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Abstract

Direct numerical simulation techniques for particulate flow by the fictitious boundary

method (FBM) are presented. The flow is computed by a multigrid finite element solver

and the solid particles are allowed to move freely through the computational mesh which

can be chosen independently from the particles of arbitrary shape, size and number. The

interaction between the fluid and the particles is taken into account by the FBM in which an

explicit volume based calculation for the hydrodynamic forces is integrated. A new collision

model based on papers by Glowinski, Joseph, Singh and coauthors is examined to handle

particle-particle and particle-wall interactions. Numerical tests show that the present method

provides a very efficient approach to directly simulate particulate flows with many particles.

1 Introduction

Liquids containing large solid particles are common in many industrial processes, such as foods

containing particles, slurry flows, mining extraction, fluidization of catalyst beds, separation

process using cyclones, etc. The phenomena of such particulate flows are also visible everywhere

around our living environments, for instance flow around high-rise buildings, the drag force

induced by driving a car accelerating in the wind, ocean current interaction with the offshore

structures, sedimentation flow in estuary and sand flow in desert, etc. From the numerical point

of view, particulate flows are quite hard to simulate since both the incompressible fluid velocity

field and the domain in which it is defined are unknown: it can require a huge amount of time

for the frequent generation or deformation of the computational grids when the corresponding

boundaries are complex and changing in time; especially for the case with large numbers of

particles (greater than 10,000), the interaction between fluid and particles as well as the collision

between particles gives further complexity to the problem.

So far, such problems have motivated the development of numerous algorithms which can be

broadly classified into two families. The first approach is Eulerian which uses a fixed mesh

(or a mesh independent of the particles) that covers the whole domain where the fluid may be

present. One popular example of this approach is the class of distributed Lagrange multiplier

(DLM)/fictitious domain methods proposed by Glowinski, Joseph and coauthors [6, 7, 8]. The

second type is Lagrangian which is based on a moving mesh following the motion of boundary

of the particles in the fluid. As the mesh motion within the fluid can be defined arbitrarily,

this approach is usually referred to as Arbitrary Lagrangian Eulerian (ALE). Hu, Joseph and
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Crochet [9, 10] and Maury [16, 18] have applied the ALE to fluid-particle flows. One big

advantage of the Eulerian over the Lagrangian approaches is that the computational mesh

can remain unchanged such that the CPU cost per time step can be significantly decreased -

less computational effort due to saving the expensive mesh generation - and special techniques

can be easily incorporated into standard CFD codes which mostly allow fixed computational

grids without local adaptivity; however, the resulting accuracy is often not clear. Therefore,

our overall aim is to deal successfully with moving boundaries such that the accuracy of the

numerical approximation is sufficiently high while at the same time also the computational cost

is significantly decreased.

In the spirit of the Eulerian approaches, we present an efficient fictitious boundary method (FBM

[27]) for the detailed simulation of particulate flows. The method is based on an unstructured

FEM background grid. The motion of the solid particles is modelled by the Newton-Euler

equations. Based on the boundary conditions applied at the interface between the particles

and the fluid which can be seen as an additional constraint to the governing Navier-Stokes

equations, the fluid domain can be extended into the whole domain which covers both fluid and

particle domains. The FBM starts with a coarse mesh which may contain already many of the

geometrical fine-scale details, and employs a (rough) boundary parametrization which sufficiently

describes all large-scale structures with regard to the boundary conditions [28]. Then, all fine-

scale features are treated as interior objects such that the corresponding components in all

matrices and vectors are unknown degrees of freedom which are implicitly incorporated into all

iterative solution steps. The considerable advantage of the FBM is that the total computational

domain does not have to change in time, and has to be meshed only once - or more precisely: it

can be handled independently from the flow features.

For studying the interaction between fluid and solid, the efficient and accurate calculation of

forces acting on the moving rigid bodies is very important. However, in the FBM, it is not

straightforward to compute explicitly these forces, because the hydrodynamic drag and lift

forces acting on the moving solid bodies are a very delicate quantity: they include the results di-

rectly on the wall surface of the moving rigid bodies which however is represented only implicitly

in the fictitious boundary method due to the use of a fixed grid rather than a body-conformal

grid: The FBM differs only between ”inside” and ”outside” of a particle, but it does not define

the surface. Therefore, the integration of forces only over the wall surface of the rigid bodies

cannot be implemented directly in the fictitious boundary method. For overcoming this diffi-

culty, a volume integration instead of the conventional surface integral for the calculation of the

hydrodynamic forces by introducing an auxiliary function [4, 12] has been proposed. Obviously,

in such volume based calculations, the explicit reconstruction of the wall surface of the moving

rigid bodies can be avoided. In this paper, we expand the implementation of this volume inte-

gral approach with an auxiliary function for the finite element method and the FBM, and we

introduce corresponding data structures for the efficient handling of many particles.

For treating more than one particle, a collision model is needed to prevent particles from inter-

penetrating each other. Collisions or near-collisions between the particles present severe difficul-

ties in direct simulations of particulate flows. Even near-collisions can significantly increase the
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cost of a simulation, because in order to simulate the particle-particle interaction mechanism in

a direct manner, the flow fields in the narrow gap between the converging particle surfaces must

be accurately resolved. The required element size in Lagrangian approaches required for this

decreases, leading to extremely small elements and significantly increased numbers of unknowns

to be solved for. In such simulations, numerical problems are likely to occur when the particles

get very close to each other: the mesh is to be refined in the gap zone which is computationally

expensive. For solving this problem, Glowinski, Joseph, Pan and coauthors [6, 7, 8] have de-

scribed repulsive force models to prevent the particles from overlapping each other. Singh, Hesla

and Joseph [21], following an idea of Joseph, implemented a scheme in which a repulsive force

is initiated only when the particles touch or overlap. Their idea was to allow hydrodynamic

lubrication forces to act up to the full tolerance of the mesh and allow the particles to pack

naturally in equilibrium. There are also many other collision models which are based on physi-

cal properties of the particles, for example, lubrication [17] and stochastic collision models [22].

Following such models as proposed by Glowinski, Singh, Joseph and coauthors, we describe a

new repulsive force model which cannot only prevent the particles from getting too close to each

other, it can also deal with the case of particle overlapping when numerical simulations bring

the particles very close or even overlapping due to unavoidable numerical truncation errors.

The subsequent parts of the paper are arranged as follows: In section 2 the governing equations

for the coupled system of fluid and particles are given, and a new treatment of collisions based

on models by Glowinski, Joseph and Singh is presented. The fictitious boundary method (FBM)

is described in section 3. The proposed volume based integration for hydrodynamic force calcu-

lations and its validation are shown together in this section. Section 4 describes the numerical

discretization, solution procedure, the algorithmic details and the time reducing techniques for

dealing with large numbers of particles. In section 5, several numerical test problems are pre-

sented. Flow with one rotating and moving particle is first examined to validate the prediction of

angular and translational velocities by the fictitious boundary method. Then, cases of multiple

particles are examined to evaluate the collision model and the efficiency of the presented ficti-

tious boundary method for the simulation of particulate flows with large numbers of particles.

The paper ends with a conclusion in section 6.

2 Governing Equations

2.1 Model of Incompressible Flow

Our aim is to compute incompressible flow in interaction with N particles of mass Mi, (i =

1, . . . , N) in a fluid with density ρf and viscosity ν. Denote Ωf (t) as the domain occupied by

the fluid at time t, and Ωi(t) as the domain occupied by the ith particle. So, the fluid flow obeys

the following Navier-Stokes equations in Ωf (t),

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 , ∇ · u = 0 ∀ t ∈ (0, T ), (1)
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where σ is the total stress tensor in the fluid phase defined as

σ = −p I + µf

[

∇u + (∇u)T
]

. (2)

Here I is the identity tensor, µf = ρf · ν, p is the pressure and u is the fluid velocity. Let

ΩT = Ωf (t) ∪ {Ωi(t)}N
i=1 be the entire computational domain which shall be independent of

t. Dirichlet- and Neumann-type boundary conditions can be imposed on the outer boundary

Γ = ∂Ωf (t). Since Ωf = Ωf (t) and Ωi = Ωi(t) are always depending on t, we drop t in all

following notations.

