | .11+0 | .79-1 | .35-1

We have the following conclusions for TRI, respective ADI-based smoothers.

e aspect ratios: TRI/ADI improves for large aspect ratios, but gets
worse for isotropic.

e boundary conditions: TRI/ADI works for all; best combinations are
cartesian /Dirichlet or cylindrical /Neumann.

e coordinate systems: Similar convergence behavior, but cylindrical
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or spherical coordinates may be even better through more anisotropies
which result in more tridiagonal matrices.

Choose TRI/ADI for meshes with very large aspect ratios;
may not be optimal for isotropic meshes.

3.1.4 Tests on the ILU preconditioner

Tests show that the standard ILU preconditioner works best with w-values
between 0.8 and 1.0, but values w < 1.0 seem to be absolutely necessary
in some cases. However, it is not clear how to detect the optimal damping
parameters via a priori strategies. We perform the same tests as before:

MG(ILU), Dirichlet, Cartesian, smooth=2

Level | (.5,1,1) | (5,5.1) | (:25,25,5) | (.5,.5,1)2 | (.25, .25, 5)2
5 | 0.38-2 (4) | 0.30-2 (4) | 0.25-2 (4) | 0.39-2 (4) | 0.46-2 (4)
6 | 0.382(4) | 0382 (4) | 0532 (4) | 0.57-2 (4) | 0.61-2 (4)
7 | 0.37-2 (4) | 0.42-2 (4) | 0.87-2 (5) | 0.822 (5) | 0.15-1 (5)
8 |0.34-2 (4) [ 0.65-2 (5) | 0.35-1 (7) | 0.92-2 (5) | 0.26-1 (6)

MG(ILU), Dirichlet, Cylinder, smooth=2

Level | (5.1,1) | (5.5.1) | (:25,.25,5) | (.5,.5,1)% | (.25, .25, 5)°
5 | 0.33-1 (6) | 0.40-1 (7) | 0.32-1 (6) | 0.33-1 (6) | 0.19-1 (5)
6 | 0.51-1 (7) | 0.52-1 (7) | 0.37-1 (7) | 0.46-1 (7) | 0.30-1 (6)
7 ] 0.69-1 (9) | 0.60-1 (8) | 0.37-1 (7) | 0.53-1 (8) | 0.34-1 (7)
8 | 0.84-1 (9) | 0.62-1 (8) | 0.22-1 (6) | 0.56-1 (8) | 0.36-1 (7)

MG(ILU), Spherical, Dirichlet, smooth=2

Level | (5,1,1) | (.5,5.1) | (.25,.25,5) | (.5,.5,1)% | (.25, .25, .5)2
5 | 0.20-1 (5) | 0.95-2 (5) | 0.52-2 (4) | 0.88-2 (5) | 0.45-2 (4)
6 | 0.36-1 (7) | 0.22-1 (5) | 0.19-1 (5) | 0.16-1 (5) | 0.17-1 (5)
7 | 0.51-1 (7) | 0.35-1 (6) | 0.28-1 (6) | 0.21-1 (5) | 0.16-1 (5)
8 | 0.65-1 (3) | 0.481 (6) | 0.39-1 (7) | 0.25-1 (6) | 0.78-2 (5)

As can be seen, the results are very excellent. Next, we perform the tests
with Neumann boundary conditions at the left and bottom parts.
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MG(ILU), Neumann, Cartesian, smooth=2
Level | (5,1,1) | (.5.5,1) | (.25.25,5) | (.5,.5,1)2 | (.25, .25, .5)°
5 ] 0.12-1 (5) | 0.61-2 (4) | 0.12-1 (5) | 0.12-1 (5) | 0.28-1 (6)
6 | 0.12-1 (5) | 0.61-2 (4) | 0.13-1 (5) | 0.13-1 (5) | 0.37-1 (6)
7 10121 (5) | 0.93-2 (5) | 0.30-1 (6) | 0.16-1 (5) | 0.53-1 (7)
§ | 0.12-1(5) | 0.952 (5) div. | 0.211-1 (6) div

MG(ILU), Neumann, Cylinder, smooth=2

Level | (.5,1,1) | (5,5.1) | (:25,25,5) | (.5,.5,1)2 | (.25, .25, 5)2
5 | 0.30-2 (4) | 0.39-2 (4) | 0.10-1 (5) | 0.46-2 (4) | 0.13-1 (5)
6 | 0.33-2 (4) | 0.32-2 (4) | 0.86-2 (5) | 0.50-2 (4) | 0.96-2 (5)
7 | 0.33-2(4) | 0.35-2 (4) | 0.86-2 (5) | 0.68-2 (5) | 0.12-1 (5)
8 | 0.31-2 (4) | 0.41-2 (4) | 0.10-1 (5) | 0.80-2 (5) div

MG(ILU), Spherical, Neumann(lb), smooth=2

Level | (5.1,1) | (5,5.1) | (:25,25.5) | (.5,.5,1)2 | (.25,.25,.5)2
5 | 0.21-2 (4) | 0.19-2 (4) | 0.37-2 (4) | 0.19-2 (4) | 0.34-2 (4)
6 | 0.26-2 (4) | 0.27-2 (4) | 0.13-1 (5) | 0.27-2 (4) | 0.13-1 (5)
7 | 0.26-2 (4) | 0.28-2 (4) | 0.11-1 (5) | 0.27-2 (5) | 0.11-1 (5)
8 0242 (4) [0.27-2 (4) | 0.72-2 (5) | 0.26-2 (5) | 0.69-2 (5)

The ILU preconditioner method works very well with high aspect-ratios in
one or two directions. However, there were some cases when ILU did not
converge at all, examining lots of damping (w) values. So standard ILU does
not seem to be always robust! Additionally, although the numbers in these
tables are very good, one must also consider efficiency and CPU timings.

For example, in three dimensions, a 27-star matrix would require a lot of
time to factorize; one time for each level. And much more critical are the
additional storage costs for holding the preconditioning matrix.

We derive the following conclusions ILU smoothing:

e aspect ratios: Excellent for (almost) all aspect ratios.
e boundary conditions: Works for all.

e coordinate systems: Excellent, but there are some problems for very
high aspect ratios on highly refined meshes, especially with Neumann
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boundary conditions.

Excellent multigrid rates, but most storage and CPU cost.
Is there an alternative?

3.1.5 Tests on the GSTRI and GSADI preconditioners

Tests show that GSTRI and GSADI smoothers work best with w-values al-
ways equal to 1; that means from a priori studies, the choice of w = 1 is
always a very good setting. The convergence behavior of these smoothers
are very good, they are probably the best choice for performing PDEs since
they perform as well as ILU but in contrast they have timing rates far better
than ILU and the storage cost are much less. We perform the same tests as
before.

MG(GSTRI), Dirichlet, Cartesian, smooth=2
Level | (.5,1,1) | (.5,.5,1) (.25,.25,.5)

5 0.17-1 | 0.31-1 0.55-1

6 0.17-1 | 0.31-1 0.53-1

7 0.16-1 | 0.30-1 0.51-1

8 0.16-1 | 0.30-1 0.52-1
MG(GSTRI), Dirichlet, Cylinder, smooth=2
Level | (.5,1,1) | (.5,.5,1) (.25,.25,.5)

5 0.84-1 | 0.50-1 0.52-1

6 0.104+0 | 0.54-1 0.49-1

7 0.1340 | 0.56-1 0.47-1

8 0.154+0 | 0.58-1 0.47-1

As with the TRI method, GSTRIy is employed for spherical coordinates.

MG(GSTRIy), Dirichlet, Spherical, smooth=2
Level | (.5,1,1) | (:5..5.1) (:25,.25,.5)

5) 0.54-1 0.33-1 0.27-1

6 0.76-1 0.51-1 0.46-1

7 0.96-1 0.67-1 0.56-1

8 0.1140 | 0.83-1 0.70-1
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Under Cartesian/Dirichlet boundary conditions, the GSTRI preconditioner
tends to work best with 'isotropic’ meshes, whereas when cylindrical or spher-
ical coordinates are used, the preconditioner behaves better on non-isotropic
meshes.

MG(GSTRI), Neumann, Cartesian, smooth=2
Level | (:5.1,1) | (:5,.5.1) (:25,.25,.5)

5 | 0.42-1 | 0.32-1 0.55-1

6 | 0421 | 0.31-1 0.53-1

7 | 0.41-1 | 0.30-1 0.72-1

8 | 0.41-1 | 0.32-1 div
MG(GSTRI), Neumann, Cylinder, smooth=2
Level | (.5,1,1) | (:5..5,1) (:25,.25,5)

5 | 0.16-1 | 0.26-1 0.42-1

6 | 0.16-1 | 0.27-1 0.45-1

7 [ 0.15-1 | 0.26-1 0.46-1

8 | 0.15-1 | 0.281 0.481
MG(GSTRIy), Neumann, Spherical, smooth=2
Level | (.5,1,1) | (.5,.5,1) (.25,.25,.5)

5 0.17-1 0.16-1 0.22-1

6 0.21-1 0.17-1 0.34-1

7 0.41-1 0.17-1 0.24-1

8 0.85-1 0.16-1 0.58-1

When Neumann boundary conditions are implemented, the preconditioner
does well on almost all meshes, but moderate aspect ratios are preferred,
when using cartesian or spherical coordinates, whereas ’isotropic’ meshes are
preferred with cylinder coordinates.

The GSADI preconditioner behaves similar to the GSTRI preconditioner,
but has even better convergence rates. Higher aspect ratios are preferred
with cylindrical or spherical coordinates and ’'isotropic’ aspect ratios when



3.1.

EVALUATION ON ORTHOGONAL QUADRILATERALS

65

using cartesian coordinates. When employing cylindrical coordinates, the
preconditioner converged worse for isotropic meshes.

MG(GSADI), Dirichlet, Cartesian, smooth=2
Level | (:5,1,1) | (.5,5.1) | (:25,.25,.5) | (-5, .5, 1)2 | (.25, .25, .5)°
5 | 017-1 | 0.25-1 | 0.34-1 0.30-1 0.33-1
6 | 0.16-1 | 0271 | 0321 0.30-1 0.32-1
7 | 0.16-1 | 0.29-1 | 0.31-1 0.35-1 0.43-1
8 | 0.05-1 | 0.281 | 0331 0.36-1 0.47-1
MG(GSADI), Dirichlet, Cylinder, smooth=2
Level | (.5,1,1) | (.5,5.1) | (:25,.25,.5) | (.5, .5,1)% | (.25,.25, .5)2
5 | 0021 | 0.61-1 | 0.45-1 0.55-1 0.61-1
6 | 01140 0.661 | 0.481 0.62-1 0.50-1
7 01440 0681 | 0.45-1 0.63-1 0.48-1
8 |0.1640 | 0.71-1 | 0.34-1 0.64-1 0.36-1
MG(GSADI), Dirichlet, Spherical, smooth=2
Level | (5.1,1) | (.5.5.1) | (.25,.25..5) | (:5,.5,1)2 | (.25, .25, .5)2
5 0.59-1 0.46-1 0.41-1 0.38-1 0.44-1
6 0.80-1 0.62-1 0.58-1 0.43-1 0.47-1
7 0.99-1 0.79-1 0.70-1 0.48-1 0.43-1
8 0.11+0 | 0.95-1 0.84-1 0.50-1 0.36-1

For Neumann boundary conditions, the preconditioner preferred cartesian
and spherical coordinates for moderate anisotropies, whereas cylindrical sit-
uations preferred 'isotropic’ meshes.

MG(GSADI), Neumann, Cartesian, smooth=2
Level | (.5,1,1) | (.5,.5.1) | (:25,.25,.5) | (.5,.5,1)% | (.25,.25, .5)2
5 0.38-1 | 0.32-1 0.37-1 0.54-1 0.56-1
6 0.36-1 | 0.32-1 0.44-1 0.47-1 0.63-1
7 0.36-1 | 0.42-1 0.52-1 0.52-1 0.75-1
8 0.36-1 | 0.52-1 div 0.61-1 div
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MG(GSADI), Neumann, Cylinder, smooth=2
Level | (.5.1,1) | (.5,.5.1) | (:25,.25,.5) | (.5, .5,1)% | (.25,.25, .5)°
5 | 017-1 | 0271 | 0.34-1 0.48-1 0.61-1
6 | 0.17-1 | 0271 | 0.37-1 0.52-1 0.64-1
7 | 0161 | 0261 | 0.36-1 0.56-1 0.68-1
8 | 0151 | 0.25-1 | 0341 0.57-1 div
MG(GSADI), Neumann, Spherical, smooth=2
Level | (.5.1,1) | (.5,.5.1) | (:25,.25,.5) | (.5, .5, 1) | (.25,.25, .5)2
5 0.25+0 | 0.71-1 0.49-1 0.41-1 0.33-1
6 0.55+0 | 0.10+0 0.55-1 0.60-1 0.37-1
7 div 0.83-1 0.58-1 0.54-1 0.42-1
8 div 0.75-1 0.59-1 0.47-1 0.48-1

It is somewhat strange that GSADI has convergence problems only in the

isotropic case for spherical coordinates.

