
1

Fictitious Boundary and Moving Mesh Methods for the

Numerical Simulation of Rigid Particulate Flows

Decheng Wan 1 and Stefan Turek 2

1 School of Naval Architecture, Ocean and Civil Engineering,

Shanghai Jiao Tong University, Huashan Road 1954, 200030 Shanghai, China

2 Institute of Applied Mathematics LS III, University of Dortmund,

Vogelpothsweg 87, 44227 Dortmund, Germany

Abstract

In this paper, we investigate the numerical simulation of rigid particulate flows using a

new moving mesh method combined with the multigrid fictitious boundary method (FBM)

[9, 10]. With this approach, the mesh is dynamically relocated through a special partial

differential equation to capture the region near the surface of the moving particles with

high accuracy. The complete system is realized by solving the mesh movement and physical

partial differential equations alternately. The flow is computed by an ALE formulation with

a multigrid finite element solver, and the solid particles are allowed to move freely through

the computational mesh which is adaptively aligned by the moving mesh method based

on an arbitrary grid. The important aspect is that the data structures of the underlying

undeformed mesh, in many cases a tensorproduct mesh, are preserved while only the spacing

between the grid points is adapted in each step. Numerical results demonstrate that the

interaction between the fluid and the particles can be accurately and efficiently handled by

the presented method. It is also shown that the presented method directly improves upon

the previous pure multigrid FBM to solve particulate flows with many moving rigid particles.

Keywords: Particulate Flows, Multigrid, FEM, Fictitious Boundary, Moving Mesh

1 Introduction

Numerical simulation of rigid particulate flows or the motion of small rigid particles in a viscous

liquid is one of the main focuses of engineering research and still a challenging task in many

applications. Depending on the area of application, these types of problems arise frequently in

numerous settings, such as sedimenting and fluidized suspensions, lubricated transport, hydraulic

fracturing of reservoirs, slurries, understanding solid-liquid interaction, etc.

Several numerical simulation techniques for particulate flows have been developed over the

past decade. In these methods, the fluid flow is governed by the continuity and momentum

2

equations, while the particles are governed by the equation of motion for a rigid body. The flow

field around each individual particle is resolved so that the hydrodynamic force acting on the

particle is obtained from the fluid solution. Hu, Joseph and coworkers [1, 2], Galdi [3] as well as

Maury [4] developed a finite element method based on unstructured grids to simulate the motion

of a large number of rigid particles in Newtonian and viscoelastic fluids. This approach is based

on an Arbitrary Lagrangian-Eulerian (ALE) technique. Both the fluid and solid equations of

motion are incorporated into a single coupled variational equation. The hydrodynamic forces

and torques acting on the particles are eliminated in the formulation. The nodes on the particle

surface move with the particle, while the nodes in the interior of the fluid are computed using

Laplace’s equation to guarantee a smoothly varying distribution of nodes. At each time step, a

new mesh is generated when the old one becomes too distorted, and the flow field is projected

on to the new mesh. In this approach, the positions of the particles and grid nodes are updated

explicitly, while the velocities of the fluid and the solid particles are determined implicitly. In the

case of 2D, the remeshing of the body-fitted grid can be done by many available grid generation

software, but in the more challenging case of a full 3D simulation, the problem of efficient,

body-fitted grid generation is not solved in a satisfying manner yet.

Glowinski, Joseph, Patankar and coauthors [5, 6, 7, 8] proposed a distributed Lagrange

multiplier (DLM)/fictitious domain method for the direct numerical simulation of large number

of rigid particles in fluids. In the DLM method, the entire fluid-particle domain is assumed to

be a fluid and then the particle domain is constrained to move with the rigid motion. The fluid-

particle motion is treated implicitly using a combined weak formulation in which the mutual

forces cancel. This formulation permits the use of a fixed structured grid thus eliminating the

need for remeshing the domain. Our group [9, 10, 11, 12] presented another multigrid fictitious

boundary method (FBM) for the detailed simulation of particulate flows. The method is based

on a fixed unstructured FEM background grid. The motion of the solid particles is modelled by

the Newton-Euler equations. Based on the boundary conditions applied at the interface between

the particles and the fluid which can be seen as an additional constraint to the governing Navier-

Stokes equations, the fluid domain can be extended into the whole domain which covers both fluid

and particle domains. The FBM starts with a coarse mesh which may contain already many

of the geometrical fine-scale details, and employs a (rough) boundary parametrization which

sufficiently describes all large-scale structures with regard to the boundary conditions. Then, all

fine-scale features are treated as interior objects such that the corresponding components in all

matrices and vectors are unknown degrees of freedom which are implicitly incorporated into all

iterative solution steps. An advantage of these fictitious domain methods over the generalized

standard Galerkin finite element method is that the fictitious domain methods allow a fixed grid

to be used, eliminating the need for remeshing, and they can be handled independently from

the flow features. Much progress has been made for adopting the fictitious domain methods to

3

simulate the particulate flows, yet the quest for more accurate and efficient methods remains

active. As we know, an underlying problem when adopting the fictitious domain methods is

that the boundary approximation is of low accuracy. Particularly in three space dimensions, the

ability of the fictitious domain methods to deal accurately with the interaction between fluid

and rigid particles is greatly limited. One remedy could be to preserve the mesh topology, for

instance as generalized tensorproduct or blockstructured meshes, while a local alignment with

the physical boundary of the solid is achieved by a moving mesh process, such that the boundary

approximation error can be significantly decreased.

Many authors have recognized that mesh adaption can be an effective tool for simulating

sharp fronts or moving interface problems, and reducing numerical dispersion and oscillation. It

has been demonstrated that significant improvements in accuracy and efficiency can be gained by

adapting the mesh nodes so that they remain concentrated in regions of sharp fronts or interfaces.

There are many existing adaptive mesh methods to achieve this purpose. Generally speaking,

mesh adaptivity is usually in the form of local mesh refinements or through a continuous mesh

mapping. In local adaptive mesh refinement methods [13], an adaptive mesh is obtained by

adding or removing points to achieve a desired level of accuracy. This allows a systematic

error analysis. However, local refinement methods require complicated data structures and

fairly technical methods to communicate information among different levels of refinements. In

the mapping approach [14, 15], the mesh points are moved continuously in the whole domain to

concentrate in regions where the solution has the largest variations or where the moving interfaces

are located. These solution-adaptive or geometry-adaptive meshes maps can be used to compute

accurately the sharp variation or the moving interface problems. They also have the additional

advantage of allowing the use of standard solvers as all the computations are performed in

the logical domain using the undeformed mesh. Over the past decade, several mesh adaptive

techniques have been developed, namely the so-called h-, p- and r- methods. The first two do

static remeshing with fixed time, where the h-method does automatic refinement or coarsening

of the spatial mesh based on a posteriori error estimates or error indicators and the p-method

takes higher or lower order approximations locally as needed. In contrast, the r-method (also

known as moving mesh method) relocates grid points in a mesh having a fixed number of nodes

in such a way that the nodes remain concentrated in regions of rapid variation of the solution or

corresponding moving interfaces. The r-method is a dynamic method which means that it uses

time stepping or pseudo-time stepping approaches to construct the desired transformation. The

r-method or moving mesh method differs from the h- and p-methods in that the former keeps

the same number of mesh points throughout the entire solution process, while the later have to

treat the tedious hanging node problems. Thus, the size of computation and data structure are

fixed, which enables the r-method much easier to incorporate into most CFD codes without the

need for the changing of system matrix structures and special interpolation procedures. The

4

r-method has received more and more attention due to some new developments which clearly

demonstrate its potential for problems such as those having moving interfaces [16, 17, 18, 19, 20].