2.2 Model of Particle Motion

In the fluid domain, the particles are allowed to translate and rotate with gravity, fluid forces

acting on them and collision forces (repulsive forces or lubrication forces) in particle-particle

or particle-wall interactions. The equations that govern this motion for each particle are the

following Newton-Euler equations, i.e., the translational velocities Ui and angular velocities ωi

of the ith particle satisfy

Mi
dUi

d t
= (∆Mi)g + Fi + F′

i , Ii
d ωi

d t
+ ωi × (Ii ωi) = Ti , (3)

where Mi is the mass of the ith particle (i = 1, . . . , N); Ii is the moment of the inertia tensor;

∆Mi is the mass difference between the mass Mi and the mass of the fluid occupying the same

volume; g is the gravity vector; F′
i are collision forces acting on the ith particle due to other

particles which come close to each other. We assume that the particles are smooth without

tangential forces of collisions acting on them; the details of the collision model will be discussed

in the following subsection. Fi and Ti are the resultants of the hydrodynamic forces and the

torque about the center of mass acting on the ith particle which are calculated by

Fi = (−1)

∫

∂Ωi

σ · n d Γi , Ti = (−1)

∫

∂Ωi

(X − Xi) × (σ · n) d Γi, (4)

where σ is the total stress tensor in the fluid phase defined by Eq. (2), Xi is the position of the

mass center of the ith particle, ∂Ωi is the boundary of the ith particle, n is the unit normal

vector on the boundary ∂Ωi pointing outward to the flow region. The position Xi of the ith

particle and its angle θi are obtained by integration of the kinematic equations

dXi

d t
= Ui ,

d θi

d t
= ωi. (5)

No-slip boundary conditions are applied at the interface ∂Ωi between the ith particle and the

fluid, i.e., for any X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X − Xi) . (6)
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2.3 Collision Models

For handling more than one particle, a collision model is needed to prevent the particles from

interpenetrating each other. Theoretically, it may be impossible that smooth particle-particle

or boundary wall-particle collisions take place in finite time in the continuous system since

there are repulsive forces (or lubrication forces) to prevent these collisions in the case of viscous

fluids [7, 8, 14]. However, collisions take place in nature and particles can contact each other in

numerical simulations since the gap can become exceedingly small if special precautions are not

taken, and numerical errors may also allow contact or even overlap in simulations. Collisions

between particles present severe difficulties in direct simulations of particulate flows. Even

near-collisions can significantly increase the cost of a simulation, because in order to simulate

the particle-particle interaction mechanism, the flow in the narrow gap between the converging

particles must be accurately resolved. The required element size decreases with the gap width,

leading to extremely small elements and significantly increased numbers of unknowns to be solved

for. In such simulations, numerical problems are likely to occur when particles get very close to

each other: the mesh is to be refined in the gap zone, which is computationally expensive.

To handle this problem numerically, several collision models have been proposed in the literature.

For simplicity, in most cases it is assumed that the collisions are smooth, which means that if

two rigid bodies collide under the effect of gravity and hydrodynamical forces, the rigid body

velocities coincide at the points of contact. Glowinski, Joseph and coauthors [7, 8] proposed

a repulsive force model in which an artificial short-range repulsive force between particles is

introduced keeping the particle surfaces more than one element (the range of the repulsive force)

apart from each other. In this model, overlapping of the regions occupied by the rigid bodies

is not allowed since conflicting rigid body motion constraints from two different particles are

not imposed at the same velocity nodes. However, in numerical calculations, the overlapping

of particles could happen. For solving this problem, Joseph et al. [21] suggested a modified

repulsive force model in which the particles are allowed to come arbitrarily close and even to

overlap slightly each other. When conflicting rigid body motion constraints from two different

particles are applied onto a velocity node, then the constraint from the particle that is closer to

that node is used. A repulsive force is only applied when the particles overlap each other.

In both models, a short-range repulsion force between particles which are in near contact or

slightly overlap is introduced. In these models, the choice of stiffness parameters is very im-

portant. In the general case, there is no rigorous theory to determine the ideal values of these

parameters. So, we can refer to the approaches by Glowinski, Joseph and Singh as parametric

models. For avoiding the difficult work of choosing the parameters in these collision models,

Minev et al. [3] proposed another collision treatment which leads to a nonparametric model. In

Minev’s model, first of all there is a check if the separation distance between the particles is

larger than a given threshold value calculated as a function of the particle diameters and the

mesh resolution. If the distance is less than this value, then the repulsive force is calculated

iteratively so that both particles move along the line that passes through the centers of mass of

both particles such that the minimum distance is still maintained.
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Following such models, we examine another collision model with a new definition of short range

repulsive forces which cannot only prevent the particles from getting too close, it can also deal

with the case of overlapping to each other when numerical simulations bring the particles very

close due to unavoidable numerical truncation errors. For the particle-particle collisions, the

repulsive force is determined as,

FP
i,j =



























0, for di,j > Ri + Rj + ρ,

1

ǫP
(Xi − Xj)(Ri + Rj + ρ − di,j)

2, for Ri + Rj ≤ di,j ≤ Ri + Rj + ρ,

1

ǫ′P
(Xi − Xj)(Ri + Rj − di,j), for di,j ≤ Ri + Rj ,

(7)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates of

the centers, di,j = |Xi − Xj | is the distance between the mass centers, ρ is the range of the

repulsive force (usually ρ = 0.5 ∼ 2.5∆h, ∆h is the mesh size), ǫP and ǫ′P are small positive

stiffness parameters for particle-particle collisions. If the fluid is sufficiently viscous, and ρ ≃ ∆h

as well as ρi/ρf are of order 1 (ρi is the density of the ith particle, ρf is the fluid density), then

we can take ǫP ≃ (∆h)2 and ǫ′P ≃ ∆h in the calculations. For the particle-wall collisions, the

corresponding repulsive force reads,

FW
i =



























0, for d′i > 2Ri + ρ,

1

ǫW
(Xi − X′

i)(2Ri + ρ − d′i)
2, for 2Ri ≤ d′i ≤ 2Ri + ρ,

1

ǫ′W
(Xi − X′

i)(2Ri − d′i), for d′i ≤ 2Ri,

(8)

where X′
i is the coordinate vector of the center of the nearest imaginary particle P ′

i located on the

boundary wall Γ w.r.t. the ith particle, d′i = |Xi −X′
i| is the distance between the mass centers

of the ith particle and the center of the imaginary particle P ′
i . ǫW is a small positive stiffness

parameter for particle-wall collisions, usually it can be taken as ǫW = ǫP /2 and ǫ′W = ǫ′P /2 in

the calculations. Then, the total repulsive forces (i.e. collision forces) exerted on the ith particle

by the other particles and the walls can be expressed as follows,

F′
i =

N
∑

j=1,j 6=i

FP
i,j + FW

i . (9)

Remark 1: The new expression for the repulsive forces in Eqs. (7) and (8) has three ranges which

correspond to three different cases, i.e, no collision, coming very close, and slightly overlapping,

respectively. Since large overlapping is not a correct physical phenomenon and can also cause

diverging calculations, only small overlapping is allowed in actual computations.

Remark 2: Most available collision models are derived only for particles with circular shape, but

not for general shaped cases. However, the collision model of Eqs. (7) and (8) can be extended

in principle to the case of particles with more complex shape, provided that a careful calculation
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for the distance between particles is made. The detailed description of a corresponding collision

model for general shapes will be presented in a forthcoming paper. Fig. 1 shows preliminary

results of two ellipses and two squares handled by the collision model in Eqs. (7) and (8).

Figure 1: Visualization for two ellipses and two squares, starting from left to right

3 Multigrid Fictitious Boundary Method

In contrast to the (semi-) implicit approaches of Glowinski, Joseph and coauthors [7] as well as

of Patankar, Singh, Joseph, Glowinski and Pan [19], we describe an ”explicit” approach which

treats the fluid part, the (explicit) calculation of forces and the movement of the particles in

a subsequent manner. Then, the strategy for solving above equations governing the coupled

system of fluid and particles can be summarized as follows:

1) Given the positions and velocities of the particles, solve the fluid equations (1) in the corre-

sponding fluid domain involving the position of the particles for the boundary conditions.

