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Abstract. In this work, the novel “Tensor Diffusion” approach for simulating viscoelas-
tic fluids is proposed, which is based on the idea, that the extra-stress tensor in the mo-
mentum equation of the flow model is replaced by a product of the strain-rate tensor and
a tensor-valued viscosity. At least for simple flows, this approach offers the possibility
to reduce the full nonlinear viscoelastic model to a generalized “Tensor Stokes” problem,
avoiding the need of considering a separate stress tensor in the solution process. Besides
fully developed channel flows, the “Tensor Diffusion” approach is evaluated as well in the
context of general two-dimensional flow configurations, which are simulated by a suitable
four-field formulation of the viscoelastic model respecting the “Tensor Diffusion”. How-
ever, substituting the extra-stress tensor by the “Tensor Diffusion” in the complete flow
model is desired for general two-dimensional flows as well, again to be able to reduce the
full nonlinear viscoelastic model to a Stokes-like problem.

1. Introduction

Numerical simulations of viscoelastic fluids are still a challenging task, especially due
to the involved constitutive equations describing the complex material behaviour of the
flow. Basically, for highly viscous resp. slow fluids, the flow itself may be characterized
by means of the Stokes equations consisting of the conservation of mass and momentum,
which read

ρ
∂u

∂t
− 2ηs∇ ·D (u)−∇ · σ +∇p = 0, ∇ · u = 0(1)

under the assumption of isothermal and incompressible flows. Here, u denotes the velocity
field, ηs denotes the solvent viscosity, D (u) = 1

2

(
∇u +∇u>

)
refers to the strain-rate

tensor, i.e. the symmetric part of the velocity gradient, and p to the pressure field.
When predicting the material behaviour of viscoelastic fluids, the Stokes equations (1)
are complemented by an additional so-called constitutive equation with respect to the
extra-stress tensor σ. For motivating the novel approach presented in this work, typical
techniques for modelling viscoelastic fluids are briefly discussed in the following.

In this context, constitutive equations of differential type are quite straightforward to
apply, since these equations can be treated numerically in similar manner as the Stokes
equations themselves. The corresponding set of nonlinear equations consists of the Stokes
equations (1) together with the differential material model

∂σ

∂t
+ (u · ∇)σ −∇u> · σ − σ · ∇u + f (Λ, ηp,σ) = 2

ηp
Λ
D (u)(2)
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2 THE “TENSOR DIFFUSION” APPROACH FOR SIMULATING VISCOELASTIC FLUIDS

regarding the extra-stress tensor σ. Here, Λ denotes the (single-mode) relaxation time
and ηp the “polymeric” viscosity of the fluid at hand. Commonly used models are the
Oldroyd-B model (or Upper-Convected Maxwell model, UCM, [1, 2], for ηs = 0 in Eq.
(1)), where

f (Λ, ηp,σ) =
1

Λ
σ(3)

or the Giesekus model, where

f (Λ, ηp,σ) =
1

Λ

(
σ + α

ηp
Λ
σ · σ

)
(4)

which results from the Oldroyd-B model by introducing an additional quadratic stress
contribution [3].

The above models are already successfully applied to simulate several types of viscoelas-
tic fluids, from polymer solutions [4, 5] up to polymer melts [6], which are of intensified
interest in industrial applications. In all these cases, the corresponding relaxation time
spectrum, especially of polymer melts, easily encompasses several decades, and multiple
relaxation times need to be considered to achieve a satisfactory model of the relaxation
behaviour by a superposition of exponential modes [1, 7]. Consequently, the stress tensor
σ needs to be decomposed into a sum of single stress tensors σk, each satisfying an equa-
tion of the form of (2) including separate parameters Λk, ηp,k. This results in a significant
growth of the problem size, because each stress tensor σk needs to be considered as an
independent flow variable [1, 6].

At least in this regard, constitutive equations of the integral type show a clear ad-
vantage, because applying these models allows to keep the problem size fixed even if
the number of relaxation modes is increased, as these just enter the memory function.
Integral constitutive equations considered in numerical flow simulations are often of the
so-called time-separable Rivlin-Sawyers (or Kaye-BKZ) type [1, 8], where the stress tensor
is written as an infinite integral of the form

σ (t) =

∫ t

−∞
M (t− t′)

[
φ1 (I1, I2)Bt′ (t) + φ2 (I1, I2)Bt′ (t)−1

]
dt′(5)

In the above stress integral, φ1, φ2 are empirical functions to model nonlinear effects de-
pending on the two non-trivial invariants I1, I2 of the Finger tensor B, where I1 = tr (B)
and I2 = 1

2

(
tr (B)2 − tr (B2)

)
. In contrast to differential models, considering multiple

modes just affects the memory function M , which is in this context taken to be a super-
position of exponentials, in detail M(s) =

∑K
k=1 ηp,k/Λ

2
k exp (−s/Λk) (see [1].

In [8], several techniques for incorporating integral constitutive equations into a Finite
Element framework are discussed, but most of them – like the so-called “streamline Finite
Element method” or a decoupled Eulerian-Lagrangian approach – include a Lagrangian
reference frame. Since in the context of the Finite Element method, the Stokes equations
are considered in an Eulerian frame of reference, a corresponding approach is desired for
integral constitutive equations as well. One of the most suitable approaches to handle
integral material models in an Eulerian frame is the so-called “Deformation Fields Method”
(DFM, [8, 9, 10, 11, 12]). A central object in this Eulerian scheme is the Finger tensor,
which is evolved in time according to the differential equation

∂

∂s
Bt′ (s) + (u (s) · ∇)Bt′ (s)−∇u (s)> ·Bt′ (s)−Bt′ (s) · ∇u (s) = 0(6)
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in s ∈ [t′, t] for fixed t′, where Bt′ (t′) = I.
Obviously, both kinds of modelling approaches, i.e. the differential as well as the

integral material model, (2) or (5), give rise to numerical challenges due to the complex
rheology of the considered viscoelastic fluids. On the one hand, in the differential case,
the well-known “High Weissenberg Number Problem” (HWNP, [4, 5]) together with the
need of considering multiple modes [6] need to be covered. On the other hand, for integral
consitutive equations, a suitable numerical treatment of the resulting integro-differential
set of equations needs to be derived [8, 9, 10, 11, 12].