Next, isotropic refinement in the x-direction is used and xmax is adjusted so

that the aspect-ratio is globally constant.
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AR— 1 2 3 10 100 1000
Level ! |
MG(GSTRIx), Dirichlet, Cartesian, smooth=2
5) A7-1 | .60-2 | .32-2 | .22-2 | .16-2 | .18-2 | .20-2 | .28-2
6 A7-1 | .43-2] .30-2 | .23-2 | .19-2 | .15-2 | .17-2 | .23-2
7 16-1 | .34-2 | .25-2 | .20-2 | .17-2 | .15-2 | .19-2 | .19-2
MG(GSTRIx), Dirichlet, Cylinder, smooth=2
5 .84-1 | .22-1 | .14-1 | .84-2 | .60-2 | .16-2 | .33-2 | .40-2
6 1040 | .25-1 | .17-1 | .13-1 | .10-1 | .33-2 | .21-2 | .35-2
7 340 | .31-1 | .18-1 | .14-1 | .12-1 | .49-2 | .17-2 | .24-2
MG (GSTRIx), Dirichlet, Spherical, smooth=2
5 div div div div div div div | .27-1
6 div div div div div div div | .26-1
7 div div div div div div div | .32-1
MG(GSTRIy), Dirichlet, Spherical, smooth=2
5 .54-1 | .22-1] .20-1 | .181 | .17-1 | .181 | .12-1 | .65-1
6 J76-1 | .30-1 | .27-1 | .25-1 | .24-1 | .20-1 | .17-1 | .16+40
7 .96-1 | .32-1 | .29-1 | .27-1 | .25-1 | .27-1 | .23-1 | .3140
MG(GSTRIx), Neumann, Cartesian, smooth=2
AR— 1 2 3 4 5 10 100 | 1000
5 A42-1 | .84-2 | .47-2 | .36-2 | .28-2 | .182 | .20-2 | .28-2
6 A42-11 .69-2 | .37-2 | .29-2 | .25-2 | .16-2 | .17-2 | .23-2
7 A41-1 | .42-2 | .28-2 | .22-2 | .19-2 | .15-2 | .19-2 | .19-3
MG(GSTRIx), Neumann, Cylinder, smooth=2
5) 16-1 | .43-2 | .28-2 | .20-2 | .15-2 | .16-2 | .33-2 | .40-2
6 16-1 | .35-2 | .25-2 | .19-2 | .16-2 | .14-2 | .21-2 | .35-2
7 A5-1 1 .27-2 | .20-2 | .16-2 | .14-2 | .16-2 | .17-2 | .24-2
MG(GSTRIy), Neumann, Spherical, smooth=2
5 A7-1 .14-1 | .13-1 | .12-1 | .12-1 | .10-1 | .83-2 | .11-1
6 21-1 | .15-1 .14-1 | .13-1 | .13-1 | .12-1 | .10-1 | .96-2
7 A41-1 | .16-1 | .15-1 | .14-1 | .13-1 | .13-1 | .99-2 | .16-1
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MG(GSADI), Dirichlet, Cartesian, smooth=2
AR— 1 2 3 4 5 10 100 | 1000
5) A7-1 | .11-1 | .14-1 | .20-1 | .20-1 | .10-1 | .26-1 | .32-1
6 16-1 | .93-1 ] .12-1 | .18-1 | .18-1 | .15-1 | .22-1 | .28-1
7 16-1 | .76-2 | .92-2 | .10-1 | .15-1 | .15-1 | .19-1 | .25-1
MG(GSADI), Dirichlet, Cylinder, smooth=2
5) 92-1 | .34-1 ] .21-1 | .18-1 | .18-1 | .13-1 | .32-1 | .41-1
6 A1+4+0 | .38-1 | .27-1 | .18-1 | .16-1 | .13-1 | .29-1 | .38-1
7 1440 | .45-1 | .28-1 | .22-1 | .15-1 | .17-1 | .26-1 | .35-1
MG(GSADI), Dirichlet, Spherical, smooth=2
5 .09-1 | .24-1 ] .21-1 | .19-1 | .22-1 | .19-1 | .16-1 | .24-1
6 80-1 | .32-1 ] .28-1 | .26-1 | .25-1 | .22-1 | .18-1 | .35-1
7 99-1 | .34-1 ] .30-1 | .28-1 | .32-1 | .28-1 | .24-1 | .45-1
MG(GSADI), Neumann, Cartesian, smooth=2
AR— 1 2 4 5 10 100 | 1000
5) .38-1 .16-1 24-1 24-1 .20-1 | .26-1 | .32-1
6 .36-1 13-1 19-1 .20-1 19-1 ] .22-1 | .28-1
7 .36-1 .10-1 15-1 16-1 16-1 | .19-1 | .25-1
MG(GSADI), Neumann, Cylinder, smooth=2
5) A7-1 .10-1 18-1 18-1 A3-1 | .32-1 | .41-1
6 A7-1 .84-2 .16-1 .16-1 19-1 ] .29-1 | .38-1
7 .16-1 .70-2 13-1 14-1 A7-1 ] .26-1 | .35-1
MG(GSADI), Neumann, Spherical, smooth=2
5 2540 | .15+0 | .1440 | .1440 | .13+0 | .19-1 | .27-1
6 05+0 | 4240 | 4140 | 4040 | .40+0 | .16-1 | .22-1
7| (>150) | (>150) | (>150) | (>150) | (>150) | .15-1 | .16-1

Consequence for the GSTRI/GSADI smoothers:

e aspect ratios: The GSTRI variants seem to work almost independent
of the aspect ratio; in fact, only for regular meshes and spherical co-
ordinates (GSADI), resp. for globally large aspect ratio and spherical
coordinates (GSTRI), there seem to be problems.

e boundary conditions: Works almost perfectly for both variants.
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e coordinate systems: Only some problems with cartesian configura-
tions for spherical coordinates.

Favorite choice for 'Black-Box’ solver, since convergence rates, CPU timings
and storage cost are attractive and the damping parameter w is fixed.

3.2 Evaluation on arbitrary quadrilaterals

In practicable applications, the shape of the macros, that means convex
quadrilaterals in our case, can be almost arbitrary. Typically, a complex
coarse mesh is prescribed and the single elements are our macros. For a
better motivation of the different macro types, we show again the (typical)
mesh for a 'flow around the car’ problem. See also the discussion of the
resulting macros in section 1.2.

It is clear, that the behavior of multigrid convergence is not only determined
by the local refinement made within each element, but also the shape of the
element is important. The next tables show the convergence rates of various
smoothers for 'isotropicly’ refined odd shaped macro elements. The tables
were done using two smoothing steps, ‘optimum’ damping parameter w, and
Dirichlet boundary conditions on level 6, i.e. h=2"% H,,.cro.

In the following table, we give both definitions for aspect ratio AR; hereby
corresponds the first value to the classical defined through the midpoint-
oriented local coordinate system (see Section 1.2). As can be seen, Jacobi
and GauB-Seidel work well only for the 'fully isotropic’ case while the others
work for both variations. Additionally, the examples demonstrate the need
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for defining the second type of aspect ratio since both definitions can vary
significantly.

ARoid,new shape JAC GS TRI ADI | GSADI | GSTRI | ILU

1.0,1.0 44-1 | .23-1 | 51-1 | .32-1 | .17-1 A8-1 | .39-2

1.8,5.0 7940 | .4940 | .30-1 | .71-1| .11-1 .85-2 | .76-3
1.7,5.0 7540 | 4140 | .28-1 | 41-1 | .89-2 582 | .60-3
1.3,5.6 740 | 4740 | 1640 | 93-1 | .25-1 45-1 | .40-2

Again, it can be seen that Jacobi and Gauf}-Seidel smoothers work well for
very isotropic meshes only. In contrast, we are confirmed that ILU, (GS)TRI
and GSADI are very robust smoothers.

Because the ILU method has much larger computational cost, convergence
rates among the GS, TRI, ADI, GSTRI and GSADI are examined. Since the
GSTRI preconditioner is a combination of the GS and TRI preconditioners,
one should expect that it possess the advantages of both of these. The
following grid is used: the fourth point, going counterclockwise from the
origin, converges to the origin which leads to very anisotropic meshes since
in the limit case a triangle is approximated.

As seen in the next table, the GSTRIy preconditioner outdid the GS precon-
ditioner even with fewer smoothing steps, especially on the more anisotropic
meshes.
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Cartesian, smooth=2

yas — | 1.0 0.5 0.25 | 0.125 | 0.0625

GS 5 23-1 | .37-1 | .304+0 | .50+0 | .7740
smooth=2 6 22-1 | .42-1 | .37+0 | .68+0 | .8340
7 21-1 | .39-1 | 4040 | .74+0 | .8840

GS 5 44-2 | .34-2 | .14-1 | .1040 | .3740
smooth=38 6 44-2 | .35-2 | .25-1 | .224-0 | .504-0
7 42-2 | .30-2 | .27-1 | .3140 | .6140

TRIy 5 52-1 | .33-1 | .35-1 | .44-1 47-1

6 .b0-1 | .31-1 | .29-1 | .30-1 41-1

7 48-1 | .31-1 | .25-1 | .25-1 .26-1

GSTRIy 5 JAr7-1.10-1 | .11-1 | .11-1 A1-1
6 A7-1| .83-2 | .84-2 | .85-2 | .86-2

7 16-1 | .49-2 | 43-2 | .41-2 | .40-2
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In the next table both y-values on the left side converge symmetrically to

0.5.

~ Cartesian, smooth=2

y1— | 1.0 | 0.25 | 0.375 | 0.4375 | 0.46875

GS 5 23-1 | .32-1 | .2540 | .5b5+0 | .70+0
smooth=2 6 22-1 | .29-1 | .2740 | .64+0 | .83+0
7 21-1 | .26-1 | .284-0 | .67+0 | .87+0

GS 5 44-2 | .32-2 | .11-1 | .104+0 | .28+0
smooth=8 6 44-2 ) .30-2 | .12-1 | .17+0 | 4740
7 A42-2 | .24-2 | .11-1 | .2140 | .574+0

TRIy 5 .52-1 | .34-1 | .30-1 33-1 45-1

6 .50-1 | .36-1 | .28-1 29-1 40-1

7 A48-1 | .36-1 | .27-1 .26-1 27-1

GSTRIy 5 21-1 | .98-2 | .88-2 .83-2 .66-2

6 A7-1 | .79-2 | .58-2 .53-2 .51-2

7 A7-1 | 51-2 | .43-2 .39-2 .37-2
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The results of the above tables show for the near square situations that GS
converged better, while in the other cases, the TRI did better. However, the

CHAPTER 3.

GSTRI as combination of both schemes, is clearly preferable.

In the final tests, the two neighbored vertices of the origin are adjusted, while
observing convergence. Here, a=upper-left point and b=bottom-right point.
The table shows that GSTRI could handle extreme shapes better than TRI,
but this is true for ‘isotropicly’-refined elements only. In some situations, the

NUMERICAL STUDIES

tridiagonal smoothers could handle odd shape much better than ILU.

Cartesian, smooth=2, level 7
a=/|,b=— Dirichlet Neumann
TRIx 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 A7 15 15 14 15 A3 A2 A1
0.125 .84 .83 .82 .82 div div div div
TRIy 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 A7 .b8 .84 .93 A1 .50 .80 .92
0.125 15 .55 .82 .93 A2 .44 .76 91
GSTRIx || 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 .35-1 | .35-1 | .38-1 | .39-1 10 | .87-1 | .81-1 | .78-1
0.125 .69 .68 .67 .66 div div .70 .61
GSTRIy (| 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 34-1 | .33 .69 .86 35-1 1 .29 .64 .84
0.125 .38-1 | .30 .67 .85 b3-1 | .24 .60 .81
ADI 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 43-1 | .85-1 | .10 10 .82-1 | .10 A2 A3
0.125 10 15 19 .25 .16 A7 21 .25
GSADI 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 JA8-1 | .25-1 | .37-1 | .39-1 || .56-1 | .b1-1 | .43-1 | .42-1
0.125 21-1 | .40-1 | .73-1 | .76-1 || .43-1 | .5b4-1 | .73-1 | .76-1
ILU 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 37-2 | .23-1 | .56 div J10-1 | .25-1 | div div
0.125 .34-2 | .54-1 | div div Ad6-1 | .11 div div

'div’ stands for such cases that even small-scaled variations of the damping
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parameter w did not lead to convergence in less than 300 multigrid steps.
The result is that only ADI and GSADI lead to excellent convergence in all
cases while GSADI is even preferable, due to better convergence rates and
particularly since w=1 is always the optimal choice.