The primary objective of this paper is to combine the multigrid fictitious boundary method

(FBM) [9, 10] with the moving mesh method described in [20] for the simulation of particulate

flow to check the accuracy of the proposed combining method and to compare its results with

the previous pure multigrid fictitious boundary method (FBM). As we have shown in [10], the

use of the multigrid FBM does not require to change the mesh during the simulations, although

the rigid particles vary their positions. The advantage is that no expensive remeshing has

to be performed while a fixed mesh can be used such that in combination with appropriate

data structures and fast CFD solvers very high efficiency rates can be reached. However, the

accuracy for capturing the surfaces of solid particles is only of first order which might lead to

accuracy problems. For a better approximation of the particle surfaces, we adopt a deformed

grid, created from a cartesian mesh, in which the topology is preserved, only the grid spacing

is changed such that the grid points are concentrated near the surfaces of the rigid particles.

Only the solution of additional linear Poisson problems together with simple ODEs in every

time step is required for generating the deformation grid, which means that the additional work

is significantly less than the main fluid-particle part. The paper is organized as follows. In

Section 2, the physical models together with a collision model for the rigid particulate flows are

described. The detailed numerical schemes including the multigrid FBM and the moving mesh

method are given in Section 3. Extensive numerical experiments and their computational results

will be presented in Section 4. Improvements of accuracy over the previous pure multigrid FBM

will be emphasized. The concluding remarks will be given in Section 5.

2 Descriptions of the Physical Models

2.1 Governing Equations

In our numerical studies of particle motion in a fluid, we will assume that the fluids are immiscible

and Newtonian. The particles are assumed to be rigid. Let us consider the unsteady flow of N

particles with mass Mi (i = 1, . . . , N) in a fluid with density ρf and viscosity ν. Denote Ωf (t)

as the domain occupied by the fluid at time t, and Ωi(t) as the domain occupied by the ith

particle. So, the motion of an incompressible fluid is governed by the following Navier-Stokes

equations in Ωf (t),

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 , ∇ · u = 0 ∀ t ∈ (0, T), (1)

5

where σ is the total stress tensor in the fluid phase defined as

σ = −p I + µf

[

∇u + (∇u)T
]

. (2)

Here I is the identity tensor, µf = ρf · ν, p is the pressure and u is the fluid velocity. Let

ΩT = Ωf (t)∪{Ωi(t)}N
i=1 be the entire computational domain which shall be independent of time

t. Dirichlet- and Neumann-type boundary conditions can be imposed on the outer boundary

Γ = ∂Ωf (t). Since Ωf = Ωf (t) and Ωi = Ωi(t) are always depending on t, we drop t in all

following notations.

The equations that govern the motion of each particle are the following Newton-Euler equa-

tions, i.e., the translational velocities Ui and angular velocities ωi of the ith particle satisfy

Mi
dUi

d t
= (∆Mi)g + Fi + F′

i , Ii
dωi

d t
+ ωi × (Ii ωi) = Ti , (3)

where Mi is the mass of the ith particle; Ii is the moment of the inertia tensor; ∆Mi is the

mass difference between the mass Mi and the mass of the fluid occupying the same volume; g is

the gravity vector; F′
i are collision forces acting on the ith particle due to other particles which

come close to each other. We assume that the particles are smooth without tangential forces

of collisions acting on them; the details of the collision model will be discussed in the following

subsection. Fi and Ti are the resultants of the hydrodynamic forces and the torque about the

center of mass acting on the ith particle which are calculated by

Fi = (−1)

∫

∂Ωi

σ · n dΓi , Ti = (−1)

∫

∂Ωi

(X − Xi) × (σ · n) dΓi, (4)

where σ is the total stress tensor in the fluid phase defined by Eq. (2), Xi is the position of the

mass center of the ith particle, ∂Ωi is the boundary of the ith particle, n is the unit normal

vector on the boundary ∂Ωi pointing outward to the flow region. The position Xi of the ith

particle and its angle θi are obtained by integration of the kinematic equations

dXi

d t
= Ui ,

d θi

d t
= ωi. (5)

No-slip boundary conditions are applied at the interface ∂Ωi between the ith particle and the

fluid, i.e., for any X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X− Xi) . (6)

2.2 Collision Models

For handling more than one particle, a collision model is needed to prevent the particles from

interpenetrating each other. Glowinski, Joseph and coauthors [7, 8] proposed repulsive force

6

models in which an artificial short-range repulsive force between particles is introduced for

keeping the particle surfaces more than one element (the range of the repulsive force) apart

from each other. In these models, overlapping of the regions occupied by the rigid bodies is

not allowed since conflicting rigid body motion constraints from two different particles are not

imposed at the same velocity nodes. However, in numerical calculations, the overlapping of

particles could happen. For solving this problem, Singh, Hesla and Joseph [28] suggested a

modified repulsive force model in which the particles are allowed to come arbitrarily close and

even to overlap slightly each other. When conflicting rigid body motion constraints from two

different particles are applied onto a velocity node, then the constraint from the particle that

is closer to that node is used. A repulsive force is only applied when the particles overlap each

other.

Following such models, we examine another collision model with a new definition of short

range repulsive forces which can not only prevent the particles from getting too close, it can

also deal with the case of particles overlapping each other when numerical simulations bring the

particles very close due to unavoidable numerical truncation errors. For the particle-particle

collisions, the repulsive force is determined as,

FP
i,j =































0, for di,j > Ri + Rj + ρ,

1

ǫ′P
(Xi −Xj)(Ri + Rj − di,j), for di,j ≤ Ri + Rj ,

1

ǫP

(Xi −Xj)(Ri + Rj + ρ − di,j)
2, for Ri + Rj ≤ di,j ≤ Ri + Rj + ρ,

(7)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates of

their mass centers, di,j = |Xi −Xj | is the distance between their mass centers, ρ is the range of

the repulsive force (usually ρ = 0.5 ∼ 2.5∆h, ∆h is the mesh size), ǫP and ǫ′P are small positive

stiffness parameters for particle-particle collisions. If the fluid is sufficiently viscous, and ρ ≃ ∆h

as well as ρi/ρf are of order 1 (ρi is the density of the ith particle, ρf is the fluid density), then

we can take ǫP ≃ (∆h)2 and ǫ′P ≃ ∆h in the calculations. For the particle-wall collisions, the

corresponding repulsive force reads,

FW
i =































0, for d′i > 2Ri + ρ,

1

ǫ′W
(Xi − X′

i)(2Ri − d′i), for d′i ≤ 2Ri,

1

ǫW
(Xi − X′

i)(2Ri + ρ − d′i)
2, for 2Ri ≤ d′i ≤ 2Ri + ρ,

(8)

where X′
i is the coordinate vector of the center of the nearest imaginary particle P ′

i located on the

boundary wall Γ w.r.t. the ith particle, d′i = |Xi −X′
i| is the distance between the mass centers

of the ith particle and the center of the imaginary particle P ′
i , ǫW is a small positive stiffness

7

parameter for particle-wall collisions, usually it can be taken as ǫW = ǫP /2 and ǫ′W = ǫ′P /2 in

the calculations. Then, the total repulsive forces (i.e. collision forces) exerted on the ith particle

by the other particles and the walls can be expressed as follows,

F′
i =

N
∑

j=1,j 6=i

FP
i,j + FW

i . (9)

3 Numerical Method

3.1 Multigrid FEM Fictitious Boundary Method

The details of multigrid FEM fictitious boundary method have been presented in Refs. [9, 10, 12].