Therefore, in this work, the novel “Tensor Diffusion” approach, offering the possibility
to remove the complex rheology of the fluid from the set of equations and to establish
a straightforward numerical treatment of viscoelastic fluids, is introduced in Sec. 2. In
Sec. 3, the “Tensor Diffusion” approach is validated for quite simple flow configurations
like fully developed channel flows, followed by a narrow evaluation in the context of more
complex flows, i.e. the “Flow around cylinder” benchmark, in Sec. 4.

2. The “Tensor Diffusion” approach

As outlined above, many difficulties and challenges in simulating viscoelastic fluids arise
from the complex rheology of the fluid characterized by both, differential and integral
constitutive equations. Consequently, avoiding the need of considering such an equation
at all would probably improve the general numerical treatment of such fluids. Thus,
the underlying assumption of the novel “Tensor Diffusion” approach is the existence of a
decomposition of the extra-stress tensor according to

σ = µ ·D (u)(7)

where µ ∈ R2×2 or µ ∈ R3×3, both for two-dimensional configurations. Inserting the
stress decomposition (7) into the steady-state version of the Stokes equations (1) gives
the so-called “Tensor Stokes” problem

−∇ · (µ ·D (u)) +∇p = 0, ∇ · u = 0(8)

When assuming that the so-called “Tensor Diffusion” µ from Eq. (7) or (8) is known
or given corresponding to an actual viscoelastic flow problem, the “nonlinear” velocity
and pressure solution, originally resulting from the (direct steady) nonlinear differential
or integral viscoelastic model, can be computed by simply solving the “Tensor Stokes”
problem (8) in (u, p), only. The part of the original problem causing most challenges
and difficulties in the numerical simulation of viscoelastic fluids in genereal, i.e. the
constitutive equation or the complex rheology of such fluids, is removed from the system,
and the corresponding stresses are computed in post-processing fashion based on the
velocity solution calculated from Eq. (8). Furthermore, a robust, efficient, accurate and
stable numerical scheme can be used for solving the “Tensor Stokes” problem (8), since
typical solution techniques for (generalized) Stokes problems are applicable in this context.

Obviously, the “Tensor Stokes” problem represents an extension of classical generalized
Stokes equations involving a shear-rate dependent scalar viscosity (c.f. [13]), since be-
sides the corresponding “shear thinning” effect, in principle the full viscoelastic material
behaviour is covered by the tensor-valued viscosity µ.

Note, that the above form of the “Tensor Stokes” problem is obtained for both, ηs =
0, i.e. for pure polymer melts, as well as for ηs > 0, where the solvent contribution
2ηsI can be absorbed into the “Tensor Diffusion” µ. However, simulating so-called “no
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solvent” viscoelastic fluids is even harder than those with a present solvent contribution
as discussed in the following.

On the one hand, concerning the discretization of the viscoelastic model, additional
challenges arise for vanishing ηs, since in case of ηs > 0, besides choosing the well-known
“Stokes pair” Q2/P1 regarding the velocity and pressure fields, approximating the stress
variable in the same space as the velocity field leads to a LBB-stable discretization [5, 14].
However, in the “no solvent” case, the diffusive operator, present for ηs > 0, is removed
from the momentum equation of the original viscoelastic model, which is why the stability
of the Finite Element discretization is weakened and additional stabilization needs to
be inserted into the system (c.f. [5, 14, 15]). However, when introducing the above
proposed “Tensor Diffusion” µ into the Stokes equations – leading to the “Tensor Stokes”
problem eventually complemented by a constitutive equation of differential or integral
type – a diffusive operator is re-coupled into the system. Consequently, an LBB-stable
discretization is recovered for example by the approach proposed in [5].

On the other hand, problematic issues in terms of “no solvent” viscoelastic fluids also
occur regarding solution techniques for the resulting discrete (nonlinear) systems. By
following [5], the highly nonlinear systems obtained by discretizing the differential or
integral viscoelastic model are solved via Newton’s method, where the corresponding
Jacobian matrix is calculated via Finite Differencing. Unfortunately, for a vanishing
solvent contribution, a Stokes-like problem of the form(

0 B
B> 0

)(
u
p

)
=

(
ru
rp

)
(9)

has to be solved coupled with a discrete version of the differential or integral constitu-
tive equation. Consequently, for both, a monolithic or decoupled solution approach, no
meaningful (u, p)- or even σ-solution will be computable based on the Stokes-like problem
in Eq. (9). In contrast, when a similar discrete system is derived based on the “Tensor
Stokes” problem (8), a Stokes-like problem of the form(

−T B
B> 0

)(
u
p

)
=

(
ru
rp

)
(10)

is obtained, where a diffusive operator is present in the upper-left block. Thus, at least
conceptually, a reasonable approach is provided for calculating a (u, p,σ)-solution from
Eq. (10) combined with a constitutive equation for determining the stress, which is solved
monolithically or in a decoupled manner, e.g. via Operator Splitting.