Next, tests are made using cylindrical coordinates. Again, the standard ILU
smoother has some problems

Cylinder, smooth=2, level 7
a=/|,b=— Dirichlet Neumann
TRIx 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 .28 .25 23 .23 95-1 | .97-1 | .10 12
0.125 .86 .85 .84 .83 .76 .73 .70 .68
TRIy 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 A7 b7 .83 .93 .10 A7 .76 .90
0.125 15 .54 81 .92 .10 .45 .74 .88
GSTRIx 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 A240 | 98-1 | 91-1 | .79-1 | .22-1 | .37-1 | .b2-1 | .54-1
0.125 .73 .71 .69 .67 57 .b3 .50 47
GSTRIy 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 .39-1 .32 .68 .85 23-1 ] .26 .h9 .80
0.125 .52-1 .29 .64 .83 b2-1 | .23 .b6 7
ADI 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 A1 10 A2 14 39-1 | .10 A2 14
0.125 12 .19 .22 .26 A2 .19 .22 .26
GSADI 0.5 0.25 | 0.125 | 0.0625 | 0.5 | 0.25 | 0.125 | 0.0625
0.5 .63-1 | .57-1 | .b4-1 | .b5-1 | .19-1 | .36-1 | .51-1 | .54-1
0.125 23-1 | .71-1 | .93-1 A1 23-1 | .71-1 | .93-1 A1
ILU 0.5 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 JA8-1 | .21-1 | b4 div 31-2 | .18-1 | div div
0.125 .35-2 | .68-1 | div div .60-2 | .69-1 | div div

As before, ADI and particularly GSADI are the winners.

Finally, tests are made using spherical coordinates. Most smoothers have
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difficulties in these coordinates. For Dirichlet boundary conditions, only
the TRIy, ADI, GSTRIy and GSADI smoother converged. For Neumann
boundary conditions, almost all smoothers had problems which for ADI and
GSADI could be solved by more smoothing steps.

Spherical, smooth=2, level 7

a=/|,b=— Dirichlet Neumann
TRIx 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 div div div div div | div div div
0.125 div div div div div | div div div
TRIy 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 12 .54 .82 .93 .86 | .90 div div
0.125 11 .54 .79 .90 div | div div div
GSTRIy 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 .b5-1 | .34 .68 div A2 | .32 .62 77
0.125 .b2-1 | .35 .64 div A48 | .33 b8 .69
ADI 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 97-1] .35 .56 .59 div | div div div
0.125 .13 A7 .62 .ol div | div div div
GSADI 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 38-1 | .19 37 .39 div | div div div
0.125 33-1 | .30 44 31 div | div div div
ILU 0.5 | 0.25 | 0.125 | 0.0625 || 0.5 | 0.25 | 0.125 | 0.0625
0.5 div div div div div | div div div
0.125 div div div div div | div div div
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Spherical, smooth=8, level 5
a=l),b=— Dirichlet Neumann
ADI 0.5 | 0.25 | 0.125 | 0.0625 0.5 0.25 | 0.125 | 0.0625
0.5 24-1 | .90-1 | .13 13 20-1 | .25 40 .30
0.125 .36-1 | .15 15 A2 .79-1 | .55 .73 41
GSADI 0.5 | 0.25 | 0.125 | 0.0625 0.5 0.25 | 0.125 | 0.0625
0.5 A2-1 | .43-1 | .65-1 | .59-1 38-2 | 43-1 ] .15 13
0.125 A8-1 | .77-1 | .75-1 | .52-1 A2-1 | .80-1 | .22 12
ILU 0.5 | 0.25 | 0.125 | 0.0625 0.5 0.25 | 0.125 | 0.0625
0.5 A4-2 | 11 | b4-1 | .54-1 49-3 | div div div
0.125 div div div div div div div div

Spherical, smooth=8, level 6

a=/|,b=— Dirichlet Neumann
ADI 0.5 | 0.25 | 0.125 | 0.0625 | 0.5 | 0.25 | 0.125 | 0.0625
0.5 B1-1 ) .11 .20 .20 A2-1 | .12 .23 .24

0.125 23-1 | .19 .24 18 .80-1 | .23 27 27
GSADI 0.5 | 0.25 | 0.125 | 0.0625 | 0.5 | 0.25 | 0.125 | 0.0625

0.5 17-1 | .56-1 12 .10 .26-2 | .56-1 12 15
0.125 A1-1 | .12 14 91-1 A0-1 | .12 .16 .15
ILU 0.5 0.25 | 0.125 | 0.0625 0.5 | 0.25 | 0.125 | 0.0625

0.5 div div div div div div div div

0.125 div div div div div div div div

Spherical, smooth=8, level 7

a=/|,b=— Dirichlet Neumann
ADI 0.5 | 0.25 | 0.125 | 0.0625 | 0.5 | 0.25 | 0.125 | 0.0625
0.5 32-1 | .11 .25 .29 A16-1 | .14 .29 .32

0.125 27-1 | .18 .34 .28 .89-1 | .22 .38 .29
GSADI 0.5 | 0.25 | 0.125 | 0.0625 | 0.5 | 0.25 | 0.125 | 0.0625

0.5 18-1 | .53-1 .15 .16 .16-2 | .53-1 A7 .19
0.125 Jd4-1 1 .11 21 .15 81-2 | .11 .24 A7
ILU 0.5 0.25 | 0.125 | 0.0625 0.5 | 0.25 | 0.125 | 0.0625

0.5 div div div div div div div div
0.125 div div div div div div div div

The ILU smoother did not converge for different w parameters using up to
16 smoothing operations.
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Finally an odd shape with local refinements is examined for cylindrical co-
ordinates.

E Cylinder, smooth=2, level 7

Dirichlet | (.5,1,1) | (:5..5,1) | (.25,.25,.5) | (.5,.5,1)2 | (.25, .25, .5)2
ADI 10 55-1 11 46-1 42-1
GSADI | 371 | .24-1 20-1 482 382
ILU 412 | 121 45-2 26-2 575
Neumann | (.5,1,1) | (.:5..5,1) | (:25,.25,.5) | (.5,.5,1)2 | (.25, .25, .5)2
ADI A1 | 621 11 11 15
GSADI | .10-1 | .13-1 21-1 23-1 20-1
ILU 583 | .62-3 39-2 73-3 25-1

e Not counting ILU, the GSADI performs best and is followed by GSTRI,
and then ADI for Dirichlet boundary conditions.

e Careful study must be made when solving on odd shapes when using
ILU: other methods converge often better.

e The TRIx smoother together with Neumann boundary conditions con-
verges only with cylindrical coordinates.

3.3 Conclusion of the results

We finish the numerical and computational studies with the following results:

e The standard JAC and GS smoothers seem to work well for very
isotropic meshes only. In addition, spherical coordinates are almost
impossible. Also the choice of damping parameters w is quite delicate.
While cartesian coordinates with Dirichlet boundary conditions show
some superconvergence results (compare with the paper of Yserentant),
cylindrical coordinates behave better with Neumann boundary contions
for both smoothers.
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e Pure tridiagonal schemes are much better for largely anisotropic meshes,
especially if being globally defined. However, the rates for isotropic
meshes are worse, and the choice of w is not clear. ADI, that means
switching of rowwise and columnwise tridiagonal numbering, is prefer-

able.

e ILU shows often the best convergence rates, but the numerical and
computational costs are much larger. Additionally, for very anisotropic
meshes, the choice of w is not clear, and the standard ILU may diverge.

e Qur favorite is GSTRI, resp. GSADI which combines the advantages of
GS and TRI schemes: that means, uniformally excellent for isotropic
and anisotropic meshes, and the choice of w=1 is always optimal for
GSADI. Since also the computational efficiency is very high (see the
FEAST Indices) and the additional storage is negligible, GSADI is our
actual favorite for all coordinate systems and all types of boundary
conditions.



Chapter 4

Conclusions

The aim of this work was to study efficient (multigrid) Poisson solvers in
general coordinates on generalized tensorproduct meshes and to help decide
which method is most appropriate. It was realized using software developed
by the original FEAT group. As part of the growing FEAST project, this
work has brought new implementations of sparse banded matrix solvers.

The work compared different methods ranging from the classical Gaussian
elimination over Krylov-space methods up to multigrid schemes. Several
smoothers were tested for different coordinate systems on meshes with vary-
ing aspect ratios and different shape.

The results of this work are:

e For small problems (up to 10,000 unknowns) many classical (one-grid)
methods work well. Arguments can be made for storage cost, CPU-
time and also program complexity. The multigrid program requires
several prepared preconditioners for all levels, grid transfer routines
and a boundary update routine which need much more implementation
work. Moreover, the direct solvers have no problem at all with highly
anisotropic meshes.

e For larger problems, classical methods either require inverting a ma-
trix, which would lead to memory problems as in Gaussian elimina-
tion, or have slower convergence behavior due to small grid-steps and
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corresponding bad conditioning. In contrast, the multigrid program
possesses convergence behavior which is (more or less) independent of
the mesh size. The extra memory and algorithmic complexities are
minimal in comparison to the CPU-time gains acquired.

e The tests lead to the conclusions that, for 'small’ up to moderately
isotropic problems, Jacobi or Gauf}-Seidel methods work well enough.
For more extreme refinements, the tridiagonal-based methods, TRI,
ADI, GSTRI and GSADI, work better.

e The ILU method shows often the best convergence results, but has ob-
vious CPU and storage cost disadvantages, especially for higher levels.

From the tests on arbitrary quadrilaterals, which are a better representation
of real life, this paper concludes that the GSTRI/GSADI (~ linewise Gauf-
Seidel schemes) methods are the favorites, not only because of convergence
behavior, but also because the choice w=1 of the inherent parameter is opti-
mal in most cases. This is in contrast to all other schemes, even the applied
ILU smoother. Altogether, this linewise Gauf3-Seidel variant is our favorite
w.r.t. numerical robustness and efficiency, but also regarding the computa-
tional efficiency, since this very sophisticated scheme can be preferred in the
range of hundreds of MFLOPS/s on modern processors.
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Appendix: Developed software

For completeness, we present a few examples from the FORTRAN code which
is used to realize this work.

After the computational mesh, matrices and vectors have been generated
with the FEAT software, the heart (m010.f) of the multigrid program is
executed. It has been slightly modified from the original FEAT routine.
Modifications had to be made to work with sparse banded matrix storage
handling, and this with high computational efficiency.

For one-grid as well as for the coarse grid solver, computations were made
using either conjugate-gradient (CG) or Gaussian elimination (LU factoriza-
tion) (yex3.f).

The defect computation routine is realized with ymax13.f. Here different
strategies for matrix-vector multiplication can be chosen based on the actual
hardware. The optimal version depends often on the type and size of cache
used.

Pre- and postsmoothing is realized through the routine ysmooth.f. The
modular programming style makes it easy to choose from different matrix-
vector multiplication and smoothers.

The prolongation and restriction operators are realized in just a few lines
of code (prolong.f). The subroutines called are DAXPY-like variants from
the 'Basic Linear Algebra Subroutine’ (BLAS) and are optimized often at
the machine level.

There are several methods of boundary handling. In this implementation,
boundary points are updated after restriction and prolongation. The routine
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ymbc13.f loops through an array of boundary indices and simply sets them
to the correct values.

Several matrix-vector multipliers are used in the program. A few, dgbmv3
and band16 are shown. In band16, one can see the basic unrolling techniques
that are employed: these take less CPU-time since they make fewer reference
to the index variable.

The tensorproduct mesh is realized by calling the refinement subroutine (see
Section 1.2) once for each direction and then calculating the values to be
stored as the mesh (refine.f).