For illustration, a brief description is given below.

The multigrid FEM fictitious boundary method (FBM) is based on a multigrid FEM back-

ground grid which covers the whole computational domain ΩT and can be chosen independently

from the particles of arbitrary shape, size and number. It starts with a coarse mesh which may

already contain many of the geometrical details of Ωi (i = 1, . . . , N), and it employs a ficti-

tious boundary indicator (see [9]) which describes all fine-scale structures of the particles with

regard to the fluid-particle matching conditions of Eq. (6). Then, all fine-scale features of the

particles are treated as interior objects such that the corresponding components in all matrices

and vectors are unknown degrees of freedom which are implicitly incorporated into all iterative

solution steps (see [12]). Hence, by making use of Eq. (6), we can perform calculations for the

fluid in the whole domain ΩT . The considerable advantage of the multigrid FBM is that the

total mixture domain ΩT does not have to change in time, and can be meshed only once. The

domain of definition of the fluid velocity u is extended according to Eq. (6), which can be seen

as an additional constraint to the Navier-Stokes equations (1), i.e.,



























∇ · u = 0 (a) for X ∈ ΩT ,

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X− Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(10)

For the study of interactions between the fluid and the particles, the calculation of the hydro-

dynamic forces acting on the moving particles is very important. From Eq. (4), we can see that

the surface integrals on the wall surfaces of the particles should be conducted for the calculation

of the forces Fi and Ti. However, in the presented multigrid FBM method, the shapes of the

wall surface of the moving particles are implicitly imposed in the fluid field. If we reconstruct

the shapes of the wall surface of the particles, it is not only a time consuming work, but also

8

the accuracy is only of first order due to a piecewise constant interpolation from our indicator

function. For overcoming this problem, we perform the hydrodynamic force calculations using

a volume based integral formulation. To replace the surface integral in Eq. (4) we introduce a

function αi,

αi(X) =







1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi,
(11)

where X denotes the coordinates. The importance of such a definition can be seen from the

fact that the gradient of αi is zero everywhere except at the wall surface of the ith particle,

and equals to the normal vector ni of wall surface of the ith particle defined on the grid, i.e.,

ni = ∇αi. Then, the hydrodynamic forces acting on the ith particle can be computed by

Fi = −
∫

ΩT

σ · ∇αi dΩ, , Ti = −
∫

ΩT

(X− Xi) × (σ · ∇αi) dΩ . (12)

The integral over each element covering the whole domain ΩT can be exactly calculated with a

standard Gaussian quadrature of sufficiently high order (4 × 4 points). Since the gradient ∇αi

is non-zero only near the wall surface of the ith particle, thus the volume integrals need to be

computed only in one layer of mesh cells around the ith particle, which leads to a very efficient

treatment.

The algorithm of the multigrid FEM fictitious boundary method for solving the coupled

system of fluid and particles can be summarized as follows:

1. Given the positions and velocities of the particles, solve the fluid equations Eqs. (10) (a)

and (b) in the corresponding fluid domain involving the position of the particles for the

fictitious boundary conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on the particles

by using Eq. (12), and compute the collision forces by Eq. (9).

3. Solve Eq. (3) to get the translational and angular velocities of the particles, and then

obtain the new positions and velocities of the particles by Eq. (5).

4. Use Eq. (10) (c) to set the new fluid domain and fictitious boundary conditions, and then

advance to solve for the new velocity and pressure of the fluid as described in step 1.

3.2 Moving Mesh Method

In this subsection, we briefly describe the moving mesh method which will be adopted and cou-

pled with the multigrid fictitious boundary method (FBM) to solve numerically for particulate

flows. The details of the moving mesh method can be found in Ref. [20].

9

The moving mesh problem can be equated to constructing a transformation ϕ, x = ϕ(ξ)

from the computational space (with coordinate ξ) to the physical space (with coordinate x).

There are two basic types of moving mesh methods, local based and velocity based, generally

computing x by minimizing a variational form or computing the mesh velocity v = xt using a

Lagrangian-like formulation. The moving mesh method we will employ belongs to the velocity

based method, which is based on Liao’s work [16, 17, 18, 19] and Moser’s work [21]. This method

has several advantages: only linear Laplace problems on fixed meshes are needed to be solved,

monitor functions can be obtained directly from error distributions or distance functions, mesh

tangling can be prevented, and the data structure is always same as that for the starting mesh.

Suppose g(x) (area function) to be the area distribution on the undeformed mesh, while

f(x) (monitor function) in contrast describes the absolute mesh size distribution of the target

grid, which is independent of the starting grid and chosen according to the need of physical

problems. Then, the transformation ϕ can be computed via the following four steps:

1. Compute the scale factors cf and cg for the given monitor function f(x) > 0 and the area

function g using

cf

∫

Ω

1

f(x)
dx = cg

∫

Ω

1

g(x)
dx = |Ω|, (13)

where Ω ⊂ R
2 is a computational domain, and f(x) ≈ local mesh area. Let f̃ and g̃ denote

the reciprocals of the scaled functions f and g, i.e.,

f̃ =
cf

f
, g̃ =

cg

g
. (14)

2. Compute a grid-velocity vector field v : Ω → R
n by solving the following linear Poisson

equation

−div(v(x)) = f̃(x) − g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (15)

where n is the outer normal vector of the domain boundary ∂Ω, which may consist of

several boundary components.

3. For each grid point x, solve the following ODE system

∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x, (16)

with

η(y, s) :=
v(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (17)

4. Get the new grid points via

ϕ(x) := ϕ(x, 1). (18)

10

Here we give two examples for the generation of a deformation mesh using above moving

mesh method. Fig. 1 shows the case of two objects with one rectangle and one ellipse inside a

square domain. The starting mesh presented in Fig. 1(a) is equidistant, we want to generate

a deformation mesh which can align the grid lines near both the surface of the ellipse and the

rectangle. We choose the monitor function f(x) as a function of ∆d, where ∆d is the minimum

distance of the grid points to both surfaces of the two solid bodies of the ellipse and the rectangle.

Fig. 1(b) gives the generated deformation mesh. We can see that the grid lines are concentrated

very well around the surfaces of the two solid bodies.