Furthermore, when solving the nonlinear system consisting of the Stokes equations
coupled with a (differential) material model via Newton’s method (see [5] for details),
there are problems arising in solving the resulting linear system. Obviously, when applying
typical Krylov-space methods, no preconditioners are applicable involving the diagonal
part of the global (Jacobian) matrix. In similar manner, applying multigrid techniques
for solving these linear systems does not allow the use of diagonal smoothers. In fact,
only Vanka-like smoothers are applicable, which perform preconditioning locally on each
element [16, 17, 18]. But unfortunately, we observe an at least non-robust behaviour of the
multigrid solver involving these kind of smoothers, which furthermore only work for a very
large amount of additional stabilization, for instance “Edge-Oriented FEM”-stabilization
(EOFEM,[5, 19]). Thus, the corresponding solutions do not show a physically meaningful
behaviour. So far, we are only able to successfully perform numerical simulations for the
“no solvent” case when applying Newton’s method in combination with UMFPACK [20]
for solving the arising linear systems in a discrete fashion. But naturally, this limits the
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simulations to the range of small problem sizes, only. This issue might be resolved by
inserting “Tensor Diffusion” into the nonlinear system of equations in the same way as it
is done above in Eq. (10). Again, this gives rise to a diffusive operator in the Jacobian
matrix, potentially allowing the application of diagonal preconditioning/smoothing in
iterative solvers.

However, besides at least conceptually improving the numerical treatment of “no sol-
vent” viscoelastic fluids, one of the main potential benefits of the novel “Tensor Diffusion”
approach is the possibility, to express the complex rheology by a “Tensor Diffusion” µ
instead of solving a nonlinear constitutive equation. In the following section, it will be
shown, that this concept works at least for more or less simple flow configurations.

3. Proof of concept

Above, the potential benefits of the “Tensor Diffusion” approach are outlined, but only
based on the assumption, that a certain decomposition of the extra-stress tensor according
to Eq. (7) exists in general. In the following, the validity of this assumption is investigated
by checking the ability of the “Tensor Diffusion” approach to reproduce viscoelastic flow
characteristics usually resulting from differential or integral material models.

Therefore, stationary flow states for both, differential as well as integral models, are
considered in the following, where in case of differential models, the stationary version of
the set of equations can be obtained by simply dropping all derivatives with respect to
time t. The resulting set of equation reads

−2ηs∇ ·D (u)−∇ · σ +∇p = 0(11a)
∇ · u = 0(11b)

(u · ∇)σ −∇u> · σ − σ · ∇u + f (Λ, ηp,σ) = 2
ηp
Λ
D (u)(11c)

In case of integral models, besides the “Stokes part”, also the corresponding stress integral
needs to be transformed. In the time-dependent model, in each time step a new field
Bt′ is created and evolved in time depending on the time-dependent velocity field u (s)
[9]. Assuming a steady-state solution, the velocity field stays the same for all times s
in the evolution equation (6), which is why only one single deformation field B needs
to be evolved over the infinite time interval s ∈ [0,∞[ with initial condition B (0) = I.
Unfortunately, there is no steady-state solution regarding the deformation field B (s),
but nevertheless, the stress integral will reach a stationary state due to the exponentially
decaying memory function.

When transforming the stress integral to the time variable s ∈ [0,∞[, the steady-state
formulation regarding (u, p,σ) of the integral model is obtained, where the stress integral
becomes

σ =

∫ ∞
0

M (s)
[
φ1 (I1, I2)B (s) + φ2 (I1, I2)B (s)−1

]
ds(12)

complemented as before by an evolution equation for the Finger tensor B, but for a
velocity field independent of s, hence

∂

∂s
B (s) + (u · ∇)B (s)−∇u> ·B (s)−B (s) · ∇u = 0(13)



6 THE “TENSOR DIFFUSION” APPROACH FOR SIMULATING VISCOELASTIC FLUIDS

In general, the presented (steady-state) flow models regarding viscoelastic fluids – the
Stokes equations plus a differential or integral constitutive equation – hold for three-
dimensional configurations. However, in this work, two-dimensional flow states are con-
sidered only, which can be recovered from differential models by assuming σ ∈ R2×2.
Regarding integral constitutive equations, to derive the two-dimensional formulation fol-
lowing [21], one has to consider the pseudo three-dimensional Finger tensor

B̃ =

B11 B12 0
B12 B22 0
0 0 1


Since det (B) = 1 holds in case of incompressible fluids, there is only one invariant of
B, i.e. I = I1 = I2 = tr (B) + 1 when regarding two-dimensional configurations, where
B ∈ R2×2 denotes the upper-left block-matrix of B̃. This single invariant has to be
inserted into the three-dimensional formulation of integral constitutive equation (12) to
derive the corresponding two-dimensional version.

3.1. Fully developed channel flows. As a first step, fully developed channel flows for
viscoelastic fluids are considered, where the corresponding configuration according to a
two-dimensional flow domain is depicted in Fig. 1.