2) Calculate the corresponding hydrodynamic forces and the torque acting on the particles by

using Eq. (4), and compute the collision forces by Eq. (9).

3) Solve Eq. (3) to get the translational and angular velocities of the particles, and then obtain

the new positions and velocities of the particles by Eq. (5).

4) Use Eq. (6) to set the new fluid domain and boundary conditions, and then advance to solve

for the new velocity and pressure of the fluid phase as described in step 1).
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If we directly implement this strategy to solve the coupled system of fluid and particles, we will

find that its realization is not straightforward because the fluid domain always changes with

time and is unknown prior to the solution. Eq. (1) governing the fluid motion is active only in

the fluid domain Ωf , while the shape and extent of the fluid domain will change in time when

the particles move. As mentioned before, the Arbitrary Lagrangian Eulerian (ALE) technique

has to remesh the fluid domain which may distort the computational mesh, and complex and

very expensive remeshing work may arise. In order to avoid this time-consuming deformation

and remeshing step, we adopt a simple and efficient extension of the fictitious boundary method

(FBM) for the simulation of particulate flows (see [27]).

This FBM method is based on a multigrid FEM background grid which covers the whole com-

putational domain ΩT and which is allowed to be stationary or adapted in time (see the next

sections concerning aspects of mesh adaptivity for the FBM). It starts with a coarse mesh which

may already contain many of the geometrical details of Ωi, (i = 1, . . . , N), and it employs a

fictitious boundary indicator (see [27]) which sufficiently describes all fine-scale structures of the

particles with regard to the fluid-particle matching conditions of Eq. (6). Then, all fine-scale

features of the particles are treated as interior objects such that the corresponding components

in all matrices and vectors are unknown degrees of freedom which are implicitly incorporated

into all iterative solution steps (see [28]). Hence, by making use of Eq. (6), we can perform

calculations for the fluid in the whole domain ΩT . The considerable advantage of the multigrid

FBM is that the total mixture domain ΩT does not have to change in time, and can be meshed

only once. The domain of definition of the fluid velocity u is extended according to Eq. (6),

which can be seen as an additional constraint to the Navier-Stokes equations (1), i.e.,


































∇ · u = 0 (a) for X ∈ ΩT ,

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X − Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(10)

For the study of interactions between the fluid and the particles, the calculation of the hydro-

dynamic forces acting on the moving particles is very important. From Eq. (4), we can see that

the surface integrals on the wall surfaces of the particles should be conducted for the calculation

of the forces Fi and Ti. However, in the presented multigrid FBM method, the shapes of the

wall surface of the moving particles are implicitly imposed in the fluid field. If we reconstruct

the shapes of the wall surface of the particles, it is not only a time consuming work, but also

the accuracy is only of first order due to a piecewise constant interpolation from our indicator

function. For overcoming this problem, we perform the hydrodynamic force calculations using

a volume based integral formulation. To replace the surface integral in Eq. (4) we introduce a

function αi,

αi(X) =











1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi,

(11)
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where X denotes the coordinates. The importance of such a definition of the parameter can be

seen from the fact that the gradient of αi is zero everywhere except at the wall surface of the

ith particle, and equals to the normal vector ni defined on the grid, i.e., ni = ∇αi (see also [4]).

Then, the hydrodynamic forces acting on the ith particle can be computed by

Fi = −
∫

ΩT

σ · ∇αi d Ω, , Ti = −
∫

ΩT

(X − Xi) × (σ · ∇αi) d Ω . (12)

Through Eq. (12), we can calculate Fi and Ti via the volume integral over the whole domain ΩT

instead of the surface integral over the wall surface of the ith particle in Eq. (4). The integral over

each element covering the whole domain ΩT is evaluated with a standard Gaussian quadrature

of corresponding high order. Since the gradient ∇αi is non-zero only near the wall surface of

the ith particle, thus the volume integrals need to be computed only in one layer of mesh cells

around the ith particle which leads to a very efficient treatment (see the numerical section). For

the validation of these force calculations in the multigrid FBM based on the volume integration

of Eq. (12), a careful comparison between the results obtained by the presented method and a

standard body-fitted computation has been performed for two configurations for two-dimensional

flow around a circular body in a channel. The aim is to use the body fitted computation as

reference in order to assess the suitability and accuracy of the proposed method. For more

details, see [27] and [28].

3.1 Flow around a circular cylinder

We first consider the benchmark case of flow around a fixed circular cylinder in a channel as

described in [20]. Fig. 2 shows a body-fitted mesh around the circular cylinder, as well as a

cartesian grid for the FBM; the colored area shows the position of the cylinder. The shown

(coarse) meshes are successively refined by connecting opposite midpoints. The channel height

is H = 0.41 m, the cylinder diameter D = 0.1 m. The center point of the cylinder is located

at (0.2, 0.2). The Reynolds number is defined by Re = ŪD/ν with the mean velocity Ū =

2U(0, H/2, t)/3. The kinematic viscosity of the fluid is given by ν = µf/ρf = 10−3 m2/s and

its density by ρf = 1 kg/m3. The inflow profiles are parabolic U(0, Y, t) = 6.0ŪY (H − Y )/H2

with different Ū = 0.2 and Ū = 1.0 such that the resulting Reynolds numbers are Re = 20

(steady case) and Re = 100 (nonsteady case), respectively. Table 1 gives the parameters for

these meshes after several global refinements. The meaning of ”LEVEL” is the number of

refinements, ”NVT” the number of vertices, ”NMT” the number of edges (midpoints), ”NEL”

the number of elements. The total number of unknowns (”NEQ”) is 2×NMT+NEL due to the

nonconforming FEM in the CFD code FEATFLOW [24]. Compared to the body-fitted mesh, in

the case of the fixed cartesian rectilinear mesh the cylinder shape is formed by the nodal points

which cover the cylinder, instead a mesh line. ”VEF” means the ratio of the effective cylinder

area covered by the fixed mesh with respect to the real cylinder area. We can see that from

LEVEL ≥ 4 on, we get an acceptable shape definition.

First of all, we test the steady case of Reynolds number Re = 20. Table 2 presents drag and lift

coefficients by using the two different meshes: all results are convergent w.r.t. mesh refinement,
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and the case of the fixed rectangular mesh can reach almost the same results as for the body-

fitted mesh, especially when the ‘area ratio’ VEF is greater than 95%. The corresponding

reference results for this benchmark problem are also listed for comparison. As can be seen,

there is a good agreement between the presented method and the reference computation. For

the simple mesh in Fig. 2 (b), if we want to get more accurate results for Cd and Cl, the mesh

level should be greater than 6 (this means that NEL will be 540672)! For increasing accuracy

and reducing NEL, we tested an adapted mesh as shown in Fig. 3, which is refined near the

wall surface of the cylinder. Table 3 shows the corresponding results for Cd and Cl. We can

see that this special mesh on level 3 with only NEL= 2, 344 can already reach accurate results.

Therefore, the accuracy can be increased while at the same time the amount of computational

work will not be raised if special adaptive mesh techniques are adopted (see ‘Conclusions’).

(a) body-fitted mesh (LEVEL = 1)

(b) cartesian mesh (LEVEL = 2) for multigrid FBM

Figure 2: Different coarse meshes adopted for flow around a fixed circular cylinder

Table 1: The parameters for sequentially refined meshes

LEVEL body-fitted mesh cartesian mesh

NVT NMT NEL NEQ NVT NMT NEL NEQ VEF(%)

1 156 286 130 702 161 292 132 716 63.662

2 572 1092 520 2704 585 1112 528 2752 95.493

3 2184 4264 2080 10608 2225 4336 2112 10784 95.493

4 8528 16848 8320 42016 8673 17120 8448 42688 97.482

5 33696 66976 33280 167232 34241 68032 33792 169856 99.472

6 133952 267072 133120 667264 136065 271232 135168 677632 99.721

7 534144 1066624 532480 2665728 542465 1083136 540672 2706944 99.814
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Table 2: Drag and lift coefficients for case of Re = 20

LEVEL body-fitted mesh cartesian mesh

Drag coeff. Cd Lift coeff. Cl Drag coeff. Cd Lift coeff. Cl

3 5.5810 0.004834 5.3303 0.008090

4 5.5608 0.009112 5.4115 0.006530

5 5.5657 0.010163 5.4958 0.010070

6 5.5718 0.010473 5.5405 0.009799

7 5.5755 0.010525 5.5578 0.010147

ref. Cd = 5.5795 Cl = 0.010618

Figure 3: Special mesh for flow around a fixed cylinder (LEVEL = 1)