The smoothers are built after the main stiffness matrix has been processed
for boundary conditions. The preparation of the smoothers is made in adi.f
and gs.f. First the respective part of the stiffness matrix is stored into
the preconditioner memory and then these are factorized for later use as
smoothers.
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MO10

Purpose

In moment nur typ 3 (DPRSM/DPOSM/DEX aufgerufen

mit extra vector)

Solution of a linear system A*X = B using
multigrid iteration
Double precision version

Subroutines/functions called LL21 , LLC1

Version from 08/25/90

KOFFX
KOFFB
KOFFD

KNEQ
NLMAX
NLMIN
NIT
EPS
KPRSM

KPOSM
ICYCLE

DAX

DPROL

DREST

DPRSM

DPOSM

TYPE

R*8
R*8
R*8
R*8

R*8
Ix4

Ix4
Ix4

SUBR

SUBR

SUBR

SUBR

SUBR

Starting address of vectors containing the
solution and the right hand side, DD, DR are used as
auxiliary vectors only

The actual starting address of DX on level ILEV

is DX(1+KOFFX(ILEV)) (analogously for DB and DD)
Total space required for all vectors is

KNEQ (NLMIN)+. . .+KNEQ(NLMAX)

DX (1+KOFFX(NLMAX)) contains initial solution
DB(1+KOFFB(NLMAX)) contains right hand side

Number of equations for all levels

Iteration uses levels NLMIN to NLMAX,

NLMAX is the finest level

Maximum number of iterations

Iteration completed after reaching the finest level
Desired precision

Stop if !!DEF!! < EPS

Number of pre -smoothing steps for all levels
Number of post-smoothing steps for all levels

<0: special cycle types (not yet implemented)

=0: F-Cycle

=1: V-Cycle

=2: W-Cycle

>2: Cycle of higher order

CALL DAX(DX,DAX,NEQ,A1,A2)

Returns DAX := A1xAxDX+A2xDAX

DPROL(DX1,DX2)

Returns DX2 := Prolongation(DX1) to higher level
DREST(DD1,DD2)

Returns DD2 := Restriction(DD1) to lower level
DPRSM(DX,DB,DD,NEQ, NPRSM)

Returns DX after NPRSM:=KPRSM(ILEV)
pre-smoothing steps, DD is used as auxiliary vector
Same as above, used for post-smoothing
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LR I

DEX

DBC

KITO
KIT

0UTP
DX
ITE
IER

SUBR  DEX(DX,DB,DD,NEQ) *
Returns exact solution *

SUBR  DBC(DX,NEQ) *
Copies boundary data onto components of DX *

Ix4 auxiliary vectors of length NLMAX *

Ix4 *

*

%

UT TYPE *
-- —_— *
R*4 Solution vector on DX(KOFFX(NLMAX)) *

Ix4 Number of iterations *

Ix4 Error indicator *

*

2k 3k 2k 3k 2k 3k ok 3k ok 3k ok 3k ok 3k ok 3k 2k 3k ok 5k 2k 5k k >k k >k 3k >k 5k >k >k 3k >k 3k >k 3k >k >k 2k >k 5k >k 5k >k 5k %k 5k 5k >k 5k >k 5k >k 5k k >k 3k >k 3k >k 3k ok >k >k >k %k >k %k %k % %k *k

C

Q

*
*

*

*

*

SUBROUTINE M010_(DX,DB,DD,DR,KOFFX,KOFFB,KOFFD,KOFFR,
KNEQ,NIT, ITE,EPS,
DAX,DPROL,DREST,DPRSM,DPOSM,DEX,DBC,KITO,KIT, IREL)

PARAMETER (NNARR=299,NNLEV=9)
IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
CHARACTER SUB*6,FMT*15,CPARAM*120
INTEGER MDATA,NFL(NNLEV,NNLEV), IRES
INTEGER LMATEX,LPIVOT
DIMENSION VWORK(1),KWORK(1)
DOUBLE PRECISION TTSM1,TTSM2,DFLS1(NNLEV),DFLS2(NNLEV),timmat
DOUBLE PRECISION DFLA(NNLEV),DFLR(NNLEV),DFLP(NNLEV),DFLX(NNLEV)

DIMENSION DX(*),DB(*),DD(*),KOFFX(*),KOFFB(*),KOFFD(*)
DIMENSION KNEQ(*),KITO(*),KIT(*),DR(*),KOFFR(*)
COMMON /ERRCTL/ IER,ICHECK
COMMON /CHAR/  SUB,FMT(3),CPARAM
COMMON /QUTPUT/ M,MT,MKEYB,MTERM,MERR,MPROT,MSYS,MTRC,IRECLS
COMMON /MGTRD/ KNEL(NNLEV),KNVT(NNLEV) ,KNMT (NNLEV),
KNVEL (NNLEV) ,KNVBD (NNLEV)
COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,
ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
COMMON /MGTIME/ TTMG,TTS,TTE,TTD,TTP,TTR,IMTIME
COMMON /XYPAR/ DXYPAR(NNARR),KXYPAR(NNARR)
COMMON /MGPARO/ DOMPOS(NNLEV) ,DOMPRS (NNLEV) ,OMEX ,EPSEX,
KIPOSM(NNLEV) ,KIPRSM(NNLEV) , IEX,NITEX, IELE
include "jcommons.f"
COMMON NWORK, IWORK, IWMAX ,L (NNARR) ,DWORK (1)
EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))
SAVE /ERRCTL/,/CHAR/,/OUTPUT/,/MGTRD/,/MGPAR/,/MGTIME/,/John/

Preconditionors available

EXTERNAL TRI1,TRI2,ADITRI,JACOBI,GSTRI1,ILU,GS
Matrix-Vector

EXTERNAL Lax13_,dgbmv_,dgbmv3_,DPROL,DREST,DPRSM,DPOSM, DEX

SUB=’MO10
IF (ICHECK.GE.997) CALL OTRC(’°M010 ,°08/25/907)
IER=0

MDATA=678



OPEN (MDATA,FILE=’mflop_times.dat’)

BREL=IREL.EQ.1
BMSG2=M.GE.2.0R.MT.GE.2

BTIME=IMTIME.GT.0
IF (BTIME) THEN
IF (IMTIME.EQ.1) THEN
TTMG=0D0
TTS=0D0
TTE=0DO
TTD=0D0
TTP=0D0
TTR=0DO
TTSM1=0D0
TTSM2=0D0
DO ILEV=NLMIN,NLMAX
DFLS1(ILEV)=0D0
DFLS2(ILEV)=0D0
DFLA(ILEV)=0D0
DFLR(ILEV)=0D0
DFLP (ILEV)=0D0
DFLX(ILEV)=0D0
DO JLEV=NLMIN,NLMAX
NFL(ILEV,JLEV)=0
ENDDO
ENDDO
ENDIF
CALL ZTIME(TTMGO)
ENDIF

NITO=MAX(ITE,0)
ILEV=NLMAX
IRES=0

C *x* special case - only one level

IF (NLMIN.EQ.NLMAX) THEN
CALL LCP1(DB(1+KOFFB(NLMAX)),DX(1+KOFFX(NLMAX)) ,KNEQ(NLMAX))
IF (BTIME) CALL ZTIME(TTEO)
CALL DEX(DX(1+KOFFX(NLMAX)),DB(1+KOFFB(NLMAX)),

* DD (1+KOFFD (NLMAX) ) ,DR(1+KOFFR (NLMAX)) ,KNEQ (NLMAX) ,DPRSM)
IF (BTIME) THEN
CALL ZTIME(TTE1)
TTE=TTE+TTE1-TTEQ
ENDIF
GOTO 99999

ENDIF

[eNeNe]

**x level counts
KITO(NLMAX)=1
DO 2 ILEV=NLMIN+1,NLMAX-1
IF (ICYCLE.EQ.0) THEN
KITO(ILEV)=2
ELSE
KITO(ILEV)=ICYCLE
ENDIF



2 CONTINUE

IF (BTIME) CALL ZTIME(TTDO)

CALL LCP1(DB(1+KOFFB(NLMAX)),DR(1+KOFFR(NLMAX)) ,KNEQ(NLMAX))
CALL DAX(DX(1+KOFFX(NLMAX)) ,DR(1+KOFFR(NLMAX)) ,KNEQ(NLMAX) ,
* -1D0, 1D0, IRES)

if (Inorm.eq.1)then

CALL LL21(DR(1+KOFFR(NLMAX)) ,KNEQ(NLMAX) ,DEF)
else

CALL LL21_(DR(1+KOFFR(NLMAX)),KNEQ(NLMAX) ,DEF)
endif

DEFOLD=DEF
IRES=1

IF (BMSG2) THEN

WRITE (CPARAM,’(I15,D25.16)’) O ,DEF

CALL OMSG(73,°M010 )

ENDIF
C *xx FD 1is considered as initial defect
C *** (after at least one pre-smoothing step)

FD=DEF

IF (BTIME) THEN

CALL ZTIME(TTD1)

TTD=TTD+TTD1-TTDO

x=(4+2%9) *KNEQ (NLMAX) / (TTD1-TTDO) /1D6

DFLA(NLMAX)=DFLA (NLMAX) +x

NFL (3,NLMAX)=NFL(3,NLMAX)+1

ENDIF
IF (DEF.LE.EPS.AND..NOT.BREL) THEN
ITE=0
GOTO 1000
ENDIF
¢
C *¥* Start multigrid iteration
¢
DO 100 ITE=1,NIT
¢

C *xx initialize level counts for all levels
DO 101 ILEV=NLMIN,NLMAX
101 KIT(ILEV)=KITO(ILEV)

¢
ILEV=NLMAX
¢
110  IF (ILEV.NE.NLMIN) THEN
¢
C *%* Pre-smoothing
¢

IF (KPRSM(ILEV).GT.0) THEN
IF (BTIME) CALL ZTIME(TTSO)
CALL ysm3(DX(1+KOFFX(ILEV)),DB(1+KOFFB(ILEV)),
* DD (1+KOFFD (ILEV) ) ,DR(1+KOFFR(ILEV)),
KNEQ(ILEV) ,KPRSM(ILEV),IRES,
DOMPRS (ILEV) ,dgbmv_,DPRSM)

IF (BTIME) THEN



Q

CALL ZTIME(TTS1)
TTS=TTS+TTS1-TTSO
x=(5+2*9) *xKNEQ (ILEV) /(TTS1-TTS0)/1D6
DFLS1(ILEV)=DFLS1 (ILEV)+x
NFL(1,ILEV)=NFL(1,ILEV)+1
WRITE(678,*)"PRSM", ILEV,x
ENDIF
ENDIF

IF (BTIME) CALL ZTIME(TTDO)

CALL LCP1(DB(1+KOFFB(ILEV)),DR(1+KOFFR(ILEV)),KNEQ(ILEV))

CALL DAX(DX(1+KOFFX(ILEV)),DR(1+KOFFR(ILEV)),KNEQ(ILEV),
* -1D0,1D0, IRES)

IRES=0

IF (BTIME) THEN

CALL ZTIME(TTD1)

TTD=TTD+TTD1-TTDO

x=(2+2%9) *KNEQ (ILEV )/(TTD1-TTDO)/1D6
DFLA(ILEV)=DFLA (ILEV)+x
NFL(3,ILEV)=NFL(3,ILEV)+1
WRITE(678,*)"DAX",ILEV,x

ENDIF

ILEV=ILEV-1
*** restriction of defect

IF (BTIME) CALL ZTIME(TTRO)
CALL DREST(DR(1+KOFFR(ILEV+1)),DB(1+KOFFB(ILEV)))

*%* choose zero as initial vector on lower level
CALL LCL1(DX(1+KOFFX(ILEV)),KNEQ(ILEV))
CALL DBC(DB(1+KOFFB(ILEV)),KNEQ(ILEV))

IF (BTIME) THEN
CALL ZTIME(TTR1)
TTR=TTR+TTR1-TTRO
x=(2.5)*KNEQ(ILEV+1)/(TTR1-TTRO)/1D6
DFLR (ILEV+1)=DFLR (ILEV+1)+x
NFL(4,ILEV+1)=NFL(4,ILEV+1)+1
WRITE(678,*)"REST",ILEV+1,x

ENDIF

GOTO 110

ENDIF

Exact solution on lowest level

IF (BTIME) CALL ZTIME(TTEO)
CALL DEX(DX(1+KOFFX(NLMIN)),DB(1+KOFFB(NLMIN)) ,DD(1+KOFFD(NLMIN)),
* DR (1+KOFFR(NLMIN)) ,KNEQ (NLMIN) ,DPRSM)

IF (BTIME) THEN

CALL ZTIME(TTE1)

TTE=TTE+TTE1-TTEOQ
x=5D0*DBLE (KNEQ (NLMIN) ) **(3D0/2D0) /(TTE1-TTEO)/1D6
DFLX (NLMIN)=DFLX (NLMIN) +x
NFL(6,NLMIN)=NFL(6,NLMIN)+1



ENDIF
C
C
130 IF (ILEV.NE.NLMAX) THEN

ILEV=ILEV+1

C *** DPROL returns DD:=PROL(DX)
C

IF (BTIME) CALL ZTIME(TTPO)

CALL DPROL(DX(1+KOFFX(ILEV-1)),DD(1+KOFFD(ILEV)))

CALL DBC(DD(1+KOFFD(ILEV)),KNEQ(ILEV))

CALL LLC1(DD(1+KOFFD(ILEV)) ,DX(1+KOFFX(ILEV)),KNEQ(ILEV),1D0,1D0)

IF (BTIME) THEN

CALL ZTIME(TTP1)

TTP=TTP+TTP1-TTPO

x=(4.25)*KNEQ(ILEV )/(TTP1-TTPO)/1D6
DFLP (ILEV)=DFLP (ILEV)+x
NFL(5,ILEV)=NFL(5,ILEV)+1

ENDIF

C *%* Post-smoothing
IRES=0

write(*,*)’Post-smoothing’
IF (KPOSM(ILEV).GT.0) THEN
IF (BTIME) CALL ZTIME(TTSO)
CALL ysm3(DX(1+KOFFX(ILEV)),DB(1+KOFFB(ILEV)),
DD (1+KOFFD(ILEV)),DR(1+KOFFR(ILEV)),
KNEQ(ILEV) ,KPRSM(ILEV),IRES,
DOMPRS (ILEV) ,dgbmv_,DPOSM)

IF (BTIME) THEN

CALL ZTIME(TTS1)

TTS=TTS+TTS1-TTSO

x=(5+2*9) *KNEQ (ILEV) /(TTS1-TTS0)/1D6
DFLS2(ILEV)=DFLS2(ILEV)+x
NFL(2,ILEV)=NFL(2,ILEV)+1

c WRITE(678,%)"POSM",ILEV,x
ENDIF
ENDIF

KIT(ILEV)=KIT(ILEV)-1
IF (KIT(ILEV).EQ.O0) THEN
IF (ICYCLE.EQ.0) THEN
KIT(ILEV)=1
ELSE
KIT(ILEV)=KITO(ILEV)
ENDIF
GOTO 130
ELSE
GOTO 110
ENDIF
ENDIF