Γno-slip

Γout

Γno-slip

Γin

Figure 1. Configuration of fully developed (Poiseuille-)channel flows

In detail, for such kind of flows, the same velocity profile is obtained at any cutline over
the channel height, i.e. in y-direction. Consequently, the velocity field consists only of
a contribution in x-direction, i.e. the channel length, and varies only over the channel
height. Similar properties hold for the stress and Finger tensors in case of differential or
integral constitutive equations, respectively, which is why the flow quantities satisfy

u =

(
u
v

)
=

(
u (y)

0

)
,

∂

∂x
σij =

∂

∂x
Bij = 0(14)

where σij, Bij denote the components of σ,B ∈ R2×2, respectively. Applying the proper-
ties (14) to the differential steady-state version of the Upper-Convected Maxwell model,
which consists of Eq. (11) together with ηs = 0 in the Stokes equations and the model func-
tion f from Eq. (3), leads to a linear system of equations for the unknowns uy, σ11, σ12, σ22.
Based on the assumption, that the pressure decreases linearly in x over a channel of in-
finite length, i.e. px ≡ const < 0, the flow quantites can be given analytically, especially
leading to the parabolic velocity profile

u (y) =
px
2ηp

(
y2 − (b+ a) y + ba

)
(15)

for a channel height of y ∈ [a, b], since u (a) = u (b) = 0 due to u ≡ 0 on Γno-slip and
uy ((b+ a) /2) = 0, because of the maximum velocity being obtained on the center line of
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the channel (c.f. Fig. 1). Furthermore, the corresponding (symmetric) strain-rate as well
as stress tensors read

σ =

(
σ11 σ12
σ12 σ22

)
=

(
2ηpΛu

2
y ηpuy

ηpuy 0

)
(16a)

D (u) =
1

2

(
2ux vx + uy

vx + uy 2vy

)
=

(
0 uy
uy 0

)
(16b)

From Eq. (16) it is realized, that indeed a matrix- or tensor-valued quantity can be
derived – even analytically – relating σ and D according to Eq. (7), i.e. σ = µ ·D (u),
where

µ = 2ηp

(
1 2Λuy
0 1

)
(17)

In principle, the same can be done in case of the steady-state integral version of UCM,
where in a first step, the properties listed in Eq. (14) are applied to the evolution equation
(13) of the Finger tensor B, giving

∂

∂s
B11 (s) = 2B12 (s)uy,

∂

∂s
B12 (s) = B22 (s)uy,

∂

∂s
B22 (s) = 0(18)

for s ∈ [0,∞[. Together with the initial condition B (0) = I, the above set of equations
(18) results in analytical expressions for the components of the Finger tensor, in detail

B22 (s) = 1, B12 (s) = suy, B11 = s2u2y + 1 ∀s ∈ [0,∞[(19)

Inserting Eq. (19) into the single-mode stress integral for UCM (c.f. [1]) yields

σ =

∫ ∞
0

ηp
Λ2

exp
(
− s

Λ

)
(B (s)− I) ds

=

∫ ∞
0

ηp
Λ2

exp
(
− s

Λ

)(s2u2y suy
suy 0

)
ds

=

[
2

∫ ∞
0

ηp
Λ2

exp
(
− s

Λ

)(
s s2uy
0 s

)
ds

] [
1

2

(
0 uy
uy 0

)]
= 2ηp

(
1 2Λuy
0 1

)
D (u) = µ ·D (u)(20)

Thus, the same stress decomposition is obtained as derived from the differential model
in Eq. (16), (17). This observation is not really surprising, since the very same model is
considered. But nevertheless, a stress decomposition according to σ = µ ·D (u) can be
derived for differential as well as integral viscoelastic models, which is a more important
issue to record here.

3.1.1. Shear flow for UCM. For evaluating the “Tensor Diffusion” approach in terms of
numerical simulations, in a first step, an even simpler flow configuration than the Poiseuille
flow depicted in Fig. 1 is considered. Such a configuration is obtained by a so-called shear
flow, where the velocity on the upper wall of the channel points in positive and on the
lower wall in negative x-direction (c.f. Fig. 2).



8 THE “TENSOR DIFFUSION” APPROACH FOR SIMULATING VISCOELASTIC FLUIDS

u = (−U, 0)

Γ

u = (U, 0)

Γ

Figure 2. Configuration regarding shear flow

Furthermore, the resulting pressure drop in the channel vanishes and a linear velocity
profile is obtained for UCM. That means, based on Eq. (16), this flow configuration results
in a globally constant extra-stress as well as strain-rate tensor, consequently leading to a
globally constant “Tensor Diffusion”.

In the following, the velocity magnitude on the upper and lower wall of the channel is
set to U = 1.0, from which the components of the “Tensor Diffusion” µ can be calculated
from Eq. (17), since uy = U . Based on this “Tensor Diffusion”, two-dimensional Finite
Element simulations are performed for solving the pure “Tensor Stokes” problem (8). If
the “Tensor Diffusion” approach is defined properly, the analytical linear velocity profile
is recovered. Since the shear-flow configuration is quite simple, the complexity of the
problem is slightly increased by setting the modified velocity profile

ũ (y) = Uy
(
1 + γ

(
1− y2

))
on the left and right edge Γ of the channel. But at the same time, the analytical “Ten-
sor Diffusion” is prescribed globally, which is why the linear velocity profile should be
recovered in the middle of the channel.

(a) x-velocity from Eq. (8), Λ = 1.0

(b) x-velocity from Eq. (8), Λ = 5.0

Figure 3. x-velocity field for UCM, U = 1.0, γ = 1.0

For a moderate relaxation time Λ = 1.0, the resulting flow shows an appropriate be-
haviour. Especially, in the middle of the channel, the desired linear velocity profile is
obtained, since the contour lines depicted in Fig. 3(a) are equidistant. But when Λ is
increased, the flow breaks down (c.f. Fig. 3(b)) probably due to the prescribed viscosity
tensor, i.e. the “Tensor Diffusion” from Eq. (17), being unsymmetric.

When instead of the original “Tensor Stokes” problem (8), a symmetrized version

−1

2
∇ ·
(
µ ·D (u) + D (u) · µ>

)
+∇p = 0, ∇ · u = 0(21)
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in solved, the resulting flow behaves much better (c.f. Fig. 4).