Table 3: Drag and lift coefficients on the adapted mesh for the case of Re = 20

LEVEL NEL Cd Cl

3 2344 5.569 0.0002

4 9376 5.575 0.0014

5 37504 5.572 0.0081

6 150016 5.578 0.0102

Next we perform unsteady flow calculations with the higher Reynolds number Re = 100 using the

same mesh as in Fig. 2. Similarly, the body-fitted mesh is used for the reference calculation while

the fixed cartesian mesh is for the presented FBM. In the reference calculation, LEVEL = 7

of the body-fitted mesh is used, while for the case of the fixed cartesian mesh, two meshes,

LEVEL = 6 and LEVEL = 7, are employed. Fig. 4 presents the drag and lift coefficients during

one typical period of van Karman vortex shedding when the flow is fully developed. From this

figure, we can see that the FBM on the fixed rectangular mesh can reach almost the same

results as in the case of the body-fitted mesh. The drag Cd and lift coefficient Cl, obtained on

the coarser fixed rectilinear grid with LEVEL = 6 and on the finer LEVEL = 7, are more or

less equal to those obtained from the reference calculation (see Fig. 4).
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Figure 4: Drag Cd and lift coefficient Cl of one period for Re = 100; solid line is for body-fitted

mesh, dash line for fixed mesh LEVEL = 6; dot-dash line for fixed mesh LEVEL = 7

3.2 An oscillating cylinder in a channel

The next level of difficulty is introduced when the cylinder is in motion relative to the fixed

background mesh. In order to be able to use the reference body-fitted computation for compari-

son, the calculations will be carried out in a reference frame moving with the cylinder in the case

of the body-fitted mesh, whereas a reference frame fixed to the channel will be used for the fixed

grid method. Both cases are equivalent if a velocity Um = 2πf A cos(2πf t), A = 0.25, f = 0.25

is imposed at the inlet part of the domain, and a slip velocity Up = Um is defined on the channel

walls in the body-fitted case (see [28] for details). The cylinder is moved with a prescribed veloc-

ity Um and zero velocity conditions are imposed at the walls, inlet and outlet of the domain in

the case of the fixed grid. In Fig. 5, the body-fitted mesh is shown for the reference calculation

while the fixed cartesian mesh is taken for the presented FBM. In the reference calculation, the

LEVEL = 7 of the body-fitted mesh is used, while for the case of the fixed cartesian mesh, two

meshes on LEVEL = 6 and LEVEL = 7 are employed. Table 4 gives the parameters of the

meshes in Fig. 5 with different numbers of refined levels.

Table 4: Grid characteristics for sequentially refined meshes

LEVEL body-fitted mesh cartesian mesh

NVT NMT NEL NEQ NVT NMT NEL NEQ

1 40 68 28 164 161 292 132 716

2 136 248 112 608 585 1112 528 2752

3 496 944 448 2336 2225 4336 2112 10784

4 1888 3680 1792 9152 8673 17120 8448 42688

5 7360 14528 7168 36224 34241 68032 33792 169856

6 29056 57728 28672 144128 136065 271232 135168 677632

7 115456 230144 114688 574976 542465 1083136 540672 2706944
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(a) body-fitted mesh (LEVEL = 2)

(b) cartesian rectilinear grid (LEVEL = 2)

Figure 5: Different ‘coarse’ meshes adopted for a moving cylinder in a channel

Fig. 6 illustrates the comparison of the drag coefficient Cd and the lift coefficient Cl between

the results of the fictitious boundary method based on the channel mesh and the reference

calculation based on the body-conformal mesh. The results calculated from LEVEL = 4 to

LEVEL = 7 are all shown together (see Fig. 6 (a) and (b)). The corresponding coefficients Cd

and Cl for one period between t = 19.79 to 23.79 are shown in Fig. 6 (c) and (d), the solid

line represents the results of the reference calculation based on the body-conformal mesh at

LEVEL = 7, while the dash line denotes the results obtained by the fictitious boundary method

based on the channel mesh at LEVEL = 7. We can see that both FBM and reference results

compare very well. The FBM results calculated by the presented fictitious boundary method

agree very well with the reference results, although the FBM results exhibit small oscillations

due to the non-aligned cylinder movement in time over the (fixed) grid points. Compared to the

previous case, the grid refinement has more influence onto the accuracy of the results. This is

due to the fact that when the cylinder is moving on the fixed background mesh, depending on

the number of nodes currently covered by the cylinder, its effective shape may change. However,

the effect of this change of shape on the computed forces is very small.

4 Numerical schemes

4.1 Discretization in Space and Time

One of the common solution approaches for Eq. (10) is a separate discretization in space and

time. We first semi-discretize in time by one of the usual methods known from the treatment of

ordinary differential equations, such as the Backward Euler-, Crank–Nicolson- or Fractional-step-

θ-scheme (see [8] and [23]). Then, we obtain a sequence of generalized stationary Navier–Stokes
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Figure 6: Comparison of Cd and Cl between FBM and reference

equations with prescribed boundary values for every time step. Here, we use the Fractional-step-

θ-scheme [8] which is a strongly A-stable time stepping approach and possesses the full smoothing

property which is important in the case of rough initial or boundary data. In each time step,

we obtain a nonlinear saddle point problem which has to be discretized in space. For the spatial

discretization, we choose a finite element approach: A regular quadrilateral mesh Th for the

whole computational domain ΩT is introduced, where h is used as a parameter characterizing

the maximum width of the elements of Th. To obtain the fine mesh Th from a coarser mesh T2h,

we simply connect opposite midpoints. In the fine grid Th, the old midpoints of T2h become

vertices. We choose the nonconforming Q̃1/Q0 element pair which uses rotated bilinear shape

functions for the velocity spanned by 〈x2 − y2, x, y, 1〉 in 2D and piecewise constants for the

pressure in the cells. The nodal values are the mean values of the velocity over the element edges

and the mean values of the pressure over the elements, rendering this approach nonconforming.

This nonconforming Q̃1/Q0 element pair has several advantageous features (see [23]): It satisfies

the Babus̆ka–Brezzi condition without any additional stabilization, and the stability constant

is independent of the shape and size of the elements. In particular on meshes containing highly

stretched and anisotropic cells, the stability and the approximation property are always satisfied.

In addition, it admits simple upwind strategies which lead to matrices with certain M-matrix

properties. A detailed discussion of these aspects can be found in [23, 24].
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4.2 Discrete Projection Scheme

For solving the discrete nonlinear problems after time and space discretizations, we have to take

the following points into account, i.e., treatment of the nonlinearity, treatment of the incom-

pressibility, and complete outer control like convergence criteria for the overall outer iteration,

number of splitting steps, convergence control, embedding into multigrid, etc. In general, there

are (at least) two possible approaches for solving the discrete problems [25]:

One is the so-called full Galerkin schemes: first, we treat the nonlinearity by an outer nonlinear

iteration of fixed point- or quasi-Newton type or by linearization via extrapolation in time, and

then we obtain linear subproblems (Oseen equations) which can be solved by a direct coupled

or a splitting approach separately for velocity and pressure. Typical schemes are preconditioned

GMRES-like or multigrid solvers based on smoothers/preconditioners of type Vanka, SIMPLE

or local pressure Schur complement [23]. The disadvantage of these approaches is the high

numerical cost for small time steps which are typical for particulate flows. Another possibility are

the projection type schemes: first we split the coupled problem and obtain definite problems in

u (Burgers equations) as well as in p (Pressure-Poisson problems). Then we treat the nonlinear

problems in u by an appropriate nonlinear iteration or linearization technique while optimal

multigrid solvers are used for the Poisson-like problems. Classical schemes belonging to this

class are the Chorin and van Kan projection schemes and the discrete projection method, all of

them are well suited for dynamic configurations which require small time steps (see [26]).