IF (BTIME) CALL ZTIME(TTDO)
CALL LCP1(DB(1+KOFFB(NLMAX)) ,DR(1+KOFFR(NLMAX)),KNEQ(NLMAX))



CALL DAX(DX(1+KOFFX(NLMAX)),DR(1+KOFFR(NLMAX)) ,KNEQ(NLMAX),
* -1D0, 1D0, IRES)

if (Inorm.eq.1)then
CALL LL21(DR(1+KOFFR(NLMAX)),KNEQ(NLMAX) ,DEF)

else
CALL LL21_(DR(1+KOFFR(NLMAX)),KNEQ(NLMAX) ,DEF)
endif
IRES=1
DEFQLD=DEF
c
IF (BTIME) THEN
CALL ZTIME(TTD1)
TTD=TTD+TTD1-TTDO
x=(4+2x9) *KNEQ (NLMAX )/ (TTD1-TTDO)/1D6
DFLA(NLMAX)=DFLA (NLMAX) +x
NFL(3,NLMAX)=NFL(3,NLMAX)+1
c WRITE(678,*)"DAX",ILEV,x
ENDIF
¢
IF (BMSG2) THEN
WRITE (CPARAM,’(I15,D25.16)’) ITE,DEF
CALL 0MSG(73,°MO10 ?)
ENDIF
IF (BREL) THEN
IF (DEF.LE.FD*EPS.AND.ITE.GE.NITO) GOTO 1000
ELSE
IF (DEF.LE.EPS) GOTO 1000
ENDIF
c
100  CONTINUE
c
WRITE (CPARAM,’(I15,2D25.16)’) NIT,DEF,DEF/FD
CALL 0OMSG(71,°M010 ?)
CALL 0MSG(72,°MO10 )
IER=1
GOTO 99999
¢
1000 IER=0
y=FD
IF (FD.GE.1D-70) FD=DEF/FD
WRITE (CPARAM,’(I15,2D25.16)’) ITE,DEF,FD
CALL 0OMSG(72,°M010 ?)
WRITE (CPARAM,’(D25.16)’) FD**(1DO/DBLE(ITE))
CALL 0MSG(76,’M010 )
c

99999 IF (BTIME) THEN
CALL ZTIME(TTMG1)
TTMG=TTMG+TTMG1-TTMGO-t immat
DFLX(NLMIN)=DFLX(NLMIN)-timmat

c write(*,*)"HAllo m010.f",-timmat

DO ILEV=NLMIN+1,NLMAX
NFL(6,ILEV)=1.

ENDDO

DO ILEV=1,5
NFL(ILEV,1)=1.



ENDDO

WRITE (678,%)
*? TTMG, TTS, TTD, TTP, TTR, TTE’
WRITE (678,988) TTMG,TTS, TTD,TTP,TTR, TTE

WRITE (678,986) TTMG/TTMG*100,TTS/TTMG*100,
* TTD/TTMG*100,TTP/TTMG*100, TTR/TTMG*100, TTE/TTMG*100

WRITE (678, %) " mmmmmmmmmmmm o e e e e
WRITE (678,%)
*"MFLOP: LEV PRSM POSM DAX PROL REST DEX"
ILEV=NLMIN

x=ILEV
WRITE(678,987)KNEQ(ILEV),x,0,0,0,0,0,DFLX(ILEV)/NFL(6,ILEV)
DO ILEV=NLMIN+1,NLMAX
x=ILEV
WRITE(678,987)KNEQ(ILEV),x,DFLS1(ILEV)/NFL(1,ILEV),

*  DFLS2(ILEV)/NFL(2,ILEV),
*  DFLA(ILEV)/NFL(3,ILEV),DFLP(ILEV)/NFL(5,ILEV),
*  DFLR(ILEV)/NFL(4,ILEV),DFLX(ILEV)/NFL(6,ILEV)

ENDDO

WRITE (B78,%) " mm === == mmmmm o o o o e e o e e e

x=(4+2%9) * (1+ITE) *KNEQ (NLMAX)

DO ILEV=NLMAX,NLMIN+1,-1
X=X
+(5*DBLE (NFL (1, ILEV))+5*DBLE(NFL(2, ILEV))
+2 . 5*DBLE(NFL(4,ILEV))+4.25%DBLE(NFL(5, ILEV))
+2*DBLE(NFL (3, ILEV) ) ) *DBLE(KNEQ (ILEV))
+(9* (2*DBLE(NFL (1, ILEV) ) +2*DBLE(NFL(2, ILEV))
+2*DBLE(NFL (3, ILEV))))*DBLE (KNEQ(ILEV))

ENDDO

x=x+5DO*NFL (6 ,NLMIN) *DBLE (KNEQ (NLMIN) ) **(3D0/2D0)

* K X X X

x=x/TTMG/1D6
z=1D6*TTMG/ITE/KNEQ (NLMAX) * (-1D0) /LOG10 (FD** (1DO/DBLE(ITE)))

write(678,*) "Total MFL RATE, Efficiency"
write(678,984) x,z

write(678,*) "CONVERGENCE RATE, ITE, RES, init.RES"
write(678,985) FD**(1DO/DBLE(ITE)),ITE,DEF,y

ENDIF
989 FORMAT("DEX(NLMIN)", F8.2 )

988 FORMAT (" ", 2F8,2," ", 5F8.2 )
986 FORMAT (" ", oFg.2," " BF8.2 )

987 FORMAT(I8,7F8.2 )
c 986 FORMAT("Percent ",6F8.2)

985 FORMAT (" " F8.2,14,2F8.2 )
984 FORMAT(" " F17.2," v, F8.2 )
END

SUBROUTINE LL21_(DX,NX,XNORM)

IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNLEV=9)

DIMENSION VWORK(1),KWORK(1)

DIMENSION DX(*)



COMMON NWORK , IWORK, IWMAX , L (NNARR) , DWORK (1)
EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

COMMON /ERRCTL/ IER,ICHECK

SAVE /ERRCTL/

include "jcommons.f"

C
c IF (ICHECK.EQ.999) CALL OTRC(°LL21 *,’01/02/89°)
C
XNORM=0
do i=1,NX
XNORM=XNORM+DX (i)**2 * DWORK(L(KMASS(1))+i-1)
enddo
C ——--
c CALL LSP1(DX,DX,NX,XNORM)

C ——--
XNORM=SQRT (XNORM)
END

SUBROUTINE YEX3(DX,DB,DD,DR,NEQ,DPREC)
c SUBROUTINE YEX3(DX,DB,DD,DR,NEQ)

IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNLEV=9)
CHARACTER SUB*6,FMT*15,CPARAM*120

DIMENSION VWORK(1),KWORK(1)

DIMENSION DX(*),DB(*),DD(*),DR(*)

COMMON /ERRCTL/ IER,ICHECK

COMMON /CHAR/ SUB,FMT(3) ,CPARAM

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)

COMMON
*
COMMON
COMMON
COMMON

/MGPARO/

/0UTPUT/
/XYPAR/

DOMPOS (NNLEV) ,DOMPRS (NNLEV) , OMEX , EPSEX,
KIPOSM(NNLEV) ,KIPRSM(NNLEV) ,IEX,NITEX, IELE
M,MT,MKEYB,MTERM, MERR ,MPROT ,MSYS,MTRC, IRECL8
DXYPAR(NNARR) ,KXYPAR (NNARR)

NWORK, IWORK , IWMAX , L (NNARR) ,DWORK (1)

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))
SAVE /ERRCTL/,/CHAR/,/MGPAR/,/MGPARO/,/QUTPUT/,/XYPAR/

EXTERNAL DPREC

SUB=’YEX3’

LLA =KXYPAR(100+4*ILEV-3)
LDIA =KXYPAR(100+4*ILEV-2)
LDIAS=KXYPAR(100+4*ILEV-1)
NDIA =KXYPAR(100+4*ILEV)

MO=M
M=0

IF (IEX.EQ.1) THEN



IREQ=4*NEQ

IF (OMEX.LT.0DO) IREQ=3*NEQ
TREQ=MAXO (IREQ, 4)

CALL ZNEW(IREQ,1,LWORK, WORKCG’)
IF (IER.NE.0) GOTO 99999
L1=L(LWORK)

L2=L1+NEQ
L3=L2+NEQ
L4=L3+NEQ
IF (OMEX.LT.ODO) L4=L1
C
ITE=0 ! statt IE317
ITE=2
CALL IE313h(DWORK(LLA),KWORK(LDIA),KWORK(LDIAS),(NDIA),
DX,DB,NEQ,NITEX,ITE,EPSEX,OMEX,
DWORK (L1) ,DWORK(L2) ,DWORK(L3) ,DWORK (L4) ,DPREC)
IF (IER.NE.O) GOTO 99999
WRITE(*,*)’ IE313 iterations=’,ITE
C
IER1=IER
CALL ZDISP(0,LWORK,’WORKCG’)
IER=IER1
C
ELSE IF (IEX.EQ.0) THEN ! EXACT GAUSS LU
CALL SLVEX(DX,DB,NEQ)
C
ENDIF
C
END

C 3k >k 3k >k 3k 5k >k 5k >k 3k 5k >k 3k >k dk >k >k 3k >k 3k >k >k 5k >k 5%k >k 3k >k k >k >k >k %k >k >k >k >k %k >k 5k >k % >k %k %k % *k
SUBROUTINE SLVEX(DX,DB,NEQ)
IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNLEV=9)
CHARACTER SUB*6,FMT*15,CPARAM*120
DOUBLE PRECISION timmat
INTEGER LMATEX,LPIVOT

DIMENSION VWORK(1),KWORK(1)

DIMENSION DX(*),DB(*)

COMMON /ERRCTL/ IER,ICHECK

COMMON /CHAR/  SUB,FMT(3),CPARAM
COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
COMMON /MGPARO/ DOMPOS(NNLEV) ,DOMPRS (NNLEV) , OMEX,EPSEX,
* KIPOSM(NNLEV) ,KIPRSM(NNLEV) , IEX,NITEX, IELE

COMMON /OUTPUT/ M,MT,MKEYB,MTERM,MERR,MPROT,MSYS,MTRC,IRECLS

COMMON /XYPAR/ DXYPAR(NNARR),KXYPAR(NNARR)

include "jcommons.f"

COMMON NWORK, IWORK , IWMAX , L (NNARR) ,DWORK (1)

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

SAVE /ERRCTL/,/CHAR/,/MGPAR/,/MGPARO/,/OUTPUT/,/XYPAR/,/John/
Cc kskskokokokokokokokskokkokkkk INIT . MATRIX for LAPACK: XMO1 3%k ks k ok ok ok k ok k ok %k ok %k %k % %k Xk

I1I=100+(NLMIN-1)%*4

LLA =(KXYPAR(III+1))

LDIA =(KXYPAR(III+2))

LDIAS=(KXYPAR(III+3))



NDIA =KXYPAR(III+4)
NSUB=ABS (KWORK (LDIA+1))
NSUPER=NSUB
LDA=2*NSUB+NSUPER+1 ! =3%(2%*NLMIN+2)+1
ok kb sk ok sk ok sk ok sk ok sk ok sk ke sk ke sk ke sk ke sk ke sk sk sk ok ok ok ok ok ok ok ok 3k 3k ok 3k sk sk sk sk Sk ok Sk ok ok ok ok ok ok ok 3k ok 3k sk ok sk ok Sk ok ok ok k
if (INIMAT.ne.1) THEN
CALL ZTIME(T1)
CALL ZNEW(LDA*NEQ,1,LMATEX, >DMAT’)
CALL ZNEW(NEQ,3,IPIVOT,’IPIVOT’)
C ====LU
CALL ZTIME(w1)
CALL TRNSGB(NEQ,DWORK(LLA),KWORK(LDIA),LDIAS,NDIA,
+ DWORK(L(LMATEX)),LDA,NSUB,NSUPER)
INFO=0
CALL DGBTRF (NEQ,NEQ,NSUB,NSUPER,DWORK (L (LMATEX)),LDA,
+ KWORK(L(IPIVOT)),INFO)
CALL ZTIME(w2)
write(*,*)’Time for LU factorisation:’,w2-wil
INIMAT=1 ! 1st time only
CALL ZTIME(T2)
timmat=T2-T1
c write(*,*)’Time fur Matrix aufbau+LU’,T2-T1
ENDIF ! INIMAT
C %k 3k 3k 3k >k 3k >k >k 5k >k 3k >k 3k 3k >k 3k >k >k >k >k 3k >k 3k >k 5k >k 5k >k %k >k >k 5k >k 5k >k 3k >k 3%k >k %k >k 5k 5%k %k >k >k 3k >k 5%k >k >k >k 3k >k % >k %k >k % % >k %k %k %k
10  NRHS=1
LDB=NEQ
CALL DCOPY(NEQ,DB,1,DX,1)
C ====SOLVE
CALL ZTIME(w1)
CALL DGBTRS(’N’,NEQ,NSUB,NSUPER,NRHS,DWORK (L (LMATEX)),LDA,
+ KWORK (L(IPIVQOT)),DX,LDB,INFQ)
CALL ZTIME(w2)