Figure 4. x-velocity field for UCM from Eq. (21), Λ = 5.0, U = 1.0, γ = 1.0

Note, that the symmetrized “Tensor Stokes” operator also satisfies the stress- decompos-
tion (7) due to the symmetry of the extra-stress tensor, since

σ =
1

2

(
σ + σ>

)
=

1

2

(
µ ·D (u) + D (u) · µ>

)
(22)

Consequently, the symmetrized version (21) of the “Tensor Stokes” problem should be
solved in terms of further investigations.

3.1.2. Poiseuille-like flow for Giesekus model. As shown above, a tensor-valued “viscosity”
relating the extra-stress σ to the strain-rate tensor D (u) can be derived from at least
linear differential as well as integral constitutive equations and gives meaningful results for
the shear flow-configuration depicted in Fig. 2. In the following, the “Tensor Diffusion”
approach is analyzed for more complex configurations by applying a similar setting as
above in terms of nonlinear material models for Poiseuille-like flows.

In case of fully developed channel flows as depicted in Fig. 1, considering the Giesekus
model, i.e. Eq. (11c) and (4), leads to a one-dimensional system of equations for
uy, σ11, σ12, σ22 in a similar way as for UCM. However, since an additional quadratic
stress contribution is added in the constitutive equation, solving the resulting nonlinear
system analytically is non-trivial [22, 23]. Instead, the nonlinear system can be solved
numercially more or less straightforward on a one-dimensional grid. Thus, in each grid
point, the velocity and stress fields are calculated, based on which the four components
of the “Tensor Diffusion” µ are determined simply by solving Eq. (7) in each grid point.

The resulting flow profiles regarding u and σ are depicted in Fig. 5, where the shear-
thinning behaviour, typically predicted by the Giesekus model [1], can be observed in the
velocity profile in Fig. 5(a). In detail, the velocity shows a large gradient close to the
channel wall, but a plateau-like behaviour around the center line of the channel. The
flow profiles are compared for a channel height of y ∈ [−1, 1] against the results for UCM
from Eq. (15), (16), where the parameters are set such that the maximum velocity of the
parabolic profile takes a value of 1.
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Figure 5. Flow profiles for Giesekus model, Λ = 10.0, α = 0.1

Based on these velocity- and stress-profiles, the corresponding profiles of the “Tensor
Diffusion” µ are calculated by solving σ = µ ·D (u) for µ in each grid point, which gives
the profiles depicted in Fig. 6, where µ11 = µ22 similar to UCM in Eq. (17).
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Figure 6. “Tensor Diffusion” µ for Giesekus model, Λ = 10.0, α = 0.1

Consequently, at least for the one-dimensional problem derived from the Giesekus model,
a “Tensor Diffusion” can be determined, such that σ = µ ·D (u).

Additionally, the “Tensor Diffusion” depicted in Fig. 6 is applied in the symmetrized
“Tensor Stokes” problem (21), which is solved for a modified Poiseuille flow. In detail,
a parabolic velocity profile is set as in- and outflow-profile in terms of non-homogeneous
Dirichlet boundary conditions [24]. However, since the “Tensor Diffusion” µ from Fig.
6 corresponding to the fully developed nonlinear viscoelastic flow is prescribed on every
y-cutline, i.e. globally in the computational domain, the velocity profile depicted in Fig.
5(a) should be recovered away from the in- and outflow edges (c.f. Fig. 7), especially
showing the expected shear-thinning effect.
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(a) x-velocity from 2D
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Figure 7. Channel flow for Giesekus model, Λ = 10.0, α = 0.1

Thus, simply by solving a Stokes-like problem (21) including the newly introduced sym-
metrized “Tensor Diffusion”, the viscoelastic flow corresponding to the nonlinear differen-
tial material model is computed.

3.1.3. Poiseuille-like flow for PSM. As a next step, nonlinear integral viscoelastic models
are considered. When applying the findings based on the properties (14) to the PSM
model, where the “damping function” in the stress integral (12) is chosen according to

φ1 =
1

1 + γ (I − 2)
, φ2 = 0(23)

the stress integral becomes

σ =
ηp
Λ2

∫ ∞
0

exp
(
− s

Λ

) 1

1 + γs2u2y

[(
s2u2y suy
suy 0

)
+ I

]
ds(24)

The first of the two summands in the integral (24) can be treated in principle accordingly
to UCM in Eq. (20), giving

σ =

{
2
ηp
Λ2

∫ ∞
0

exp
(
− s

Λ

) 1

1 + γs2u2y

(
s s2uy
0 s

)
ds

}
D (u) + ν(25)

where ν denotes a diagonal matrix. In detail, the corresponding non-zero entries consist
of the infinite integral over the single-mode memory function multiplied with the damping
function from Eq. (23) reading
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ν := ν11 = ν22 =
ηp
Λ2

∫ ∞
0

exp
(
− s

Λ

) 1

1 + γs2u2y
ds, ν12 = ν21 = 0(26)

Thus, a “generalized” stress decomposition compared to Eq. (7) of the form

σ = µ ·D (u) + ν(27)

is obtained, which gives

∇p = ∇ · σ =
1

2
∇ · (µ ·D (u) + D (u) · µ) +∇ · ν(28)

after being inserted into the symmetrized “Tensor Stokes” problem (21). Since ν from Eq.
(26) is in principle a function of uy (and thus y itself), the additional quantity ∇·ν in Eq.
(28) can be considered as ∇ν. Consequently – even for a stress-decomposition of the type
(25) – by introducing the modified pressure P = p − ν, again a (symmetrized) version
of the “Tensor Stokes” problem can be derived similar to Eq. (21), but now replacing
the original pressure p by the modified pressure P . Thus, the “isotropic” part ν of the
stress-decomposition (25) does not affect the velocity field, but the pressure-solution only.