In this paper, based on the latter approach combined with multigrid methods, we adopt the

discrete projection method (DPM [26]) as special variant of the more general multigrid pressure

Schur complement (MPSC) schemes to solve the discrete nonlinear problems after time and

space discretization. A detailed description of DPM and MPSC schemes has been presented in

[23]: we first perform as outer iteration a fixed point iteration, applied to the fully nonlinear

momentum equations. Then, in the inner loop, we solve the corresponding velocity equations

involving linear transport-diffusion problems. Finally, the pressure is updated via a Pressure

Poisson-like problem, and the corresponding velocity field is adjusted. Since every time step

requires the solution of linearized Burgers equations and Poisson-like problems, an optimized

multigrid approach is used. The most important components are matrix-vector multiplication,

smoothing operator and grid transfer routines (prolongation and restriction) for the underlying

FEM spaces which have been realized in FeatFlow (see [23] for the details).

4.3 Algorithmic Details

The whole algorithm of the multigrid fictitious boundary method (FBM) for particulate flow

can be summarized as follows:

1. Given (initial) particle positions Xi and velocity Ui in the overall domain ΩT . Next, we

assume that we have finished the calculations at time tn.

2. Set fictitious boundary conditions by using Eq. (10) (c) with the ’old’ particle positions Xn
i
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and the velocity Un
i at time tn.

3. By using the FBM and implementing the discrete projection scheme, solve the fluid equa-

tions of Eqs. (10) (a) and (b) to get the fluid velocity un+1 and the pressure pn+1 at time

tn+1 on the full computational domain ΩT .

4. Calculate the hydrodynamic forces Fn+1
i and Tn+1

i exerted on every particle (i = 1, . . . , N)

by using the volume integration formulation of Eq. (12).

5. When two particles come too close, the time step has to be reduced. Then, we adopt several

substeps with ∆tk = K/Λ (k = 1, . . . ,Λ, Λ is the number of substeps calculations, K =

tn+1 − tn) for calculating the collisions and updating the particle positions and velocities

during the collisions. Set Un,0
i := Un

i and Xn,0
i := Xn

i .

6. Determine the number of substep calculations Λ by

Λ =







1, if (di,j)min ≥ (Ri + Rj)max,

MIN

{

10, 1 + MAX

( |di,j − Ri − Rj |
̺

)}

, if (di,j)min < (Ri + Rj − ̺)max,

(13)

where ̺ is the maximum penetration distance to be allowed (maximal overlapping range).

7. By using the Newton-Euler equations of Eq. (5) to calculate the motion of the solid par-

ticles, we obtain the new interim particle position X
n+1/2,k
i and velocity U

n+1/2,k
i as well

as the new angular velocity ωn+1
i and angle θn+1

i by

U
n+1/2,k
i = Un,k

i +

(

∆Mi g

Mi
+

Fn
i + Fn+1

i

2 Mi

)

∆tk , (14)

X
n+1/2,k
i = Xn,k

i +

(

∆Mi g

Mi
+

Fn
i + Fn+1

i

2 Mi

)

(∆tk)
2 , (15)

ωn+1
i = ωn

i +

(

Tn
i + Tn+1

i

2 Ii

)

K , θn+1
i = θn

i +

(

ωn
i + ωn+1

i

2

)

K . (16)

8. Use the collision model of Eqs. (7) and (8) to calculate the repulsive forces (F′
i)

n+1,k with

the interim particle position X
n+1/2,k
i .

9. Update the particle positions and the velocity by the repulsive forces to obtain the new

particle position Xn+1,k
i and the velocity Un+1,k

i at time tn+1 by

Un+1,k
i = U

n+1/2,k
i +

(F′
i)

n+1

Mi
∆tk , Xn+1,k

i = X
n+1/2,k
i +

(F′
i)

n+1

Mi
(∆tk)

2 (17)

10. Set Un,k+1

i := Un+1,k
i and Xn,k+1

i := Xn+1,k
i if k < Λ, and repeat the steps 7 - 10.

11. Set Un+1
i := Un+1,Λ

i and Xn+1
i := Xn+1,Λ

i .

12. Advance to the next new time step, set tn := tn+1 and repeat the steps 2 - 12.
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4.4 Data Structures for Large Number of Particles

A challenging situation is the case with large numbers of rigid particles, for instance, the range

of 100,000 and more. Indeed, a huge part of the CPU time is required for the force calculations

and the fictitious boundary settings with increasing number of particles, while the cost for the

Navier-Stokes solver is more or less independent of the number of particles (see Table 6). To

make it possible that the presented multigrid FBM method is able to simulate the particulate

flows with a such large numbers of particles, special techniques are required for the multigrid

FBM which decrease the required CPU time. These hierarchical techniques include the following

aspects:

1. Find the maximum controlling area of each element; on the coarsest mesh level, check how

many particles are inside of the controlling area of each element.

2. On the next finer mesh level, there is no need to search again for every particle, just use the

information obtained from the previous coarser level. Because every element of the next

finer level would be also within the previous coarse mesh level, search only those particles

which are within the previous coarse level.

3. Since all midpoints of the previous coarser level become vertices of the next finer level, use

this information for the midpoints of the previous level mesh already obtained and assign

them directly to the corresponding vertex point on the next finer mesh level.

4. The vertices or midpoints are possibly occupied by more than one particle (for example,

in the case of overlapping), the values for velocities in these points are obtained by the

average values of the velocities of those particles who occupy the same points.

5. On the finest mesh, use a new array (in FORTRAN) and assign special values to this

array: if a nodal point is not occupied by any particle, its value is set to 0; if a nodal point

is occupied by the ith particle, its value is set to i. This array helps to reduce the CPU

time for the volume integration of the force calculation.

To evaluate these techniques regarding the CPU time when simulating particulate flows with

large numbers of particles, we analyze the cases of 10 to 100,000 particles falling down in a

rectangular cavity filled with an incompressible Newtonian viscous fluid with and without these

hierarchical techniques. In Table 5, ”NVT” denotes the number of vertices, ”NMT” the number

of edges (midpoints), ”NEL” the number of elements and ”NEQ” the total number of unknowns.

Table 6 shows the typical CPU time needed (COMPAQ EV6, 666 MHz) for one time step based

on the described algorithms with and without the above techniques. The size of computer

memory (in MByte) required for each case is also listed: ’NSE part’ means the time for the

Navier-Stokes solver, ’Force part’ for the calculation of the hydrodynamic forces acting on the

particles, ’Particle part’ for the fictitious boundary setting and the calculation of the particle-

particle and particle-wall collisions.
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We can see the linear relation between CPU and storage cost w.r.t. the mesh size due to the op-

timized multigrid components. Moreover, if the time reducing techniques are not used, the CPU

time for the force calculations, as well as the fictitious boundary setting and the calculation of

the collisions will significantly grow with increasing the number of particles and mesh refinement.

After adopting the hierarchical techniques, the CPU time for the calculation of 100,000 particles

is much less than for the calculation of 1,000 particles without these techniques. Moreover,

the computer memory storage required for both cases is not significantly increased. However,

the CPU cost is (still) increasing for many particles and requires further improvements of the

algorithmic details: Then, together with more advanced collision models and more efficient data

structures, calculations with even 1,000,000 particles and more seem to be possible on modern

PC.

Table 5: Parameters for the meshes in the test calculation

Level NVT NMT NEL NEQ

1 1406 27888 13824 69600

2 55777 111072 55296 277440

3 222145 443328 221184 1107840

4 886657 1771392 884736 4427520

5 3542785 7081728 3538944 17702400

Table 6: Typical CPU time for particle flow calculations (one time step) without (top) and with (bottom)

the time reducing techniques

No. of Particles = 10 = 100 = 1, 000

Level L= 3 L= 4 L= 5 L= 3 L= 4 L= 5 L= 3 L= 4 L= 5

NSE part 24 123 574 20 106 626 22 110 521

Force part 5 20 80 44 176 731 443 1771 7101

Particle part 1 6 26 2 9 43 21 83 332

Total time 30 149 680 66 291 1400 486 1964 7954

Storage (MByte) 4.8 19.5 78.0 4.8 19.5 78.0 4.8 19.5 78.0

No. of Particles = 10 = 1, 000 = 100, 000

Level L= 3 L= 4 L= 5 L= 3 L= 4 L= 5 L= 3 L= 4 L= 5

NSE part 16 77 330 16 77 336 14 67 262

Force part 0.1 0.4 1.5 0.1 0.5 1.8 0.2 0.7 2.8

Particle part 1 6 30 2 9 40 622 665 616

Total time 17 84 362 18 87 378 635 733 882

Storage (MByte) 4.5 18.5 74.2 4.6 18.6 74.7 5.7 20.0 75.7
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5 Numerical Experiments

We present test configurations of benchmark character to evaluate and to validate the presented

methodology. Flow with one rotating and moving particle is examined first to validate the

calculated angular and translational velocities by the presented multigrid FBM. Then, cases

with two and many particles are analyzed to check the quality of the collision model and of

the efficiency of the FBM for the simulation of large numbers of particles. The time step is

controlled automatically via an implicit estimation of the local truncation error of fluid velocities

and pressure (see [23] for the details). In all simulations, we prescribe the geometrical and fluid

quantities in dimensionless form.