C =
END

O o m o
include ’transgb.f’
SUBROUTINE YMAX13(DX,DAX,NEQ,A1,A2,IRES)
IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
CHARACTER SUB*6,FMT*15,CPARAM*120

¢

PARAMETER (NNARR=299,NNLEV=9)
DIMENSION VWORK(1),KWORK(1)

DIMENSION DX (%) ,DAX (%)

COMMON /ERRCTL/ IER,ICHECK

COMMON /CHAR/  SUB,FMT(3),CPARAM
COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
COMMON /XYPAR/ DXYPAR(NNARR),KXYPAR(NNARR)
COMMON NWORK, IWORK , IWMAX, L (NNARR) , DWORK (1)

include "jcommons.f"

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))
SAVE /ERRCTL/,/CHAR/,/MGPAR/,/XYPAR/
EXTERNAL band16,band8,band4,band2,bandl



Q

Q

SUB=’YMAX13’
IF (ICHECK.GE.998) CALL OTRC(’YMAX17°,°08/25/90°)
IER=0

LLA =KXYPAR(100+4*ILEV-3)
LDIA =KXYPAR(100+4*ILEV-2)
LDIAS=KXYPAR (100+4*ILEV-1)
NDIA =KXYPAR(100+4*ILEV)

DAX := A1*DA*DX + A2%DAX
IF(IMV.eq.0) THEN
CALL LAX13(DWORK(LLA) ,KWORK(LDIA),KWORK(LDIAS),
* (NDIA),NEQ,DX,DAX,A1,A2)
ELSE IF(IMV.eq.1) THEN
CALL dgblmv(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK(LDIAS),NDIA,
* Al ,DX, 1 , A2 ,DAX, 1 ,DAX)

ELSE IF(IMV.eq.2) THEN

incx=1
CALL dgbmv2(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK(LDIAS),NDIA,
* A1 ,DX,incx , A2 ,DAX,incx,DAX)

ELSE IF(IMV.eq.3) THEN

IF (IBAND.eq.16) THEN
CALL dgbmv3(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK (LDIAS),NDIA,
* Al ,DX, 1 ,A2 ,DAX, 1 ,band16)

ELSE IF(IBAND.eq.8)THEN
CALL dgbmv3(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK(LDIAS),NDIA,
* Al ,DX, 1 ,A2 ,DAX, 1 ,band8)

ELSE IF(IBAND.eq.4)THEN
CALL dgbmv3(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK (LDIAS) ,NDIA,
* Al ,DX, 1 ,A2 ,DAX, 1 ,band4)

ELSE IF(IBAND.eq.2)THEN
CALL dgbmv3(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK (LDIAS),NDIA,
* Al ,DX, 1 ,A2 ,DAX, 1 ,band2)

ELSE IF(IBAND.eq.1)THEN
CALL dgbmv3(NEQ,DWORK(LLA) ,KWORK(LDIA) ,KWORK(LDIAS),NDIA,

* A1l ,DX, 1 ,A2 ,DAX, 1 ,bandl)
ELSE
write(*,*) "IBAND is of 1,2,4,8,16"
stop
ENDIF
ENDIF
END
smoothing

SUBROUTINE ysm3(DX,DB,DD,DR,NEQ,NIT,IRES,OMEGA,MV,PREC)



IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNAB=21,NNLEV=9,NNWORK=7000000)
DIMENSION DX(*),DB(*),DD(*),DR(*)

DIMENSION VWORK(1),KWORK(1)

double precision OMEGA

COMMON /ERRCTL/ IER,ICHECK

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)

COMMON /MGPARO/ DOMPOS(NNLEV) ,DOMPRS (NNLEV) , OMEX,EPSEX,

* KIPOSM(NNLEV) ,KIPRSM(NNLEV) , IEX,NITEX, IELE
include "jcommons2.f" ! BCMG - boundary,matrizen

include "jcommons.f"

COMMON NWORK, IWORK, IWMAX , L (NNARR) , DWORK (1)

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))
SAVE /ERRCTL/,/BCMG/
EXTERNAL MV,PREC

DO ITE=1,NIT
Defect
IF(IRES.eq.0) THEN
CALL LCP1(DB,DR,NEQ) ! DR=DB
CALL MV(NEQ,-1D0O,DX,1,1DO,DR,1,DR)! Defect
ENDIF
IRES=0
C"-1xDefect
CALL PREC(DX,DB,DD,DR,NEQ,ITE,OMEGA)
dx=dx+omega*dr
CALL LLC1(DR,DX,NEQ,OMEGA,1D0)! dx=dx+omega*dr
ENDDO

END

ok ok ok o ok o ok ok sk ok sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok o ok ok ok ok ok ok
SUBROUTINE PROLONG(x,y)
Gegeben: vektor x an Level ILEV
Ausgabe: vector y an Level ILEV+1

PARAMETER (NNVE=4,NNARR=299)
DIMENSION VWORK(1),KWORK(1)

COMMON NWORK, IWORK , IWMAX, L (NNARR) ,DWORK (1)
COMMON /TRIAA/ LCORVG,LCORMG,LVERT,LMID,LADJ,LVEL,LMEL,LNPR,LMM,
* LVBD,LEBD,LBCT,LVBDP,LMBDP

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

INTEGER i,k,0,q,r,s,level,m

DOUBLE PRECISION x(*),y(*),Q2,Q4

PARAMETER (Q2=0.5D0, Q4=0.25D0)

PARAMETER (NNLEV=9)

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
include "jcommons.f"

level=ILEV-1
k=2**(level+l) ! #nodes on row -1 ! ILEV=2 k=8



42

m=(k+1)

| !
o=m*2-1 ! step !
q=2%*level+l ! #nodes on row !
r=q-1 ! !
s=o+1 ! 2% #nodes on row!

CALL DSCAL(m**2,0.0D0,y,1)
first: old points to new points
DO i=1,q
CALL DCOPY(q,x(i+r*(i-1)),1,y(i+o*(i-1)),2)
ENDDO
New points in horzontal direction
DO j=1,q-1
p=j*2
CALL DAXPY(q,Q2,x(j-0),q,y(p),s)
CALL DAXPY(q,Q2,x(j+1),q,y(p),s)
new points in vertical direction
p=m+1+(j-1)*s
CALL DAXPY(q,Q2,y(p-m),2,y(p),2)
CALL DAXPY(q,Q2,y(p+m),2,y(p),2)
ENDDO
new ’mid points’
DO i=1,r
j=k+3+(i-1)*s
CALL DAXPY(r,Q4,y(j-k-2),2,y(j),2)
CALL DAXPY(r,Q4,y(j-k ),2,y(j),2)
CALL DAXPY(r,Q4,y(j+k ),2,y(j),2)
CALL DAXPY(r,Q4,y(j+k+2),2,y(j),2)
ENDDO
END

€ skoskokokook o ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok o ok ok ok ok o ok ok ok ok ke sk ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok o ok ok
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SUBROUTINE RESTRICT(x,y)
GEGEBEN: vektor x an level
AUSGABE: vektor y an level-1

INTEGER i,k,m,level,o,q,r,s

DOUBLE PRECISION x(*),y(x),Q2,Q4

PARAMETER (NNLEV=9)

PARAMETER (Q2=0.5D0, Q4=0.25D0)

COMMON /MGTRD/ KNEL(NNLEV) ,KNVT(NNLEV) ,KNMT (NNLEV),
KNVEL (NNLEV) ,KNVBD (NNLEV)

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,
ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)

level=ILEV+2

k=2%*(level-1) ! #nodes on row -1

!
m=(k+1) ! rows
o=m*2-1 ! step
q=2%*(level-1)+1 ! #nodes on row
r=q-1

s=int(m/2)+1

DO i=1,s
CALL DCOPY(s,x(1+2*m*(i-1)),2,y(1+s*(i-1)),1)
ENDDO
DO i=1,s-1
.5 * side-neighbors
CALL DAXPY(s,Q2, x(1+2#m*(i-1)+m) ,2, y(1+s*(i-1))
CALL DAXPY(s,Q2, x(1+2#mx(i-1)+m) ,2, y(l+s*(i ))

1)
1)



CALL DAXPY(s,Q2, x(2+2%(i-1)) ,2%m,y( @ ) ,s)
CALL DAXPY(s,Q2, x(2+2*(i-1)) ,2*m,y( (i+1)) ,s)
.25% diag-neighbors

CALL DAXPY(s-1,Q4,x(2+2*m*(i-1)+m),2, y(l+s*(i-1)) ,
CALL DAXPY(s-1,Q4,x(2+2*m*(i-1)+m),2, y(2+s*(i-1)) ,
CALL DAXPY(s-1,Q4,x(2+2*m*(i-1)+m),2, y(1+s*(i-0)) ,
CALL DAXPY(s-1,Q4,x(2+2*m*(i-1)+m),2, y(2+s*(i-0)) ,
ENDDO

e
— e

END

SUBROUTINE YMBCO13(DX,NEQ)
IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)
CHARACTER SUB*6,FMT*15,CPARAM*120

PARAMETER (NNARR=299,NNLEV=9)

DIMENSION VWORK(1),KWORK(1)

DIMENSION DX(x)

COMMON /ERRCTL/ IER,ICHECK

COMMON /CHAR/  SUB,FMT(3),CPARAM

COMMON /TRIAD/ NEL,NVT,NMT,NVE,NVEL,NBCT,NVBD
COMMON /MGTRA/ KLCVG(NNLEV) ,KLCMG(NNLEV),KLVERT (NNLEV),

KLMID(NNLEV) ,KLADJ(NNLEV) ,KLVEL (NNLEV),
KLMEL (NNLEV) ,KLNPR (NNLEV) ,KLMM (NNLEV) ,
KLVBD (NNLEV) ,KLEBD (NNLEV) ,KLBCT (NNLEV) ,
KLVBDP (NNLEV) ,KLMBDP (NNLEV)

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
include "jcommons2.f" ! BCMG - boundary,matrizen
COMMON NWORK, IWORK, IWMAX , L (NNARR) , DWORK (1)
EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

SAVE /ERRCTL/,/CHAR/,/TRIAD/,/MGPAR/,/MGTRA/

LR I

IER=0
set boundary vals to O if in bndry array
LBCMG=L (KLBCMG (ILEV))
NBCMG=KNBCMG (ILEV)
DO IBCMG=1,NBCMG
if ( KWORK (LBCMG+IBCMG-1) .ne. 0) DX(KWORK(LBCMG+IBCMG-1))=0D0
ENDDO

END

subroutine dgbmv3(n,d,index,offs,lindex,
* alpha,x,incx,beta,y,incy,band)
implicit none

double precision x(*),y(*),d(*),alpha,beta
integer incx,incy,n,index(*),lindex
integer bindex,si,di,offset,len,offs(*)



external dscal,band

if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20

c
c code for unequal increments or equal increments
c not equal to 1
c

PRINT *,"INCX '= 1 yet not implemented"

return
c
c

20 offset=1

if (beta.eq.0.0D0) then
call dcopy(n,0.0D0,0,y,incy)
else
if ((beta/alpha).ne.1.0) then
call dscal(n,beta/alpha,y,incy)
endif
endif

do 1100,bindex=1,lindex
len=n-abs(index(bindex))

if (index(bindex).gt.0) THEN
si=index(bindex)+1
di=1

else
di=-(index(bindex)-1)
si=1

end if

call band(n,len,y(di),x(si),d(offset))
offset=offset+len
1100 continue
if (alpha.ne.1.0D0) then
call dscal(n,alpha,y,incy)
endif
end
CHtttttttttttttttttttttttttttttttttttttttttttttttttttttbttttttttt bttt
subroutine band16(n,ulen,y,x,d)

implicit none

integer len,ulen,n,mpl,m,i,offset
double precision y(*),x(*),d(*)

offset=1
len=ulen



m = mod(len,16)
if( m .eq. 0 ) go to 1040
do 1030 i = 1,m
y(i) = y(i) + d(offset)*x(i)
offset=offset+1
1030 continue
len=len-m
if( n .1t. 16 ) go to 1060
1040 mpl =m + 1
do 1050 i = mpl,len,16
y(i) = y(i) + d(offset)*x(i)
y(i+1) = y(i+1) + d(offset+1)*x(i+1)

y(i+2) = y(i+2) + d(offset+2)*x(i+2)
y(i+3) = y(i+3) + d(offset+3)*x(i+3)
y(i+4) = y(i+4) + d(offset+4)*x(i+4)
y(i+5) = y(i+b) + d(offset+5)*x(i+5)
y(i+6) = y(i+6) + d(offset+6)*x(i+6)
y(i+7) = y(i+7) + d(offset+7)*x(i+7)
y(i+8) = y(i+8) + d(offset+8)*x(i+8)

y(i+9) = y(i+9) + d(offset+9)*x(i+9)
y(i+10) = y(i+10) + d(offset+10)*x(i+10)

y(i+11) = y(i+11) + d(offset+11)*x(i+11)
y(i+12) = y(i+12) + d(offset+12)*x(i+12)
y(i+13) = y(i+13) + d(offset+13)*x(i+13)
y(i+14) = y(i+14) + d(offset+14)*x(i+14)
y(i+15) = y(i+15) + d(offset+15)*x(i+15)

offset=offset+16
1050 continue
1060 continue

end

SUBROUTINE refine(NFINE,DCORVG,KVERT,PARX,PARY)
INTEGER NFINE,i,j,k,11

DOUBLE PRECISION x(4),y(4),psl,ps2,ps3,qsl,qs2,qs3
DOUBLE PRECISION xleft,xright,ydown,yup