In contrast to the nonlinear differential Giesekus model, where the components of the
“Tensor Diffusion” are derived numerically, in case of PSM all components of µ as well as
ν can be explicitely written as functions of uy. Consequently, for fully developed channel
flows, the full integral viscoelastic model – including the complex rheology arising from
the stress-integral over a time-interval of infinite length – is transformed into a generalized
Stokes-like problem

−1

2
∇ ·
(
µ (uy) ·D (u) + D (u) · µ (uy)

>
)

+∇p = 0, ∇ · u = 0(29)

consisting of a tensor-valued viscosity µ, where the corresponding entries are calculated
based on uy according to

µ11 = µ22 = 2
ηp
Λ2

∫ ∞
0

exp
(
− s

Λ

) s

1 + γs2u2y
ds(30a)

µ12 = 2
ηp
Λ2

∫ ∞
0

exp
(
− s

Λ

) s2uy
1 + γs2u2y

ds(30b)

µ21 = 0(30c)

Note, that only (u, p) represent the remaining unknowns for simulating a nonlinear vis-
coelastic channel flow problem originally described by the PSM model. Obviously, inte-
grals over infinite time still have to be computed due to Eq. (30), since the components of
µ are hardly given in closed form. But at least, the stress- or Finger-tensor is completely
taken out of the system.

When the generalized “Tensor Stokes” problem (29) is solved again for a parabolic in-
and outflow profile, where the “Tensor Diffusion” is defined according to Eq. (30) for an
arbitrary choice of the material parameter γ = 0.1, similar to the Giesekus model depicted
in Fig. 7, again a typical shear-thinning behaviour is observed (c.f. Fig. 8).
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(a) x-velocity from 2D
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Figure 8. Channel flow for PSM, Λ = 1.0, γ = 0.1

The corresponding profiles of the “Tensor Diffusion” µ are depicted in Fig. 9, where µ21 =
0 in contrast to the Giesekus model (c.f. Fig. 6(c)). However, a non-vanishing behaviour
of this “Tensor Diffusion” component is established, when the isotropic contribution ν
from Eq. (27) is taken into account.
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Figure 9. “Tensor Diffusion” µ for PSM, Λ = 1.0, γ = 0.1

3.1.4. Poiseuille-like flow for Wagner model. However, the main drawback of the “Tensor
Diffusion” approach in the context of PSM is the need to perform “infinite” integration for
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computing the components of µ, which is why the numerical effort is quite high – although
the original integral model is reduced to a problem in (u, p) only. There would be a huge
improvement in the “Tensor Diffusion” approach regarding fully developed channel flows,
if µ could be modelled in terms of uy in closed form.

Fortunately, this is the case for the Wagner model, where the damping function in the
stress integral (12) is chosen as

φ1 = f exp
(
−n1

√
I − 2

)
+ (1− f) exp

(
−n2

√
I − 2

)
, φ2 = 0(31)

Similar to PSM in Eq. (24), the stress integral for fully developed channel flows in case
of the Wagner model results in

σ =

{
2
ηp
Λ2

∫ ∞
0

[
f exp

(
−s
(

1

Λ
+ n1

√
u2y

))
+ . . .

(1− f) exp

(
−s
(

1

Λ
+ n2

√
u2y

))](
s s2uy
0 s

)
ds

}
D (u)

+
ηp
Λ2

∫ ∞
0

f exp

(
−s
(

1

Λ
+ n1

√
u2y

))
+ . . .

(1− f) exp

(
−s
(

1

Λ
+ n2

√
u2y

))
Ids(32)

Consequently, a “generalized” stress decomposition similar to the PSM-case in Eq. (24)
is derived, but in contrast to PSM, the components of the “Tensor Diffusion” µ as well as
the isotropic contribution ν can be given in closed form. In detail,

µ11 = 2ηp

[
f(

1 + n1Λ
√
u2y
)2 +

1− f(
1 + n2Λ

√
u2y
)2
]

(33a)

µ12 = 4ηpΛuy

[
f(

1 + n1Λ
√
u2y
)3 +

1− f(
1 + n2Λ

√
u2y
)3
]

(33b)

ν =
ηp
Λ

[
f(

1 + n1Λ
√
u2y
) +

1− f(
1 + n2Λ

√
u2y
)](33c)

besides µ22 = µ11 and µ21 = 0. Hence, the symmetrized “Tensor Stokes” problem (29)
can be written as a nonlinear problem in the unknowns (u, p) only – without the need
of computing infinite integrals as in Eq. (30), since the corresponding expressions in Eq.
(32) for the Wagner model can be calculated exactly (c.f. Eq. (33)).

Note, that the prefactors of the components of the “Tensor Diffusion” given in Eq. (33)
coincide with the entries of µ obtained from UCM (c.f. Eq. (17)). Thus, the “Tensor
Diffusion” regarding nonlinear integral models possibly arises from UCM by a suitable
scaling with a fractional (or exponential) function, which might help to derive a closed
form of the µ-components in the case of PSM.

However, having the analytical form of the “Tensor Diffusion” µ for the Wagner model
given in Eq. (33), again, the “Tensor Stokes” problem (29) – now of the type resulting from
classical generalized Stokes equations involving a shear-rate dependent scalar viscosity (c.f.
[13]) – is solved for the modified Poiseuille flow, where the velocity on in- and outflow-
edges is again set to take a parabolic profile. However, since the “Tensor Diffusion”, i.e.
a tensor-valued viscosity, corresponding to a fully developed channel flow is prescribed
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globally, the flow should evolve to its fully developed nonlinear shape away from the in-
and outflow.