(a) Equidistant mesh (b) Deformation mesh

Figure 1: First example of a deformation mesh generated from a starting equidistant mesh

Fig. 2 presents another case with two ellipses in a vertical channel. The starting mesh and

positions of the two ellipses are given in Fig. 2(a). If we choose the monitor function f(x) as in

the above case, i.e. to be the function of ∆d, here ∆d is the minimum distance of grid points to

the both surfaces of the two solid ellipses, then the generated deformation mesh is Fig. 2(b). But

we can see that there are still too many grid lines remaining in the lower part of the channel.

Moreover, the grid points in the gap between the two ellipses are not distributed very well.

Next, we try to use another monitor function f(x), so-called a digit filter function ∆d1 × ∆d2,

here ∆d1 and ∆d2 are the distances of grid points to the surface of No.1 ellipse and No.2 ellipse,

respectively, then a much better deformation mesh can be generated. Fig. 2(c) shows the new

one. We can see now the grid lines are more concentrated around the surfaces of the two solid

ellipses and in the region of the gap between the two ellipses and there are less grid lines staying

in the lower part of the channel. It is clearly shown that the quality of the grid distribution is

depending on the choice of the monitor function.

11

(a) Equidistant mesh (b) Deformation mesh 1 (c) Deformation mesh 2

Figure 2: Second example of a deformation mesh generated from a starting equidistant mesh

3.3 ALE Formulation of the FBM

For a better approximation of the solid particles, we adopt the above described moving mesh

method such that we can preserve the mesh topology as generalized tensorproduct or block-

structured meshes, while a local alignment with the rigid body surface is reached. The moving

mesh method is sometimes referred to as the quasi-Lagrangian method: When the moving mesh

method is applied to the multigrid FBM, a mesh velocity Wm in the convective term in Eq.

(10b) must be introduced, i.e.,

ρf

[

∂ u

∂ t
+ (u− Wm) · ∇u

]

−∇ · σ = 0 for X ∈ Ωf . (19)

12

In the literature, this is also referred to as an Arbitrary Lagrangian-Eulerian (ALE) for-

mulation. Note that the mesh velocities Wm do not appear in the continuity equation, as a

Pressure-Poisson equation is solved to satisfy the continuity equation in an outer loop. Care

has to be taken to satisfy the geometric conservation law (GCL), where the mesh velocity Wm

must be equal to the movement of the mesh velocity ∆x during the time step. Therefore, the

mesh velocities Wm should be calculated according to the nodal movement from the previous

time step by

Wm =
1

∆t
(xn+1 − xn) (20)

where ∆t is the time step size and n denotes the time step number.

In each time step, a new deformation mesh is generated based on a starting mesh, then

the system matrices are updated and the mesh velocity according to the new position of the

deformation mesh nodes must be calculated.

3.4 Time Discretization by Fractional-Step-θ Scheme

The fractional-step-θ scheme is a strongly A-stable time stepping approach, it possesses the

full smoothing property which is important in the case of rough initial or boundary data. It

also contains only very little numerical dissipation which is crucial in the computation of non-

enforced temporal oscillations. A more detailed discussion of these aspects can be found in Refs.

[22, 24]. We first semi-discretize the Eqs. (10) (a) and (19) in time by the fractional-step-θ

scheme. Given un and the time step K = tn+1 − tn, then solve for u = un+1 and p = pn+1.

In the fractional-step-θ-scheme, one macro time step tn → tn+1 = tn + K is split into three

consecutive substeps with θ̃ := αθK = βθ′K,

[I + θ̃N(un+θ)]un+θ + θK∇pn+θ = [I − βθKN(un)]un

∇·un+θ = 0 ,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ = [I − αθ′KN(un+θ)]un+θ

∇·un+1−θ = 0 ,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 = [I − βθKN(un+1−θ)]un+1−θ

∇·un+1 = 0 ,

(21)

where θ = 1 −
√

2

2
, θ′ = 1 − 2θ, and α = 1−2θ

1−θ
, β = 1 − α, N(v)u is a compact form for the

diffusive and convective part,

N(v)u := −ν ∇ ·
[

∇u + (∇u)T
]

+ (v − Wm) · ∇u . (22)

Therefore, from Eq. (21), in each time step we have to solve nonlinear problems of the

following type,

[I + θ1KN(u)]u + θ2K∇p = f , f := [I − θ3KN(un)]un , ∇·u = 0 . (23)

13

For the Eq. (10) (c), we simply take an explicit expression like,

un+1 = Un
i + ωn

i × (Xn − Xn
i) . (24)

3.5 Space Discretization by Finite Element Method

If we define a pair {u, p} ∈ H := H1
0(Ω) × L := L2

0(Ω), and bilinear forms a(u,v) := (∇u,∇v)

and b(p,v) := −(p,∇·v), a weak formulation of the Eq. (23) reads as follows,

{

(u,v) + θ1K [a(u,v) + n(u,u,v)] + θ2K b (p,v) = (f ,v) , ∀v ∈ H

b (q,u) = 0 , ∀ q ∈ L
(25)

here L2
0(Ω) and H1

0(Ω) are the usual Lebesgue and Sobolev spaces, n(u,u,v) is a trilinear form

defined by

n(u,v,w) :=

∫

Ω

[ui − (Wm)i]

(

∂vj

∂xi
+

∂vi

∂xj

)

wj dx . (26)

To discretize the Eq. (25) in space, we introduce a regular finite-element quadrilateral mesh

Th for the whole computational domain ΩT , where h is the symbol used as a parameter charac-

terizing the maximum width of the elements of Th. To obtain the fine mesh Th from a coarse

mesh T2h, we simply connect opposing midpoints. In the fine grid Th, the old midpoints of the

coarse mesh T2h become vertices. We choose the Q̃1/Q0 element pair which uses rotated bilinear

shape function for the velocity spanned by 〈x2−y2, x, y, 1〉 in 2D and piecewise constants for the

pressure in cells. The nodal values are the mean values of the velocity vector over the element

edges and the mean values of the pressure over the elements rendering this approach noncon-

forming. The nonconforming Q̃1/Q0 element pair has several important features. It satisfies

the Babus̆ka–Brezzi condition without any additional stabilization, and the stability constant

is independent of the shape and size of the element. In particular on meshes containing highly

stretched and anisotropic cells, the stability and the approximation properties are always satis-

fied [22]. If we choose finite-dimensional spaces Hh and Lh and define a pair {uh, ph} ∈ Hh×Lh,

the discrete problem of Eq. (25) reads,











(uh,vh) + θ1K [ah(uh,vh) + ñh(uh,uh,vh)]

+ θ2K bh(ph,vh) = (f ,vh) , ∀vh ∈ Hh

bh(qh,uh) = 0 , ∀ qh ∈ Lh

(27)

where ah(uh,vh) :=
∑

T∈Th
a(uh,vh)|T and bh(ph,vh) :=

∑

T∈Th
b(ph,vh)|T . Note that ñh(uh,uh,vh)

is a new convective term which includes streamline-diffusion stabilizations defined by

ñh(uh,vh,wh) :=
∑

T∈Th

n(uh,vh,wh)|T +
∑

T∈Th

δT (uh · ∇vh,uh · ∇wh)|T , (28)

14

here δT is a local artificial viscosity which is a function of a local Reynolds number ReT ,

δT := δ∗ · hT

||u||Ω
· 2ReT

1 + ReT
, ReT =

||u||T · hT

ν
, (29)

where ||u||Ω means the maximum norm of velocity in ΩT , ||u||T is an averaged norm of velocity

over T , hT denotes the local mesh size of T , and δ∗ is an additional free parameter which can

be chosen arbitrarily (δ∗ = 0.1 is used in our calculations, also see [22]). Obviously, for small

local Reynolds numbers, with ReT → 0, δT is decreasing such that we reach in the limit case the

standard second order central discretization. Vice versa, for convection dominated flows with

ReT >> 1, we add an anisotropic diffusion term of size O(h) which is aligned to the streamline

direction uh.