5.1 One particle in a rotating circular container

We consider a particle with radius 1 centered in a circular container of radius 2 to validate the

angular velocity, starting from rest. The boundary condition at the wall of the container imposes

a rotation with an angular velocity Ω = 0.01. Then, the particle should start rotating with

the same angular speed, i.e., the steady solution is a rigid body rotation inside the container

(including the particle) with the same angular velocity Ω = 0.01. The mesh for the present

calculation has 9,281 nodes and 9,216 elements. Fig. 7 shows the velocity distribution and the

streamline contours at steady state with viscosity ν = 0.01 and density ρ = 1. The angular

velocity increases until it approaches the terminal angular speed which matches that of the wall

of the container. Moreover, we present the terminal angular velocity of the particle and the time

needed to reach the steady limit with different viscosities. When the viscosity ν becomes bigger,

the particle can reach the steady state much faster.

(a) velocity (b) streamline

viscosity ν Terminal angular velocity Time for reaching the steady state

0.001 0.0099185 7000

0.01 0.0099989 600

0.1 0.0099998 60

1.0 0.0099999 10

Figure 7: The motion of a particle in a rotating container and angular velocity at steady state
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5.2 One particle in a shear flow

For further confirmation of the angular velocity, we consider a single, circular particle placed in

the middle between two walls. The radius of the particle is small compared to the distance of

the two walls. The channel height is H = 6, the width is W = 4 and the radius of the circular

particle varies from R ≈ 0 to R = 1. The viscosity is set to ν = 0.01. The center point of the

particle is located at (2.0, 3.0). The left and right walls are supposed to move vertically with

velocities U = 0.02 and U = −0.02 so that, without any particle, the stationary flow would be a

linear shear flow between the walls, with uniform vorticity Ω = 0.01. The center of the particle

is fixed, but it can rotate around its center. The corresponding stationary flow is such that the

angular velocity of the particle is ω = −Ω/2 = −0.005 when the radius of the circular particle

is small enough. An equidistant mesh with 222,145 nodes and 221,184 elements is used. Fig. 8

shows the velocity distribution at steady state, and Fig. 9 provides the evolution of the particle

angular velocity in time for different radii R. Table 7 presents the terminal angular velocity of

the particle and the time needed to reach the steady state with different radii of the particles.

It can be seen that the terminal angular velocity of the particle increases until it approximates

very well half of the vorticity of the fluid field. When the radius of the circular particle becomes

smaller, the terminal angular velocity approaches closer this value due to less disturbance of the

fluid field, and the particle can also reach the steady state much faster.

(a) R ≈ 0 (b) R = 1/20 (c) R = 1/10

(d) R = 1/5 (e) R = 2/5 (f) R = 1

Figure 8: Norm of velocity distribution of a particle in shear flow
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Figure 9: Angular velocity vs. time for a particle in shear flow

Table 7: Terminal angular velocity at steady state for a particle in shear flow

Radius of particle R Terminal angular velocity Time reaching the steady state

∼ 0 -0.0049993 230

1/20 -0.0049909 240

1/10 -0.0049837 250

1/5 -0.0049584 270

2/5 -0.0048697 310

1 -0.0043148 600

5.3 Flow around a moving airfoil

The rigid particles considered so far have been circular disks. The main goal of the following test

problem is to show that the multigrid FBM can be applied to rigid bodies of more complicated

shape, still providing accurate results.

We consider incompressible viscous flow around a NACA0012 airfoil that has a fixed center of

mass and is free to rotate due to hydrodynamical forces (see the description in [7, 8]). Fig. 10

shows the (fixed) coarse mesh which is locally adapted, the colored area is the position of the

airfoil at rest; this coarse mesh is successively refined by connecting opposite midpoints. Table

8 gives the parameters for the refined meshes: ”LEVEL” is the number of global refinements,

”NVT” the number of vertices, ”NMT” the number of edges (midpoints), ”NEL” the number of

elements, ”NEQ” the total number of unknown. In this fixed mesh, the airfoil shape is formed

by the nodal points which are inside of the airfoil, instead of a mesh line. ”VEF” means the

ratio of the effective airfoil area covered by the fixed mesh compared with the real airfoil area.

We can see that from LEVEL ≥ 3 on, we get an acceptable shape approximation.
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The surrounding region Ω is the rectangle (0, 20)× (0, 4). The characteristic length, namely the

airfoil length, is 1.0089304 and the fixed center of mass of the airfoil is at (0.420516, 2). The

shape of the NACA0012 is described as follows (for 0 ≤ X ≤ 1.0089304):

Y = 0.6 · (0.2969 ·
√

X + X · (−0.126 + X · (−0.3516 + X · (0.2843 − X · 0.1015)))) (18)

Initial angular velocity and angle of incidence are zero. The density of the fluid is ρf = 1 and

the density of the airfoil is ρp = 1.1. The viscosity of the fluid is νf = 10−2. The initial condition

for the fluid velocity is u(0) = 0 and the boundary conditions are given as u = 0 when y = 0 or

4 and u = 1 when x = 0 or 20 for t ≥ 0. Here, the Reynolds number is approximately Re ≈ 101

w.r.t the length of the airfoil and the maximum inflow speed [8].

In these simulations, we start the calculations with LEVEL = 3, until it reaches a stable peri-

odical motion (here at t = 42.05), then we change to LEVEL = 4 to continue the calculation

based on initial values obtained from interpolation using the results of LEVEL = 3. Similarly,

after t = 77.05, we change to LEVEL = 5 based on the results of LEVEL = 4. The flow field

and the vorticity are shown in Fig. 11. Fig. 12 presents the history of the angular velocity (ω)

and the angle (θ) of the airfoil corresponding to the three different meshes. We observe that the

results are in good agreement with those obtained by Glowinski, Joseph and coauthors [6, 8]

and converge to a mesh independent solution after the flows reaches a periodic motion.

Figure 10: Coarse mesh for flow around a NACA0012 airfoil (left is the global mesh, right is a

local zoom covering the airfoil at LEVEL = 1)

Table 8: Parameters for sequentially refined meshes

LEVEL NVT NMT NEL NEQ VEF(%)

1 625 1220 596 3036 95.018

2 2441 4824 2384 12032 97.393

3 9649 19184 9536 47904 99.769

4 38369 76512 38144 191168 100.14

5 153025 305600 152576 763776 99.973
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(a) vector field (b) vorticity

Figure 11: Snapshot for flow around a NACA0012 airfoil with Re = 101
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Figure 12: Measured data for flow around a NACA0012 airfoil with Re = 101, dotted line for

LEVEL = 3, dashed line for LEVEL = 4, solid line for LEVEL = 5

5.4 Trajectory of a moving spinning ball

For verifying our multigrid FBM to simulate real particle motion with both angular velocity and

translational velocities, we test a moving spinning ball. We begin the experiment by pushing

and spinning the ball impulsively: for time t < 0, everything is at rest; for t = 0+, the constant

velocity v(0+) = v0 and rotational speed ω(0+) = ω0 are specified. Huang [11] has given the

analytical result for the trajectory of such a moving spinning ball for t > 0. For comparing with

these results, we set the radius of the ball to R = 1, fluid viscosity ν = 1, fluid density ρf = 1,

density of the ball ρp = 10, initial velocity of the ball U0 = 100, V0 = 0, initial angular velocity

of the ball ω0 = 50. The computational domain is a sufficiently large rectangle (0, 20) × (0, 4).