(a) x-velocity from 2D
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Figure 10. Channel flow for Wagner model, Λ = 1.0, f = 0.57, n1 =
0.31, n2 = 0.106

In principle, the flow profiles obtained from the Wagner model for the material parameters
given in [25] show a similar behaviour as in the PSM-case, i.e. again a shear-thinning
behaviour is observed for the velocity profile depicted in Fig. 10. But obviously, the
“Tensor Diffusion” µ is not differentiable in the center line of the channel (c.f. Fig. 11(a))
resulting from the denominator of the corresponding analytical expression in Eq. (33).
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Figure 11. Flow profiles for Wagner model, Λ = 1.0, f = 0.57, n1 =
0.31, n2 = 0.106

Consequently, also for nonlinear integral models, viscoelastic flow characteristics in fully
developed channel flows are reproduced by simply solving a generalized Stokes-like prob-
lem of the form (29) in the unknowns (u, p), where the complex rheology arising from
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the stress integral is completely hidden in the “Tensor Diffusion”. In case of the Wagner
model, it is even possible to explicitely model the “Tensor Diffusion” depending on the
“shear rate” uy, only.

Hence, for fully developed channel flows, the overall steady-state version of the integral
viscoelastic model consisting of (the stationary versions of) Eq. (1), (12), (13) can be
reduced to a generalized “Tensor Stokes” problem, with explicitely given “Tensor Diffusion”
µ depending only on the shear rate of the flow. Thus, as a main result of the above
investigations, especially for integral viscoelastic models, a stress-decomposition of the
form σ = µ ·D (u) can be given explicitely. Consequently, the “nonlinear” velocity and
pressure solution, originally resulting from the nonlinear differential or integral viscoelastic
model, can be computed by simply solving the symmetrized “Tensor Stokes” problem
(8) in (u, p) only and determining the corresponding extra-stress tensor σ by simple
postprocessing.

4. Complex flow configurations

So far, the proposed “Tensor Diffusion” approach is analyzed only in the context of fully
developed channel flows due to the corresponding simple flow properties, for which it is
possible, to derive and verify the validity of this novel approach. When more general two-
dimensional flow configurations shall be investigated in terms of the “Tensor Diffusion”
approach, an explicit derivation of the corresponding tensor-valued viscosity µ is not
(yet?) possible. Thus, this quantity might be determined numerically. A straightforward
implementation for determining the “Tensor Diffusion” is obtained by complementing the
original differential steady-state viscoelastic model by an additional algebraic equation
regarding µ, which results in

−2ηsD (u)−∇ · σ +∇p = 0(34a)
∇ · u = 0(34b)

(u · ∇)σ −∇u> · σ − σ · ∇u + f (Λ, ηp,σ) = 2
ηp
Λ
D (u)(34c)

µ ·D (u)− σ = 0(34d)

Note, that in principle, the integral viscoelastic model can be treated in the same way.
However, in Eq. (34), the solution regarding (u, p,σ) is not affected by the “Tensor

Diffusion” µ, which is computed in pure post-processing fashion, only. That changes,
when similar to Eq. (8), the stress decomposition (7) is inserted into the momentum
equation (34a) leading to

−2ηsD (u)− 1

2
∇ ·
(
µ ·D (u) + D (u) · µ>

)
+∇p = 0(35a)

∇ · u = 0(35b)

(u · ∇)σ −∇u> · σ − σ · ∇u + f (Λ, ηp,σ) = 2
ηp
Λ
D (u)(35c)

µ ·D (u)− σ = 0(35d)

Now, in this four-field formulation (35) of the “Tensor Stokes” problem, the solution
regarding velocity, pressure and stress is coupled with the “Tensor Diffusion” µ. In prin-
ciple, this problem formulation is similar to the “Discrete Elastic Viscous Stress Splitting”
(DEVSS, [26, 27, 28]), since the problem size is increased accordingly by introducing an
additional variable in terms of a diffusive contribution. But in contrast to DEVSS, diffu-
sion is introduced here in a much more natural way corresponding to the characteristic of
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the actual flow, since it is linked in a meaningful way to the stress tensor itself – instead
of a Newtonian-like quantity introduced in DEVSS.

In the following, the four-field formulation of the “Tensor Stokes” problem presented
in Eq. (35) is analyzed regarding more complex configurations than the channel flows
discussed in Sec. 3. Therefore, the “Tensor Diffusion” µ is discretized within the Finite
Element framework presented in [5] by seeking corresponding approximations in

Mh =
{
mh ∈

(
L2 (Ωh)

)4 |mh|T ∈ (Q0 (T ))4 ∀T ∈ Th
}

Q0

(
T̂
)

=
{
q ◦ Φ−1

T̂
| q ∈ 〈1〉

}
where Q0 defines the space of constant functions on the reference element T̂ . Similar to
the numerical treatment of the differential viscoelastic model discussed in [5], also the
extended discrete nonlinear systems resulting from Eq. (34) or (35), are solved by means
of a monolithic Newton-Multigrid-scheme.

However, to evaluate the principle applicability of the “Tensor Diffusion” approach in
the context of general two-dimensional flow configurations, the well-known “Flow around
cylinder” benchmark [5, 29, 4] is simulated by means of the four-field formulation of
differential viscoelastic models including the “Tensor Diffusion” µ, both for the original
model (34) as well as the “Tensor Stokes” problem (35).