3.6 Discrete Projection Scheme

For solving the discrete nonlinear problems after time and space discretizations, we have to take

the following points into account, i.e., treatment of the nonlinearity, treatment of the incom-

pressibility, and complete outer control like convergence criteria for the overall outer iteration,

number of splitting steps, convergence control, embedding into multigrid, etc. In general, there

are (at least) two possible approaches for solving the discrete problems [24]. One is the so-called

full Galerkin schemes: first, we treat the nonlinearity by an outer nonlinear iteration of fixed

point- or quasi-Newton type or by linearization via extrapolation in time, and then we obtain

linear subproblems (Oseen equations) which can be solved by a direct coupled or a splitting ap-

proach separately for velocity and pressure. Typical schemes are preconditioned GMRES-like or

multigrid solvers based on smoothers/preconditioners of type Vanka, SIMPLE or local pressure

Schur complement (see [22]). The disadvantage of these approaches is the high numerical cost

for small time steps which are typical for particulate flows. Another possibility is the projection

type schemes: first we split the coupled problem and obtain definite problems in u (Burgers

equations) as well as in p (Pressure-Poisson problems). Then we treat the nonlinear problems

in u by an appropriate nonlinear iteration or linearization technique while optimal multigrid

solvers are used for the Poisson-like problems. Classical schemes belonging to this class are the

Chorin and van Kan projection schemes and the discrete projection method, all of them are well

suited for dynamic configurations which require small time steps (see [25]).

In this paper, based on the latter approach combined with multigrid methods, we adopt

the discrete projection method (DPM) as special variant of the more general multigrid pressure

Schur complement (MPSC) schemes to solve the discrete nonlinear problems after time and

space discretizations. A detailed description of DPM and MPSC schemes has been presented

in [22]: we first perform as outer iteration a fixed point iteration, applied to the fully nonlinear

momentum equations. Then, in the inner loop, we solve the corresponding velocity equations

15

involving linear transport-diffusion problems. Finally, the pressure is updated via a Pressure

Poisson-like problem, and the corresponding velocity field is adjusted. Since every time step

requires the solution of linearized Burgers equations and Poisson-like problems, an optimized

multigrid approach is used. The most important components are matrix-vector multiplication,

smoothing operator and grid transfer routines (prolongation and restriction) for the underlying

FEM spaces which have been realized in FEATFLOW (see [22] for the details).

4 Numerical Results

The correct simulation of the proposed method is verified in this section. First of all, a bench-

mark configuration of 2D flow around a circular body in a channel is given to assess the suitability

and accuracy of the hydrodynamic force calculations based on the combination of the multigrid

FBM and the moving mesh techniques compared to the results without using the moving mesh

techniques. Then, three cases of single moving particle in the fluid are presented to further val-

idate the improvement of accuracy and efficiency through using the presented method. Finally,

the drafting, kissing and tumbling of two disks in a channel and the sedimentation of 120 circular

particles in a cavity are provided to show the presented method can be easily implemented in

the simulation of particulate flows with large number of particles.

4.1 Benchmark Experiment

We first consider a benchmark case of flow around a fixed circular cylinder in a channel as

described in [26]. The channel height is H = 0.41, length L = 2.2, the cylinder diameter

D = 0.1. The center point of the cylinder is located at (0.2, 0.2). The Reynolds number is

defined by Re = ŪD/ν with the mean velocity Ū = 2U(0, H/2, t)/3. The kinematic viscosity of

the fluid is given by ν = µf/ρf = 10−3 and its density ρf = 1. The inflow profiles are parabolic

U(0, Y, t) = 6.0ŪY (H − Y)/H2 with Ū = 0.2 such that the resulting Reynolds numbers are

Re = 20 which is a steady case.

Fig. 3 shows the equidistant mesh and deformation mesh employed in our calculations, in

which the circle shows the position of the cylinder. The shown meshes can be successively re-

fined by connecting opposite midpoints. The deformation mesh is generated from the equidistant

mesh, they both have the same data structure for mesh node and element system, but the defor-

mation mesh has more grid nodes and elements concentrating and aligning around the surface

of the cylinder. In Table 1, the parameters for these meshes after several global refinements are

given. The meaning of ”LEVEL” is the number of refinements, ”NVT” the number of vertices,

and ”NEL” the number of elements.

16

(a) Equidistant mesh (LEVEL = 4)

(b) Deformation mesh (LEVEL = 4)

Figure 3: Different meshes adopted for flow around a fixed circular cylinder

Table 1: Drag and lift values for flow around a fixed circular cylinder with Re = 20

LEVEL Equidistance mesh Deformation mesh

NVT NEL Drag coeff. Cd Lift coeff. Cl Drag coeff. Cd Lift coeff. Cl

4 561 512 4.44688 -0.0649815 6.25486 0.0682610

5 2145 2048 5.31808 -0.3508040 5.72950 0.0297392

6 8385 8192 5.50358 -0.0093675 5.61971 0.0291702

7 33153 32768 5.50585 0.0312388 5.58139 0.0118296

8 131841 131072 5.53049 0.0239737 5.57706 0.0104031

reference values Cd = 5.5795 Cl = 0.010618

Table 1 presents the computed results of drag and lift coefficients by using the two different

meshes. The corresponding reference results for this benchmark problem are also listed in the

table for comparison. From the table, we can see that all results are convergent with respect to

mesh refinement except that for the lift coefficients when using equidistant meshes. The results

for the deformation meshes are much better and more accurate than those for the equidistant

meshes. For the deformation mesh cases, already on level 6 with only NEL= 8192, very good

and satisfying results have been obtained. Obviously, the accuracy is improved by using the

grid deformation techniques.

17

4.2 One Oscillating Cylinder in a Channel

Next, an oscillating circular cylinder in a channel with a prescribed velocity is considered in this

numerical test. The channel height is H = 0.41, length L = 2.2, the cylinder diameter D = 0.1.

The center point of the cylinder is located initially at (1.1, 0.2). The prescribed velocity for

the cylinder is given by u = 2πf A cos(2πf t), A = 0.25, f = 0.25, v = 0, and no-slip velocity

conditions are imposed at the two walls, inlet and outlet of the channel. The kinematic viscosity

of the fluid is given by ν = µf/ρf = 10−3 and its density ρf = 1. The fluid in the channel is

initially at rest.