For this test problem, we have chosen a uniform mesh with different sizes, namely ∆h = 1/8

for Level = 3 with 77,361 nodes and 76,800 elements, as well as ∆h = 1/16 for Level = 4 with

308,321 nodes and 307,200 elements.
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Fig. 15 shows the measured data for the case ρp = 10 by using the two different meshes with

Level = 3 and Level = 4 which include (a) trajectory of the ball until time t = 0.3, (b) history

of the moving ball angle, (c) history of the u-component velocity of the moving ball, (d) history

of the v-component velocity of the moving ball, (e) history of angular velocity of the moving

ball, (f) history of the ratio (%) of the actual area of the moving ball covered by the mesh with

respect to the real area of the moving ball, (g) history of the translational kinetic energy of the

moving ball, ET = 0.5 M (u2 + v2), M is the mass of the ball, u and v are the u-component

and v-component of the velocity at the center point of the ball, (h) history of rotational kinetic

energy of the moving ball, ER = 0.5 Iω2, I is the moment of inertia of the ball, ω is the angular

velocity of the ball. From these pictures, we can see that the results of Level = 3 are essentially

the same as those for Level = 4: the computed results are converged w.r.t. the mesh size and

agree very well with the analytical results of Huang [11].
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Figure 13: Trajectory for a moving ball with different densities at t = 0.3, dashed line for ρp = 5,

solid line for ρp = 10, dot-dashed line for ρp = 20 by using the Level = 4 mesh

(a) ρp = 5 (b) ρp = 10 (c) ρp = 20

Figure 14: Contour plots of vorticity at t = 0.3 for a moving spinning ball

By Newton’s 2nd law, we know that if we want to increase the change of direction of the ball, we

have to decrease the density of the ball ρp. For checking this, we perform two further calculations

with ρp = 5 and ρp = 20. Fig. 13 provides the trajectories of the ball until t = 0.3 for the three

cases of ρp = 5, 10 and 20 by using Level = 4. We can see that when ρp decreases, the trajectory

of the ball becomes more steep and has a bigger curvature. Fig. 14 finally shows the contour

plot of vorticity at t = 0.3 for the three different ball densities ρp = 5, 10 and 20.
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Figure 15: Calculated data for a moving ball for ρp = 10
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5.5 Single disk falling in an incompressible fluid

Next, we consider the numerical simulation of the motion of a circular disk falling in an incom-

pressible Newtonian viscous fluid to further validate our multigrid FBM. The test problem we

perform is the following: The computational domain is a channel of width 2 and height 6. A

rigid circular disk with diameter d = 0.25 and density ρp = 1.25 is located at (1, 4) at time

t = 0, and it is falling down under gravity in an incompressible fluid with density ρf = 1 and

viscosity ν = 0.1. We suppose that the disk and the fluid are initially at rest. The simulation

is carried out on two different mesh sizes, i.e., ∆h = 1/48 on Level = 3 with 28,033 nodes and

27,648 elements, as well as ∆h = 1/96 on Level = 4 with 111,361 nodes and 110,592 elements.

Fig. 16 shows the velocity field computed with ∆h = 1/96 on Level = 4. We can see that the

disk quickly reaches a uniform falling velocity until it hits the bottom of the channel.

Figure 16: One circular disk falling down in a fluid: (a) t = 0.34, (b) t = 0.66, (c) t = 0.79

In Fig. 17, some of the quantities are plotted in time: these are the y-coordinate of the disk

center, v-component of the disk translational velocity, Reynolds number for the disk defined by

Re =
√

u2 + v2 · d · ρp/ν, and translational kinetic energy (ET = 0.5 M (u2 + v2), M is the mass

of the disk, u and v are the u-component and v-component of the velocity at the center point of

the disk), as well as the rotational kinetic energy (ER = 0.5 Iω2, I is the moment of the inertia

of the disk, ω is the angular velocity of the disk), and the ratio (%) of the effective area of the

disk covered by the underlying fixed mesh compared with the real area of the disk, for the two

different mesh sizes on Level = 3 and on Level = 4. It can be seen, as expected, that the accuracy

on Level = 4 is better than on Level = 3. The maximum computed Reynolds numbers are 17.42

for Level = 3 and 17.15 for Level = 4 compared to the result of 17.31 provided by Glowinski [8].

We can see that the results computed on the two different mesh sizes are essentially the same

except the case of the rotational kinetic energy due to its very small values (< 10−3) which is

easily disturbed by numerical errors.
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Figure 17: One circular disk falling down in a fluid (ρp = 1.25): time histories of the y-coordinate

(a) of the particle center, v-component (b) of the particle translational velocity, Reynolds number

for the disk (c), and translational kinetic energy (d), rotational kinetic energy (e) as well as the

effective area (f) of the disk covered by the used equidistant mesh compared with the real area

of the disk, dashed line for ∆h = 1/48 (Level = 3), solid line for ∆h = 1/96 (Level = 4)
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5.6 Sedimentation of two circular particles

To examine the complete model, including the prevention of collisions, we study the sedimen-

tation of two circular particles in a two-dimensional channel, comparing the results w.r.t. two

different mesh sizes and regarding the results in [8]. The computational domain is a channel of

width 2 and height 8; the diameter of the particles is d = 0.2. The fluid and particle densities

are ρf = 1.0 and ρp = 1.01, and the fluid viscosity is ν = 0.01. The simulation is started at

t = 0 by dropping two particles at the center of the channel at a height of 7.2 (No.1 particle)

and 6.8 (No.2 particle). The simulation is executed for two different mesh sizes, i.e. ∆h = 1/48

on Level = 3 with 37,345 nodes and 36,864 elements, as well as ∆h = 1/96 on Level = 4 with

148,417 nodes and 147,456 elements, to check the computed solutions w.r.t. the mesh size.

Figure 18: Sedimentation of two circular particles: (a) t = 0.00, (b) t = 1.13, (c) t = 1.53, (d)

t = 1.73, (e) t = 2.44, (f) t = 4.49, (g) t = 6.23, (h) t = 7.57 (from left to right)

It is well known that when two particles are dropped close to each other, they interact by under-

going ”drafting, kissing and tumbling” [5]. Fig. 18 shows the visualization of the characteristic

drafting, kissing and tumbling behavior (top) of two falling particles, computed with ∆h = 1/96

on Level = 4, providing also the corresponding velocity distribution (bottom).
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From these figures, we can see that the particle in the wake (No.1 particle) falls more rapidly

than the particle No.2 in front since the fluid forces acting on it are smaller. The gap between

them decreases, and they almost touch (”kiss”) each other at time t = 1.13. After touching,

the two particles fall together until they tumble (t = 1.53) and subsequently they separate from

each other (t = 1.73). The tumbling of the particles takes place because the configuration, when

both are parallel to the flow direction, is unstable. The No.1 particle is touching first the bottom

wall at t = 6.23, while the No.2 particle reaches the bottom wall at t = 7.57.
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Figure 19: Sedimentation of two circular particles: time histories of x-coordinates (a), y-

coordinates (b) of the particle center, u-component (c), v-component (d) of the particle transla-

tional velocity, and of the particle angular velocity (e), and the particle angle (f) of the particle,

obtained for mesh size ∆h = 1/48 (dot-dashed line for No.1 particle, dotted line for No.2 parti-

cle), and ∆h = 1/96 (solid line for No.1 particle, dashed line for No.2 particle)
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In Fig. 19 and Fig. 20, several quantities are plotted: these are the time histories of the x-

coordinates and y-coordinates of the two particle centers, u-component and v-component of

the particle translational velocities, the particle angular velocities, and the particle angles, as

well as the trajectories and the time histories of the ratio (%) of the effective area of the two

particles covered by the underlying fixed mesh compared with the real area of the two particles,

the translational and rotational kinetic energy of the particles, obtained for the mesh sizes

∆h = 1/48 (Level = 3) and ∆h = 1/96 (Level = 4). We can see that the results computed on

the two different mesh sizes are essentially indistinguishable.
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Figure 20: Sedimentation of two circular particles: (a) trajectory at t = 8; (b) time history of

the ratio (%) of the effective area of the two particles compared with the real area of the two

particles, and of the translational (c) as well as of the rotational kinetic energy (d)

The two particles are kissing each other at t = 1.13. After kissing, they tumble: a manifestation

of the instability of a falling long body aligned with the stream. The histories of the particle

angles and the translational and rotational kinetic energies are presented for both mesh sizes.