IMPLICIT DOUBLE PRECISION (A,C-H,0-U,W-Z),LOGICAL(B)

DOUBLE PRECISION dlen,dpoint(2),dfine(3),dmin(2)
integer idim,nlen,lline,lline2

CHARACTER SUB*6,FMT*15,CPARAM*120

PARAMETER (NNARR=299,NNVE=4)

DIMENSION DCORVG(2,*)

DIMENSION KVERT(NNVE,*)

COMMON /OUTPUT/ M,MT,MKEYB,MTERM,MERR,MPROT,MSYS,MTRC,IRECLS
COMMON /ERRCTL/ IER,ICHECK

COMMON NWORK, IWORK, IWMAX, L(NNARR) ,DWORK (1)

COMMON /CHAR/  SUB,FMT(3),CPARAM

COMMON /TRIAD/ NEL,NVT,NMT,NVE,NVEL,NBCT,NVBD

include "jcommons.f"



EXTERNAL PARX,PARY
SAVE /OUTPUT/,/ERRCTL/,/CHAR/,/TRIAD/
11=2**NFINE
NEL=11%%2
NVT=(11+1)**2
KVERT: row-wise numbering !
j=1
DO i=1,NEL
KVERT(1,i)=j
KVERT(2,1)=j+1
KVERT(3,1)=j+1+11+1
KVERT(4,i)=j +11+1
j=i+1
if (mod(j,11+1).eq.0) j=j+1
ENDDO
DCORVG: Given a grid with four points
x(1)=PARX(0DO, 1)
y(1)=PARY(0DO, 1)
x(2)=PARX(1D0, 1)
y(2)=PARY(1D0, 1)
x(3)=PARX(3D0, 1)
y(3)=PARY(3D0, 1)
x(4)=PARX(2D0, 1)
y(4)=PARY(2D0, 1)
dmin (1)=0
dmin (2)=0
idim=1
nlen=2x*NFINE
_____________________________________________________________ X______
dpoint (1)=0.D0
dpoint(2)=1.D0
dlen=dpoint(2)-dpoint (1)
dfine(1)=psi
dfine(2)=ps2
dfine(3)=ps3
if (nlen.gt.2)then ! use grid function
CALL ZNEW(2%(11+1),1,11ine2,"11line2")

if(Idir2.eq.1) THEN
call sgrid_refine(DWORK(L(1line2)),
* dpoint,dlen,nlen,dfine,dmin,idim)
else
call susy2(DWORK(L(1line2)),
* dpoint,dlen,nlen,dfine,dmin,idim)
ENDIF
endif
_____________________________________________________________ Y______
dpoint (1)=0.D0
dpoint (2)=1.D0
dfine(1)=gs1
dfine(2)=qs2
dfine(3)=gs3
if (nlen.gt.2)then ! use grid function
CALL ZNEW(2#*(11l+1),1,1line,"1lline")



if(1.eq.1)THEN
call sgrid_refine(DWORK(L(1line)),

* dpoint,dlen,nlen,dfine,dmin,idim)
else
call susy2(DWORK(L(1lline)),
* dpoint,dlen,nlen,dfine,dmin,idim)
ENDIF
endif
C ____________________________________________________________________
c 34
c 12
C ____________________________________________________________________
DO i=1,11+1
DO j=1,11+1

k=i+(j-1)*(11+1)
xleft=x(1)+DWORK(L(1line)+(j-1)*2)*(x(3)-x(1))
xright=x(2)+DWORK(L(11line)+(j-1)*2)*(x(4)-x(2))
ydown=y (1)+DWORK (L (11ine2)+(i-1)*2)*(y(2)-y(1))
yup=y (3)+DWORK(L(11ine2)+(i-1)*2)*(y (4)-y(3))

c write(*,*) xleft,xright,ydown,yup
DCORVG(1,k)=xleft+(xright-xleft) *DWORK(L(1lline2)+(i-1)%2)
DCORVG(2,k)=ydown+(yup-ydown) *DWORK (L(11line )+(j-1)*2)

ENDDO
ENDDO

if (NFINE.eq.2)then
DO i=1,11+1
DO j=1,11+1
k=i+(j-1)*(11+1)
c write(*,*) i,j,k,DCORVG(1,k),DCORVG(2,k)
ENDDO
ENDDO
endif

2 END
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C prepare tridiagonal preconditioner
SUBROUTINE INITRI(KLA,KLDIAA,KLDIAS,KNDIAA,KNEQ)
c IMPLICIT NONE

IMPLICIT DOUBLE PRECISION(A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNAB=21,NNLEV=9,NNWORK=7000000)
PARAMETER (NBLOCA=1,NBLOCF=1)

DIMENSION KLA(NBLOCA,NNLEV)

DIMENSION LA(NBLQOCA)

DIMENSION VWORK(1),KWORK(1)

DIMENSION KNEQ(NNLEV)

DIMENSION KLDIAA(NNLEV),KLDIAS(NNLEV),KNDIAA(NNLEV)
COMMON NWORK, IWORK, IWMAX , L. (NNARR) , DWORK (NNWORK)
COMMON /ERRCTL/ IER,ICHECK

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)



include "jcommons.f"

include "jcommons2.f" ! BCMG - boundary,matrizen
SAVE /BCMG/

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

c write(*,*)’INITRI ilev=:’,ilev
ILEV2=ILEV
c DO ILEV2=NLMIN+1,NLMAX

NEQ=KNEQ (ILEV2)
LA(1)=KLA(1,ILEV2)
I=(NEQ-1)+NEQ+(NEQ-1)+(NEQ-2)
call znew( I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
call znew( NEQ,3,LPIV,’LPIV’) ! and pivot
LDIA=KLDIAA( ILEV2)
LDIAS=KLDIAS(ILEV2)
NDIA=KNDIAA( ILEV2)
CALL DCOPY(NEQ,DWORK(L(LA(1))),1,DWORK(L(LPREC)),1) !diag0
DO I=1,NDIA

if (KWORK(L(LDIA)+i-1).eq.-1) THEN

CALL DCOPY(NEQ-1,DWORK(L(LA(1))+KWORK(L(LDIAS)+i-1)-1),1,
* DWORK (L (LPREC) +NEQ) , 1)
else if (KWORK(L(LDIA)+i-1).eq.1) THEN
CALL DCOPY(NEQ-1,DWORK(L(LA(1))+KWORK(L(LDIAS)+i-1)-1),1,
* DWORK (L (LPREC) +NEQ*2-1) ,1)

endif
ENDDO
LDIAG=L(LPREC)
LOWER=L (LPREC)
LUP1=L(LPREC)
LUP2=L (LPREC)
IPIVOT=L(LPIV)
INFO=0

2 if (IBLOCK.ne.1)THEN
CALL DGTTRF (NEQ,DWORK (LOWER+NEQ) ,DWORK (LDIAG),
* DWORK (LUP1+NEQ*2-1) ,DWORK (LUP2+NEQ*3-2) ,KWORK (IPIVOT) , INFQ)
IF(INFO.ne.0) THEN
write(*,*)"TRIDAIG ERROR in ttest.f, INFO=",INFO
stop
ENDIF
else
C kKoK okok ok ok kK ok ok ok ok K K ok ok ok ok K ok ok
Dbllen=SQRT(DBLE(NEQ)) ! length of a line/block
Ibllen=INT(Dbllen)
DO I=1,Ibllen ! solve block-wise TO DO !ttttrtrrrrrrried
Toffs=(I-1)*Ibllen
CALL DGTTRF(Ibllen,DWORK(LOWER+NEQ+Ioffs),DWORK(LDIAG+Ioffs),
* DWORK (LUP1+NEQ#*2-1+Ioffs) ,DWORK (LUP2+NEQ*3-2+Ioffs),
* KWORK (IPIVOT+Ioffs), INFO)
ENDDO
G sokokakokok ok ok kK ok ok ok ok ok K ok ok ok ok ok K ok ok
3 endif
KLPREC (ILEV2)=LPREC
KLPIV(ILEV2)=LPIV
c ENDDO
END
G sokokakokok ok o ok Kok ok o o kK ok ok o o K K ok ok ok o o K K K ok ok ok o o 3 K K 3K 3k ok o o o K K K ok ok ok o o o K K ok ok ok o o ok K K



SUBROUTINE INITRI2(KLA,KLDIAA,KLDIAS,KNDIAA,KNEQ)

IMPLICIT DOUBLE PRECISION(A,C-H,0-U,W-Z),LOGICAL(B)

PARAMETER (NNARR=299,NNAB=21,NNLEV=9,NNWORK=7000000)

PARAMETER (NBLOCA=1,NBLOCF=1)

DIMENSION KLA(NBLOCA,NNLEV)

DIMENSION LA(NBLOCA)

DIMENSION VWORK(1),KWORK(1)

DIMENSION KNEQ(NNLEV)

DIMENSION KLDIAA(NNLEV),KLDIAS(NNLEV),KNDIAA(NNLEV)

INTEGER offsl,offs2,LLEN,ibllen

integer offdm,offdp

double precision dbllen

COMMON NWORK, IWORK, IWMAX, L (NNARR) , DWORK (NNWORK)

COMMON /ERRCTL/ IER,ICHECK

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,
ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)

include "jcommons.f" ! BCMG - boundary,matrizen

include "jcommons2.f" ! BCMG - boundary,matrizen

SAVE /BCMG/

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

ILEV2=ILEV

NEQ=KNEQ (ILEV2)

LLEN=INT(SQRT (DBLE(NEQ)))

LA(1)=KLA(1,ILEV2)

I1=(NEQ-1)+NEQ+(NEQ-1) + (NEQ-2)

call znew(I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
call znew(NEQ,3,LPIV,’LPIV’) ! and pivot
LDIA=KLDIAA( ILEV2)

LDIAS=KLDIAS(ILEV2)

NDIA=KNDIAA( ILEV2)

if (NDIA.eq.9)then
offdm=2
offdp=7
elseif (NDIA.eq.5)then
offdm=1
offdp=4
else
write(*,*)’TRI2 is for NDIA in (5,9)’
stop
endif

DO I=1,NEQ
J=ITINDX(I,ILEV2)
IF(I.LT.J) THEN
DWORK (L (LPREC)+I-1)=DWORK(L(LA(1))+J-1) !diag0
DWORK (L (LPREC)+J-1)=DWORK (L (LA(1))+I-1)!diag0
ELSE IF(j.EQ.I)THEN
DWORK (L (LPREC)+I-1)=DWORK(L(LA(1))+I-1)!diag0
ENDIF
ENDDO ! I
DO I=1,NEQ-LLEN ! length of subdiag
offs2=I-1
offs1=ITINDX(I,ILEV2)
DWORK (L (LPREC)+NEQ+offsi-1 )=
* DWORK(L(LA(1))+KWORK(L(LDIAS)+offdm)-1+offs2)!diag-1



DWORK (L (LPREC) +NEQ*2+0ffs1-2)=
* DWORK (L (LA(1))+KWORK(L(LDIAS)+offdp)-1+offs2)'diagl

ENDDO

LDIAG=L(LPREC)

LLOWER=L (LPREC)

LUP1=L(LPREC)

LUP2=L (LPREC)

IPIVOT=L(LPIV)

INF0=0
C ________________________________
C Block solve technique
2 if (IBLOCK.ne.1)THEN
CALL DGTTRF (NEQ,DWORK (LLOWER+NEQ) ,DWORK (LDIAG),
DWORK (LUP1+NEQ#*2-1) ,DWORK (LUP2+NEQ*3-2) ,
* KWORK (IPIVOT) , INFO)
IF(INFO.ne.0) THEN
write(*,*)"TRI2 ERROR, INFO=",INFOQ
stop
ENDIF
else
Dbllen=SQRT(DBLE(NEQR)) ! length of a line/block
Ibllen=INT(Dbllen)
DO I=1,Ibllen ! solve block-wise TO DO !!!tttrtririvinl
Ioffs=(I-1)*Ibllen
CALL DGTTRF(Ibllen,DWORK(LLOWER+NEQ+Ioffs),
* DWORK (LDIAG+Ioffs) ,DWORK (LUP1+NEQ*2-1+Ioffs),
DWORK (LUP2+NEQ*3-2+Ioffs),
* KWORK (IPIVOT+Ioffs),INFO)
ENDDO
endif ! blocking
C koo skokokok ok okokok ok Kok ok Kok o
3 KLPREC (ILEV2+NNLEV)=LPREC
KLPIV(ILEV2+NNLEV)=LPIV
C
¢ GSTRI2
¢ For GSTri2, save L of permuted A (column-wise grid)