(a) Deformation mesh (t = 18.9) (b) Deformation mesh (t = 21.0)

(c) Local vector field (t = 18.9) (d) Local vector field (t = 21.0)

(e) Norm of velocity (t = 18.9) (f) Norm of Velocity (t = 21.0)

(g) Vorticity (t = 18.9) (h) Vorticity (t = 21.0)

Figure 4: Oscillating cylinder in a channel

The deformation mesh is generated by using the moving mesh method in each time step

in order to always keep grid alignment around the surface of the moving cylinder. Fig. 4 gives

two snapshot results at t = 18.9 and t = 21.0 of the deformation meshes, the local vector field,

the norm of velocity and vorticity distribution, respectively. These pictures show that the flow

in the channel is disturbed by the oscillating cylinder, and a vortex is generated periodically

in the wake of the cylinder. Fig. 5 illustrates the comparison of the computed drag coefficient

Cd by the presented method with the reference result based on the body-fitted mesh (see Ref.

[12]). The results calculated from LEVEL = 5 to LEVEL = 8 and the parameters of number

18

of elements ”NEL” for each refinement mesh are all shown together. From the comparisons, we

can see that the presented results are identical with the increase of the mesh refinements, and

agreeable very well with the reference result. On the deformation mesh of LEVEL = 5 with

2048 elements, sufficiently good results have already been reached.

0 5 10 15 20 25
−4

−2

0

2

4

t

C
d

Reference, see Ref. [12]

Def Grid, Level=8, NEL=131072

Def Grid, Level=7, NEL=32768

Def Grid, Level=6, NEL=8192

Def Grid, Level=5, NEL=2048

Figure 5: Drag coefficient in time for a oscillating cylinder in a channel

4.3 One 2D Circular Ball Falling Down in a Channel

Now we perform a real particle motion as follows: The computational domain is a channel of

width 2 and height 6. A rigid circular ball with diameter d = 0.25 and density ρp = 1.5 is

located at (1, 4) at time t = 0, and it is falling down under gravity in an incompressible fluid

with density ρf = 1 and viscosity ν = 0.1, with gravitational acceleration velocity g = −980.

We suppose that the ball and the fluid are initially at rest. The simulation is carried out on

fixed equidistant meshes and moving deformation meshes, respectively, each of them having two

different level, i.e., Level = 6 with 12545 nodes and 12288 elements, as well as Level = 7 with

49665 nodes and 49152 elements.

Fig. 6 gives two results at t = 0.30 and t = 0.48, showing the deformation mesh and the

vector field, respectively. Fig. 7 presents the comparison of the time history of y-coordinate

and v-component velocity of the center of the ball by using equidistant meshes and deformation

meshes, each of them is calculated by two level meshes LEVEL = 6 and LEVEL = 7, respectively.

Both results are convergent with respect to their own mesh refinement. If we compare these

results with those obtained by Glowinski in Ref. [8], we can find the results of the deformation

meshes are much closer to Glowinski’s results than those of the equidistant meshes, which shows

again that the accuracy is improved when the moving deformation meshes are employed.

19

(a) t = 0.30 (b) t = 0.48 (c) t = 0.30 (d) t = 0.48

Figure 6: One 2D circular ball falling down in a channel

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

t

y

Def Grid, Level=6

Def Grid, Level=7

Equi Grid, Level=6

Equi Grid, Level=7

0 0.1 0.2 0.3 0.4 0.5 0.6
−10

−8

−6

−4

−2

0

2

4

t

v

Def Grid, Level=6

Def Grid, Level=7

Equi Grid, Level=6

Equi Grid, Level=7

(a) y ∼ t (b) v ∼ t

Figure 7: The time history of y and v of the center of a 2D ball falling down in a channel

4.4 Induced Rotation of an Airfoil in a Channel

The rigid bodies considered so far have been of circular form. The following simulation will show

that the presented method can deal with rigid bodies of more complicated shape very well, and

provide better results compared to that without using the moving grid deformation techniques.

20

We consider a NACA0012 airfoil that has a fixed center of mass and is induced to rotate

freely around its center of mass due to hydrodynamical forces under the action of incoming

incompressible viscous flow in a channel. The channel has width 20 and height 4. The density

of the fluid is ρf = 1 and the density of the airfoil is ρp = 1.1. The viscosity of the fluid is

νf = 10−2. The initial condition for the fluid velocity is u = 0 and the boundary conditions are

given as u = 0 when y = 0 or 4 and u = 1 when x = 0 or 20 for t ≥ 0. Initial angular velocity

and angle of incidence of the airfoil are zero. The airfoil length is 1.0089304 and the fixed center

of mass of the airfoil is at (0.420516, 2). Hence the Reynolds number is about 101 with respect to

the length of the airfoil and the inflow speed. The detailed shape of the NACA0012 is described

as follows (for 0 ≤ X ≤ 1.0089304):

Y = 0.6 · { 0.2969 ·
√

X + X · [−0.126 + X · [−0.3516 + X · (0.2843 − 0.1015 · X)]] }

The simulation is implemented on both fixed meshes and moving deformation meshes, each

of them having two different levels, i.e., Level = 7 with 41409 nodes and 40960 elements, as

well as Level = 8 with 164737 nodes and 163840 elements. The deformation mesh is generated

in each time step in order to always keep grid alignment around the surface of the induced

rotating airfoil. Fig. 8 (a) shows the starting equidistant mesh used to generate the deformation

meshes. In Fig. 8 (b) and (c), two deformation meshes at t = 14.7 and t = 16.0 are presented,

their local zooms are illustrated in Fig. 8 (d) and (e). Fig. 9 plots the time history of the

angle of incidence θ and the angular velocity ω of the airfoil calculated by using the equidistant

meshes and the deformation meshes, each of them is performed by two levels LEVEL = 7 and

LEVEL = 8, respectively. The vector field, vorticity distribution, norm of velocity, and pressure

contour for t = 14.7 and t = 16.0 are given in Fig. 10 and Fig. 11. From these figures and

pictures, we can see that the airfoil quickly reaches a periodic motion and tends to keep its

broadside perpendicular to the inflow direction which is a stable position for a noncircular rigid

body settling in a channel at moderate Reynolds numbers. We observe that the results of the

deformation meshes converge better to a mesh independent solution than those of the fixed

meshes, and are in excellent agreement with those obtained by Glowinski, Joseph and coauthors

[7, 8]. The results of the fixed meshes exhibit much more numerical oscillations and lose stability

since they cannot catch very well the velocity field close to the leading edge of the airfoil, which

causes the numerical solution to blow up near the leading edge of the airfoil. Obviously, good

results and significant accuracy improvement are achieved by using the moving grid deformation

techniques. It illustrates that the presented method can easily handle more complex shapes of

rigid bodies and obtain more accurate and satisfying results than those without employing the

moving grid deformation techniques.