The No.1 particle has more translational kinetic energy, but less rotational kinetic energy than

No.2 particle. Both particles reach their maximum energy values during the kissing and tum-

bling. The No.2 particle rotates much more than the No.1 particle. It can be seen, as expected,

that the accuracy on Level = 4 is better than on Level = 3. Moreover, all results compare

qualitatively well with those presented in [8, 21, 19, 3]. However, there is still need for further

rigorous benchmarks for multiple particles.
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5.7 Sedimentation of 790 circular particles of various size

The following test problems differ significantly from the ones considered so far since a much

larger number of rigid particle is used. The aim of the subsequent simulations is to show

that the proposed methodology can handle much more complex configurations, too. We have

not found corresponding reference values (unless the calculations in [8]), from simulations or

experiments, so that we can only examine the qualitative behavior.

The specific problem in this subsection is the sedimentation of 790 circular particles with different

diameters settling down in a closed rectangular cavity. The width and height of the cavity are

8 and 12. The 790 particles are placed at the top of the cavity with 20 rows such that in each

row the diameter of the particles is the same. The number of particles at the top row is 30,

and then always add 1 particle to the next row. The maximum diameter of the particles is

0.2396, and the minimum diameter is 0.1366. The range of the repulsive force is chosen as

ρ = 0.02604. The position of the particles at time t = 0 is shown in Fig. 21 (a): particles and

fluid are at rest at t = 0. The density of the fluid is ρf = 1 and the density of the particles is

ρi = 1.1 (i = 1, . . . , 790). The viscosity of the fluid is ν = 10−2. The parameters of the mesh

have been listed in Table 5. The parameter ǫP in the collision model has been taken equal to

5 × 10−7, and ǫW = ǫP /2, ǫ′P = ǫP , ǫ′W = ǫW . The evolution of the 790 particles is shown in

Figs. 21 and 22. A Rayleigh-Taylor instability develops in the advancing front between t = 0.52

and t = 1.60. At t = 1.06, many complex vortices have been formed which pull the particles

downward and mix each other with particles of different size. Between t = 2.14 and t = 2.68,

some stronger eddies are formed which push the particles almost to the top of the cavity. At the

end, all particles have settled down to the bottom of the cavity, and the fluid returns to rest.

5.8 Sedimentation of 3600 circular particles

Finally, we consider the sedimentation of 3600 circular particles with identical size falling down

in a closed rectangular cavity. The 3600 particles are placed at the top of the cavity with 60

rows, while in each row the number of particles is 60. The diameter of the particles is 0.108.

The range of the repulsive force is chosen as ρ = 0.02502. The position of the particles at

time t = 0 is shown in Fig. 23 (a). The particles and the fluid are at rest at t = 0. The

density of the fluid is ρf = 1 and the density of the particles is ρi = 1.1 (i = 1, . . . , 3600).

The viscosity of the fluid is ν = 10−2 (all quantities in non-dimensional form). The mesh and

computational domain are the same as in the previous case of 790 particles. The parameter ǫP

in the collision model has been taken equal to 10−6, and ǫW = ǫP /2, ǫ′P = ǫP , ǫ′W = ǫW . The

evolution of the 3600 circular particles is shown in Figs. 23 and 24. These figures clearly show

the development of the Rayleigh-Taylor instability. This instability develops into a fingering

and text-book phenomenon, and many symmetry breaking and other bifurcation phenomena

including drafting, kissing and tumbling take place at various scales in space and time: vortices

of different size develop and the phenomenon is clearly ”chaotic”. Finally, the particles settle at

the bottom of the cavity and the fluid returns to rest.
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(a) t = 0.0 (b) t = 0.52

(c) t = 1.06 (d) t = 1.60

Figure 21: Velocity field for 790 particles with various diameters falling down in a cavity
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(e) t = 2.14 (f) t = 2.68

(g) t = 4.02 (h) t = 6.19

Figure 22: Velocity field for 790 particles with various diameters falling down in a cavity (cont.)
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(a) t = 0.0 (b) t = 0.52

(c) t = 1.06 (d) t = 1.60

Figure 23: Velocity fields for 3600 particles falling down in a cavity
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(e) t = 2.68 (f) t = 4.03

(g) t = 7.75 (h) t = 11.18

Figure 24: Velocity fields for 3600 particles falling down in a cavity (cont.)
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6 Conclusions

We have presented the multigrid fictitious boundary method (FBM) for the direct simulation of

particulate flows in 2D. Since the method is based on ”simple” extensions of standard Navier-

Stokes solvers, the 3D case is quite straightforward and will be part of a forthcoming paper,

as soon as we have realized the proposed and analyzed methodology in the 3D solvers of our

CFD package FeatFlow [24]. The presented paper has mainly focused on the basic components

of the FBM and the numerical examples have benchmarking character to validate the proposed

methodology in the context of FEM discretization techniques and multigrid solvers.

The main advantage of the described FBM is that the solid particles, which are allowed to have

different shape and size, can move freely through the computational mesh for the fluid part

which has not to change in time; however, the mesh can be aligned as we will demonstrate

at the end of the paper. The proposed volume-based integration for the calculations of the

hydrodynamic forces acting on the moving particles is one of the key ingredients of the FBM,

and its accuracy has been proven by numerous comparisons between the presented results and

corresponding reference results from own computations or from the literature.

As a conclusion, this new approach can be easily incorporated into (almost) all CFD codes

without the need for additional (background) meshes for the particles or special interpolation

procedures since it only requires changes in the treatment of Dirichlet boundary conditions. On

the other hand, the applied (explicit) splitting approach renders the overall scheme to be of

first order only; however, since complex configurations with numerous particles typically require

small time steps by physical reasons, the comparison with more implicit scheme, for instance

[8, 19], is not yet clear, particularly w.r.t. the total efficiency: Hence, it is absolutely necessary

to design approximate benchmarks for realistic particulate flows! Another advantage of this new

approach is that very different shapes and sizes of particles can be easily included; even discrete

coalescence and breakup mechanisms are possible and will be topic of a forthcoming paper.

The modified collision model based on papers by Glowinski, Joseph, Singh and coauthors with

a new definition of a short range repulsive force cannot only prevent the particles from getting

too close to each other, it can also deal with these cases when the numerical simulation brings

the particles very close or even leads to overlapping. Special data structures and time reducing

techniques for handling the calculation of large numbers of particles are described to enable

the FBM to efficiently solve for many particles. Consequently, one of the next aims is to

simulate in 2D up to 106 particles on a single PC/workstation while the corresponding 3D

module in FeatFlow will be based on a parallel implementation for such a high number of

particles. Furthermore, non-Newtonian and viscoelastic fluids (”chaining” instead of ”kissing,

drafting, tumbling”, see [8]) have to be tackled in future and will be part of a forthcoming paper.

We finish this paper with a short remark concerning mesh adaptivity for a better approximation

of the particles: As we have shown, the use of the fictitious boundary method does not require

to change the mesh during the simulations, although the particles vary their positions. The

advantage is that no expensive remeshing has to be performed while a fixed mesh can be used
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such that in combination with appropriate data structures and fast CFD solvers very high

efficiency rates can be reached. However, the accuracy for capturing the particles is only of

first order which is important for the explicit calculation of the correct fluid forces acting on

the particles. One remedy could be to preserve the ‘mesh topology’, for instance as generalized

tensorproduct or blockstructured meshes, while a local alignment with the particle surfaces

is reached via special ‘grid deformation’ techniques. Preliminary examples for the case of 2

particles can be found in the following Fig. 25 which shows a deformed grid, created from an

equidistant cartesian mesh: While the topology is preserved, only the grid spacing is changed

such that the grid points are concentrated near the particle surfaces. This methodology is based

on recent papers by Liao et al. [2, 15] and requires only the solution of additional (linear) Poisson

problems in every time step which means that the additional work is significantly less than the

total CFD part (see Table 6). Therefore, we plan to present the details of this special adaptive

approach in a forthcoming paper.

Figure 25: Deformed meshes with different ‘grid deformation’ parameters
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