IF(IPREC.eq.6 .or. IPREC.eq.7) THEN

NEQ=KNEQ(ILEV2)

LLEN=INT(SQRT (DBLE(NEQ)))

LA(1)=KLA(1,ILEV2)
I=(NEQ-Ibllen-1)+(NEQ-ibllen)+(NEQ-Ibllen-1)
call znew(I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
LDIA=KLDIAA( ILEV2)

LDIAS=KLDIAS(ILEV2)

NDIA=KNDIAA( ILEV2)

Iup=0

Idiag=0

Ilow=0

do I=1,NDIA
j=KWORK(L(LDIA)+I-1)
if(j.eq.-1) Idiag=KWORK(L(LDIAS)+i-1)-1
if(j.eq.(Ibllen-1)) Tup=KWORK (L (LDIAS)+i-1)
if(j.eq.-(Ibllen+1)) Ilow=KWORK(L(LDIAS)+i-1)-1
enddo



C ... L(1)=A(p(1))

c
llprec=1(lprec)
is1=NEQ-Ibllen
is2=2%is1
LLA=L(LA(1))
do i=1,NEQ-IBLLEN-1
DWORK(1lprec+i-1+1) =DWORK(LLA+Ilow+ITINDX(i,ILEV2)-1)
DWORK (1lprec+i-1+is1)=DWORK(LLA+idiag+ITINDX (i, ILEV2)-1)
DWORK(1lprec+i-1+is2)=DWORK (LLA+iup+ITINDX(i,ILEV2)-1)
enddo
KLPREC (ILEV2+NNLEV*2)=LPREC
endif  l-------------- GSTRI2-===========mmmmmmmmmmmmmm oo
60  END

G sk ok akok ook ok o Kok o oK oK o K oK o K oK ok K K ok o K 3K o ok K oK o 3K 3K ok o 3K oK o o K oK o o ok ok o K ok o ok ok
C ITINDX: return index of transposed grid for NODE
INTEGER FUNCTION ITINDX(NODE,ILEV)
INTEGER NODE,LLEN,i,j
LLEN=(2#*ILEV+1) ! number vertices on a row
i=MOD (NODE-1,LLEN)+1
j=(NODE-1) /LLEN+1
ITINDX=(i-1)*LLEN+j
return
end
G sk ok akok ook ok o K oK o K oK o K oK o K oK o K K ok o K 3K o ok K oK o K 3K ok o 3K oK o o K oK o o ok ok o K ok o ok ok ok
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C prepare tridiagonal preconditioner
SUBROUTINE INIGSTRI(KLA,KLDIAA,KLDIAS,KNDIAA,KNEQ)
c IMPLICIT NONE
IMPLICIT DOUBLE PRECISION(A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNAB=21,NNLEV=9,NNWORK=7000000)
PARAMETER (NBLOCA=1,NBLOCF=1)
DIMENSION KLA(NBLOCA,NNLEV)
DIMENSION LA(NBLOCA)
DIMENSION VWORK(1),KWORK(1)
DIMENSION KNEQ(NNLEV)
DIMENSION KLDIAA(NNLEV),KLDIAS(NNLEV),KNDIAA(NNLEV)
COMMON NWORK , IWORK, IWMAX , L (NNARR) , DWORK (NNWORK)
COMMON /ERRCTL/ IER,ICHECK
COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,

* ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)
include "jcommons.f"
include "jcommons2.f" ! BCMG - boundary,matrizen

SAVE /BCMG/
EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

ILEV2=ILEV
NEQ=KNEQ (ILEV2)
LA(1)=KLA(1,ILEV2)



I=(NEQ-1)+NEQ+(NEQ-1)+ (NEQ-2)
call znew( I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
call znew( NEQ,3,LPIV,’LPIV’) ! and pivot
LDIA=KLDIAA( ILEV2)
LDIAS=KLDIAS(ILEV2)
NDIA=KNDIAA( ILEV2)
CALL DCOPY(NEQ,DWORK(L(LA(1))),1,DWORK(L(LPREC)),1) !'diagO
DO I=1,NDIA
if (KWORK(L(LDIA)+i-1).eq.-1) THEN
CALL DCOPY(NEQ,DWORK(L(LA(1))+KWORK(L(LDIAS)+i-1)-1),1,
* DWORK (L (LPREC)+NEQ) , 1)
endif
ENDDO
LDIAG=L(LPREC)
LOWER=L(LPREC)
LUP1=L(LPREC)
LUP2=L (LPREC)
IPIVOT=L(LPIV)
INF0=0
2 if (IBLOCK.ne.1)THEN
G ok okok ok ok ook ok ook ok ok Kok ok K ok ok ok
CALL DGTTRF(NEQ,DWORK(LOWER+NEQ) ,DWORK(LDIAG),
* DWORK (LUP1+NEQ*2-1) ,DWORK (LUP2+NEQ*3-2) ,KWORK (IPIVOT) , INFO)
IF(INFO.ne.0) THEN
write(*,*)"TRIDAIG ERROR in ttest.f, INFO=",INFO
stop
ENDIF
else
G ko kokok ko ok ok ok ook ok ok ok ok ok ok ok ok
Dbllen=SQRT(DBLE(NEQ)) ! length of a line/block
Ibllen=INT(Dbllen)
DO I=1,Ibllen ! solve block-wise TO DO tttitrtrrrrrrrennl
Ioffs=(I-1)*Ibllen
CALL DGTTRF(Ibllen,DWORK(LOWER+NEQ+Ioffs),DWORK(LDIAG+Ioffs),

* DWORK (LUP1+NEQ#*2-1+Ioffs) ,DHORK (LUP2+NEQ*3-2+Ioffs),
* KWORK (IPIVOT+Ioffs) , INFO)
ENDDO

C 3k ok sk ok sk ok sk ok sk ok sk ok 3k ok 3k ok 3k ok 3k ok 3k 5k %
endif
KLPREC (ILEV2)=LPREC
KLPIV(ILEV2)=LPIV
c ENDDO
24  format(5£f5.2)
END
C 3k ok ok ok ok ok ok k ok sk k sk ok sk ok 3k ok 3k ok 3k ok 3k ok 3k ok ok ok 3k oK 3K ok ok 3k ok 3k k ok 3k 3k 3k 3k 3k 3k >k 3k ok 3K ok ok k ok 3k 3k ok 3k ok 3k 3k >k >k >k >k >k K
SUBROUTINE INIGSTRI2(KLA,KLDIAA,KLDIAS,KNDIAA,KNEQ)
c IMPLICIT NONE
IMPLICIT DOUBLE PRECISION(A,C-H,0-U,W-Z),LOGICAL(B)
PARAMETER (NNARR=299,NNAB=21,NNLEV=9,NNWORK=7000000)
PARAMETER (NBLOCA=1,NBLOCF=1)
DIMENSION KLA(NBLOCA,NNLEV)
DIMENSION LA(NBLOCA)
DIMENSION VWORK(1),KWORK(1)
DIMENSION KNEQ(NNLEV)
DIMENSION KLDIAA(NNLEV),KLDIAS(NNLEV),KNDIAA(NNLEV)
INTEGER offsl,offs2,LLEN,ibllen
double precision dbllen



¢

N

*

COMMON NWORK, IWORK, IWMAX, L (NNARR) , DWORK (NNWORK)

COMMON /ERRCTL/ IER,ICHECK

COMMON /MGPAR/ ILEV,NLEV,NLMIN,NLMAX,
ICYCLE,KPRSM(NNLEV) ,KPOSM(NNLEV)

include "jcommons.f" ! BCMG - boundary,matrizen

include "jcommons2.f" ! BCMG - boundary,matrizen

SAVE /BCMG/

EQUIVALENCE (DWORK(1),VWORK(1),KWORK(1))

ILEV2=ILEV
NEQ=KNEQ (ILEV2)
LLEN=INT (SQRT (DBLE(NEQ)))
LA(1)=KLA(1,ILEV2)
I=(NEQ-1)+NEQ+(NEQ-1)+(NEQ-2)
call znew(I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
call znew(NEQ,3,LPIV,’LPIV’) ! and pivot
LDIA=KLDIAA( ILEV2)
LDIAS=KLDIAS(ILEV2)
NDIA=KNDIAA( ILEV2)
IF(NDIA.ne.9) THEN
write(*,*)"For Tri”"2 NDIA should equal 9"
write(*,*)"adi.f"
stop !For Tri~2 NDIA should equal 9
ENDIF
DO I=1,NEQ
J=ITINDX(I,ILEV2)
IF(I.LT.J) THEN
DWORK (L (LPREC)+I-1)=DWORK(L(LA(1))+J-1) !diag0
DWORK (L (LPREC)+J-1)=DWORK (L (LA(1))+I-1)!diag0
ELSE IF(j.EQ.I)THEN
DWORK (L (LPREC)+I-1)=DWORK(L(LA(1))+I-1)!diag0
ENDIF
ENDDO ! I
DO I=1,NEQ-LLEN ! length of subdiag
offs2=I-1
offs1=ITINDX(I,ILEV2)
DWORK (L (LPREC)+NEQ+offsi-1 )=
DWORK(L(LA(1))+KWORK(L(LDIAS)+2)-1+0ffs2)!diag-1
ENDDO
LDIAG=L(LPREC)
LLOWER=L (LPREC)
LUP1=L(LPREC)
LUP2=L(LPREC)
IPIVOT=L(LPIV)
INF0=0
Block solve technique
if (IBLOCK.ne.1)THEN
CALL DGTTRF(NEQ,DWORK(LLOWER+NEQ) ,DWORK(LDIAG),
DWORK (LUP1+NEQ*2-1) ,DWORK (LUP2+NEQ*3-2) ,KWORK (IPIVOT),INFO)
IF(INFO.ne.0) THEN
write(*,*)"TRIDAIG ERROR in ttest.f, INFO=",INFO
stop
ENDIF
else
Dbllen=SQRT (DBLE(NEQ)) ! length of a line/block
Ibllen=INT(Dbllen)



DO I=1,Ibllen ! solve block-wise TO DO !ttttrrrrrrrried
Toffs=(I-1)*Ibllen
CALL DGTTRF(Ibllen,DWORK(LLOWER+NEQ+Ioffs),
* DWORK(LDIAG+Ioffs),
DWORK (LUP1+NEQ*2-1+Ioffs) ,DWORK (LUP2+NEQ*3-2+Ioffs),
KWORK (IPIVOT+Ioffs), INFO)
ENDDO | skkokokskokok skokok sk kok ok skok ok ok ok ok ok ok
endif ! blocking
KLPREC (ILEV2+NNLEV)=LPREC
KLPIV( ILEV2+NNLEV)=LPIV
For GSTri2, save L of permuted A (column-wise grid)
IF(IPREC.eq.6 .or. IPREC.eq.7 .or.
* IPREC.eq.12.0r. IPREC.eq.13) THEN

NEQ=KNEQ(ILEV2)

LLEN=INT (SQRT(DBLE(NEQ)))

LA(1)=KLA(1,ILEV2)
I=(NEQ-Ibllen-1)+(NEQ-ibllen)+(NEQ-Ibllen-1)
call znew(I ,1,LPREC,’LPREC’) ! MEM for Tri-matrix
LDIA=KLDIAA( ILEV2)

LDIAS=KLDIAS(ILEV2)

NDIA=KNDIAA( ILEV2)

Tup=0

Idiag=0

Ilow=0

do I=1,NDIA
j=KWORK (L (LDIA)+I-1)
if(j.eq.-1) Tdiag=KWORK (L (LDIAS)+i-1)-1
if(j.eq.(Ibllen-1))  Iup=KWORK(L(LDIAS)+i-1)
if(j.eq.-(Ibllen+1)) Ilow=KWORK(L(LDIAS)+i-1)-1

enddo

if (Idiag.eq.0 .or. Iup.eq.0 .or. Ilow.eq.0)THEN
write(*,*)’diags Iup,Idiag,Ilow not found’,Iup,Idiag,Ilow
stop

endif

. L(1)=A(p(i))

llprec=1(lprec)

is1=NEQ-Ibllen

is2=2%is1

LLA=L(LA(1))

do i=1,NEQ-IBLLEN-1
DWORK (1lprec+i-1) =DWORK (LLA+Ilow+ITINDX(i,ILEV2)-1)
DWORK (1lprec+i-1+is1)=DWORK (LLA+idiag+ITINDX(i,ILEV2)-1)
DWORK (11lprec+i-1+is2)=DWORK (LLA+iup+ITINDX(i,ILEV2)-1)

enddo

KLPREC (ILEV2+NNLEV*2)=LPREC
endif e -
24 format (25F4.1)
54 format (2514)
END