21

(a) Starting mesh

(b) Deformation mesh (t = 14.7)

(c) Deformation mesh (t = 16.0)

(d) Zoom mesh (t = 14.7) (e) Zoom mesh (t = 16.0)

Figure 8: Starting mesh and deformation meshes employed during the simulation of the induced

rotation of a NACA0012 airfoil in a channel

22

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

t

θ
an

d
ω

Def Grid, Level=7 for θ

Def Grid, Level=8 for θ

Def Grid, Level=7 for ω

Def Grid, Level=8 for ω

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

t

θ
an

d
ω

Equi Grid, Level=7 for θ

Equi Grid, Level=8 for θ

Equi Grid, Level=7 for ω

Equi Grid, Level=8 for ω

(a) Deformation meshes (b) Equidistant meshes

Figure 9: The time history of the angle of incidence θ and the angular velocity ω of the induced

rotating NACA0012 airfoil in a channel

(a) Local vector field (t = 14.7) (b) Local vector field (t = 16.0)

(c) Vorticity (t = 14.7) (d) Vorticity (t = 16.0)

Figure 10: Induced rotation of a NACA0012 airfoil in a channel

4.5 Drafting, Kissing and Tumbling of Two Disks in a Channel

In the following two numerical experiments, we will carry on the cases of multiple particles in

a fluid to show that the presented method can be easily implemented for real particulate flow

with many moving particles.

23

(a) Norm of velocity (t = 14.7)

(b) Norm of velocity (t = 16.0)

(c) Pressure (t = 14.7)

(d) Pressure (t = 16.0)

Figure 11: Induced rotation of a NACA0012 airfoil in a channel

When two particles are dropped close to each other, they interact by undergoing ”drafting,

kissing and tumbling” [27], which is often chosen to examine the complete computational model

of particulate flows, including the prevention of collisions. Therefore, we also study the sedimen-

tation of two circular particles in a two-dimensional channel, comparing the results with respect

24

(a) t = 0.0 (b) t = 0.15 (c) t = 0.18 (d) t = 0.30 (e) t = 0.42 (f) t = 0.65

Figure 12: Deformation meshes for two circular disks falling down in a channel

(a) t = 0.0 (b) t = 0.15 (c) t = 0.18 (d) t = 0.30 (e) t = 0.42 (f) t = 0.65

Figure 13: Vector fields for two circular disks falling down in a channel

to two different level of grid deformation mesh sizes and regarding the results in [8]. The com-

putational domain is a channel of width 2 and height 6. Two rigid circular disks with diameter

d = 0.25 and density ρp = 1.5 are located at (1, 5) (No.1 disk) and (1, 4.5) (No.2 disk) at time

t = 0, and they are falling down under gravity in an incompressible fluid with density ρf = 1

and viscosity ν = 0.01, the gravitational acceleration velocity is g = −980. We suppose that the

disks and the fluid are initially at rest. The simulation is carried out on the moving deformation

25

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

x

Level=7, No.1

Level=8, No.1

Level=7, No.2

Level=8, No.2

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

t

y

Level=7, No.1

Level=8, No.1

Level=7, No.2

Level=8, No.2

(a) x-coordinate (b) y-coordinate

0 0.05 0.1 0.15 0.2 0.25
−2

0

2

4

6

8

10

12

t

u

Level=7, No.1

Level=8, No.1

Level=7, No.2

Level=8, No.2

0 0.05 0.1 0.15 0.2 0.25
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

t

v

Level=7, No.1

Level=8, No.1

Level=7, No.2

Level=8, No.2

(a) u-component (b) v-component

Figure 14: The time history of two circular disks falling down in a channel: (a) x-coordinate,

(b) y-coordinate of the center of the two disks, and (c) u-component, (d) v-component of the

translational velocity of the center of the two disks. Dotted line for No.1 disk and dot-dashed

line for No.2 disk by deformation mesh Level = 7, as well as dashed line for No.1 disk, and solid

line for No.2 disk by deformation mesh Level = 8

meshes, having two different level, i.e., Level = 7 with 49665 nodes and 49152 elements, as well

as Level = 8 with 197633 nodes and 196608 elements.

Fig. 12 shows the moving deformation meshes employed in the simulation of the two falling

disks. The grid lines are always concentrated around the surfaces of the two disks and in

the region of the gap between the two disks, and they move with the two disks during the

computations. Fig. 13 presents the corresponding computed vector fields. From these figures,

we can see that the disk in the wake (No.1 particle) falls more rapidly than the disk No.2 in

26

front since the fluid forces acting on it are smaller. The gap between them decreases, and they

almost touch (”kiss”) each other at time t = 0.15. After touching, the two disks fall together

until they tumble (t = 0.18) and subsequently they separate from each other (t = 0.30). The

tumbling of the disks takes place because the configuration, when both are parallel to the flow

direction, is unstable. The No.1 disk is touching first the bottom wall at t = 0.42, while the

No.2 disk reaches the bottom wall at t = 0.65. In Fig. 14, several quantities are plotted. These

are the time histories of the x-coordinate and y-coordinate of the two disk centers, u-component

and v-component of the disk translational velocities, obtained for the two deformation meshes,

Level = 7 and Level = 8, respectively. We can see that the results computed on the two different

deformation meshes are essentially indistinguishable. All results compare qualitatively well with

those presented in [6, 8, 28, 29].

4.6 Sedimentation of 120 Circular Particles

Finally, we consider the sedimentation of 120 circular particles with identical size falling down

in a closed rectangular cavity. The width and height of the cavity are 4 and 6. The 120 particles

are placed at the top of the cavity with 8 rows, while in each row the number of particles is 15.

The diameter of the particles is 0.24. The range of the repulsive force is chosen as ρ = 0.0167.

The position of the particles at time t = 0 is shown in Fig. 17 (a). The particles and the

fluid are at rest at t = 0. The density of the fluid is ρf = 1 and the density of the particles is

ρi = 1.1 (i = 1, . . . , 120). The viscosity of the fluid is ν = 10−2 (all quantities in non-dimensional

form). The parameter ǫP in the collision model has been taken equal to 10−6, and ǫW = ǫP /2,

ǫ′P = ǫP , ǫ′W = ǫW . The moving deformation meshes are shown in Figs. 15 and 16. We can

see that grid lines are moved and concentrated around the surfaces of each particle and in the

regions of the gap between particles, and can always keep alignment with the surfaces of each

particle even when the particle moves. The corresponding snapshots for the evolution of the

vector fields of the 120 circular particle sedimentation are illustrated in Figs. 17 and 18. These

figures clearly show the development of the Rayleigh-Taylor instability. This instability develops

into a fingering and text-book phenomenon, and many symmetry breaking and other bifurcation

phenomena including drafting, kissing and tumbling take place at various scales in space and

time. Many complex vortices have been formed which pull the particles downward and mix each

other. Finally, the particles settle at the bottom of the cavity and the fluid returns to rest.

27

(a) t = 0.0 (b) t = 0.35

(c) t = 0.56 (d) t = 1.02

Figure 15: Deformation meshes for 120 particles falling down in a cavity

28

(e) t = 1.53 (f) t = 2.04

(g) t = 3.06 (h) t = 5.0

Figure 16: Deformation meshes for 120 particles falling down in a cavity (cont.)

29

(a) t = 0.0 (b) t = 0.35

(c) t = 0.56 (d) t = 1.02

Figure 17: Vector fields for 120 particles falling down in a cavity

30

(e) t = 1.53 (f) t = 2.04

(g) t = 3.06 (h) t = 5.0

Figure 18: Vector fields for 120 particles falling down in a cavity (cont.)

31

5 Conclusions

We have presented the combination of the multigrid fictitious boundary method and the moving

mesh method for the simulations of particulate flow with many moving rigid particles. The

new approach directly improves accuracy upon the previous pure multigrid FBM for particulate

flows. It is also computationally cheap and simple to implement. Since the size of computa-

tion and data structure of the moving deformation meshes are fixed, this enables the proposed

method much easier to incorporate into most CFD codes without the need for the changing

of system matrix structures and special interpolation procedures. It is suitable to accurately

and efficiently perform the direct numerical simulation of particulate flows with large number

of moving particles. One benchmark experiment, three numerical examples of single moving

particle in a fluid as well as the drafting, kissing and tumbling of two disks in a channel and

the sedimentation of 120 particles in a cavity have been presented to show that the presented

method can significantly improve the accuracy for dealing with the interaction between the fluid

and the particles, and be easily applied to real particulate flows with many moving particles.

References

[1] Hu, H.H., Joseph, D.D., Crochet, M.J.: Direct Simulation of Fluid Particle Motions. Theor.

Comp. Fluid Dyn., 3, 285 – 306 (1992)

[2] Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct Numerical Simulations of Fluid-Solid Systems

Using the Arbitrary Lagrangian-Eulerian Techniques. J. Comput. Phys., 169, 427 – 462 (2001)

[3] Galdi, G.P., Heuveline, V.: Lift and Sedimentation of Particles on the Flow of a Viscoelastic

Liquid in a Channel. to be published

[4] Maury, B.: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains. J. Comput.

Phy., 156, 325 – 351 (1999)

[5] Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D.: A Distributed Lagrange Multi-

plier/Fictitious Domain Method for Particulate Flows. Int. J. Multiphase Flow, 25, 755 –

794 (1999)

[6] Patankar, N.A., Singh, P., Joseph, D.D., Glowinski, R., Pan, T.W.: A New Formulation of

the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows. Int. J.

Multiphase Flow, 26, 1509 – 1524 (2000)

32

[7] Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J.: A Fictitious Domain

Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving

Rigid Bodies: Application to Particulate Flow. J. Comput. Phy., 169, 363 – 426 (2001)

[8] Glowinski, R.: Finite Element Methods for Incompressible Viscous Flow. In Handbook of nu-

merical analysis, Vol. IX, Ciarlet, P.G and Lions, J.L., Editors, North-Holland, Amsterdam,

701 – 769 (2003)

[9] Turek, S., Wan, D.C., Rivkind, L.S.: The Fictitious Boundary Method for the Implicit

Treatment of Dirichlet Boundary Conditions with Applications to Incompressible Flow Sim-

ulations. Challenges in Scientific Computing, Lecture Notes in Computational Science and

Engineering, Vol. 35, Springer, 37 – 68 (2003)

[10] Wan, D.C., Turek, S.: Direct Numerical Simulation of Particulate Flow via Multigrid FEM

Techniques and the Fictitious Boundary Method. Int. J. Numer. Method in Fluids, in press

(2005). Currently, available on http://www3.interscience.wiley.com/cgi-bin/jissue/108061200

DOI: 10.1002/fld.1129

[11] Wan, D.C., Turek, S.: An Efficient Multigrid-FEM Method for the Simulation of Liquid-

Solid Two Phase Flows. J. for Comput. and Appl. Math., in press (2005)

[12] Wan, D.C., Turek, S., Rivkind, L.S.: An Efficient Multigrid FEM Solution Technique

for Incompressible Flow with Moving Rigid Bodies. Numerical Mathematics and Advanced

Applications, ENUMATH 2003, Springer, 844 – 853 (2004)

[13] Berger, M.J., Collela, P.: Local Adaptive Mesh Refinement for Shock Hydrodynamics. J.

Comput. Phy., 82, 64 – 84 (1989)

[14] Huang, W.: Practical Aspects of Formulation and Solution of Moving Mesh Partial Differ-

ential Equations. J. Comput. Phy., 171, 753 – 775 (2001)

[15] Ceniceros, H.D., Hou, T.Y.: An Efficient Dynamically Adaptive Mesh for Potentially Sin-

gular Solutions. J. Comput. Phy., 172, 609 – 639 (2001)

[16] Bochev, P.B., Liao, G., de la Pena, G.C.: Analysis and Computation of Adaptive Moving

Grids by Deformation. Numerical Methods for Partial Differential Equations, 12, 489 (1996)

[17] Liao, G., Semper, B.: A Moving Grid Finite–Element Method Using Grid Deformation.

Numerical Methods for Partial Differential Equations, 11, 603 – 615 (1995)

[18] Liu, F., Ji, S., Liao, G.: An Adaptive Grid Method and its Application to Steady Euler

Flow Calculations. SIAM Journal on Scientific Computing, 20(3), 811 – 825 (1998)

33

[19] Cai, X.X., Fleitas, D., Jiang, B., Liao, G.: Adaptive Grid Generation Based on Least–

Squares Finite–Element Method. Computers and Mathematics with Applications, 48(7-8),

1077 – 1086 (2004)

[20] Grajewski, M., Köster, M., Kilian, S., Turek, S.: Numerical Analysis and Practical Aspects

of a Robust and Efficient Grid Deformation Method in the Finite Element Context. submitted

to SISC (2005)

[21] Dacorogna, B., Moser, J.: On a Partial Differential Equation Involving the Jacobian De-

terminant. Annales de le Institut Henri Poincare, 7, 1 – 26 (1990)

[22] Turek, S.: Efficient Solvers for Incompressible Flow Problems. Springer Verlag, Berlin-

Heidelberg-New York (1999)

[23] Turek, S.: FEATFLOW–Finite element software for the incompressible Navier–Stokes

equations: User Manual, Release 1.2, University of Dortmund (1999)

[24] Turek, S.: A comparative study of time stepping techniques for the incompressible Navier–

Stokes equations: From fully implicit nonlinear schemes to semi–implicit projection methods,

Int. J. Numer. Meth. Fluids, 22, 987 – 1011 (1996)

[25] Turek, S.: On discrete projection methods for the incompressible Navier–Stokes equations:

An algorithmical approach, Comput. Methods Appl. Mech. Engrg., 143, 271 – 288 (1997)

[26] Schäfer, M., Turek, S.: Benchmark computations of laminar flow around cylinder. in

E.H. Hirschel (editor) Flow Simulation with High-Performance Computers II. Volume 52 of

Notes on Numerical Fluid Mechanics, Vieweg, 547 – 566 (1996)

[27] Fortes, A., Joseph, D.D., Lundgren, T.: Nonlinear mechanics of fluidization of beds of

spherical particles, J. Fluid Mech., 177, 497 – 483 (1987)

[28] Singh, P., Hesla, T.I., Joseph, D.D.: Distributed Lagrange multiplier method for particulate

flows with collisions. Int. J. Multiphase Flow, 29, 495 – 509 (2003)

[29] Diaz-Goano, C., Minev, P., Nandakumar, K.: A Lagrange multiplier/fictitious domain

approach to particulate flows, in: Margenov, W., Yalamov (Eds), Lecture Notes in Computer

Science, Vol. 2179, Springer, 409 – 422 (2001)