Γsym

Γc

Γsym

Γout

Γno-slip

Γin

Figure 12. Configuration for “Flow around cylinder” benchmark

The corresponding flow configuration is depicted in Fig. 12, where the considered com-
putational domain is of length L = 40 and height H = 2 with a confined cylinder of
radius R = 1. On Γin and Γout, a fully developed velocity profile giving a mean velocity
of Umean = 1.0 is prescribed, where the corresponding parabolic profile reads

u =

(
u
v

)
=

(
u (y)

0

)
=

(
3
2

(
1− y2

4

)
0

)
Accordingly, the resulting stress profiles are prescribed on Γin. On the remaining bound-
aries, u ≡ 0 is set on Γno-slip and Γc, while the extra-stress is treated according to the
(natural) “Do Nothing” boundary condition [24], which is furthermore applied to u as well
as σ on Γsym.

As usual, the drag coefficients CD (T), which are computed based on the total stress
tensor T according to

CD (T) =
2

U2
meanR

FD (T) , FD (T) =

∫
Ec

(T11n1 + Txyn2)
∂ϕ

∂x
dx(36)

are analyzed for evaluating the quality of the simulation results. Here, Ec denotes ele-
ments next to the cylinder surface Γc, n1, n2 denote the components of the corresponding
local normal vector and ϕ represents a test function with support on Γc. Since in fact two
problem formulations are considered, the total stress tensor for computing the drag coef-
ficient from Eq. (36) is problem-dependent. In the following, Tσ denotes the total stress
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tensor arising from the “original” viscoelastic model (34) and Tµ the one corresponding
to the (symmetrized) “Tensor Stokes” problem (35). Thus

Tσ = −pI + 2ηsD (u) + σ,

Tµ = −pI + 2ηsD (u) +
1

2

(
µ ·D (u) + D (u) · µ>

)
where in principle σ is replaced by the symmetrized stress-decomposition to obtain Tµ

from Tσ.
In the following, the drag coefficients for several Weissenberg numbers We = ΛUmean/R =

Λ calculated via Tµ are compared to reference results as well as results based on Tσ, i.e.
resulting from the original approach validated in [5].

In a first step, the typical benchmark configuration regarding the Oldroyd-B model is
considered, i.e. Eq. (34) and (35) together with Eq. (3) are solved for a total viscosity of
η0 = ηs+ηp = 1.0 and an amount β = ηs/η0 = 0.59 of solvent contribution. The statistics
regarding the coarse mesh used for the presented simulation results are listed in Tab. 1.

level 0 1 2 3 4 5
elements 8 32 128 512 2048 8192
nodes 18 51 165 585 2193 8481
edges 25 82 292 1096 4240 16672

Table 1. Coarse grid for “Flow around cylinder” benchmark

A summary of the drag coefficients resulting from the above configuration is given in Tab.
2, which illustrates, that the drag coefficients obtained from the four-field formulation
(35) of the “Tensor Stokes” problem show a good agreement to the results computed by
means of the original method as well as the reference results [4].

We CD (Tσ) CD (Tµ) Ref. [4]
0.1 130.342 130.348 130.36
0.2 126.605 126.624 126.62
0.3 123.172 123.212 123.19
0.4 120.553 120.549 120.59
0.5 118.747 118.751 118.83
0.6 117.694 117.970 117.78
0.7 117.214 117.545 117.32

Table 2. Drag coefficients resulting from Oldroyd-B model at level 5

The same can be observed, when the Giesekus model with a mobility factor of α = 0.1
in Eq. (4) is considered instead of the Oldroyd-B model. The resulting drag coefficients
are listed in Tab. 3, where compared to Oldroyd-B, higher Weissenberg numbers can
be reached, probably due to the stabilizing character of the quadratic stress term in the
constitutive equation [6].
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We CD (Tσ) CD (Tµ) Ref. [29]
0.1 125.567 125.572 125.58
0.5 103.717 103.733 103.73
1.0 95.536 95.568 95.55
5.0 85.210 85.243 –
10.0 83.047 83.068 –

Table 3. Drag coefficients resulting from Giesekus model, α = 0.1, at level 5

Apparently, reference results for the Giesekus model are available only up to We = 1.0,
which is why the “Tensor Stokes” results for higher Weissenberg numbers are evaluated by
a comparison with the original approach only. But similar to the results obtained for the
Oldroyd-B model, also in case of the Giesekus model, a good agreement of the “Tensor
Stokes” results with the reference as well as the original approach is observed.

The more challenging configuration, compared to the benchmark setting discussed
above, is represented by considering the “no solvent” case for the “Flow around cylin-
der” configuration, where ηs = 0. Unfortunately, no reference results are available for this
flow configuration, which is why – similar to the Giesekus model for higher We – the “Ten-
sor Stokes” results are again compared only against the results of the original approach.
For successfully performing simulations of the “Tensor Stokes” problem for setting ηs = 0
in the momentum equation (35a), a quite large amount of stabilization is required due to
the difficulties in the context of the “no solvent” case outlined in Sec. 2.

We α CD (Tσ) CD (Tµ)

0.1 0.0 127.373 127.403
0.5 0.0 96.046 98.054
0.1 0.1 115.377 115.508
0.5 0.1 60.804 61.992

Table 4. Drag coefficients resulting from UCM (α = 0.0) or Giesekus
model at level 5

However, when analyzing the calculated drag coefficients given in Tab. 4, again the
“Tensor Stokes” results show a good agreement to the results of the original problem
– especially for lower We for both, the UCM as well as Giesekus model. When larger
Weissenberg numbers are considered, the deviation of the “Tensor Stokes” results becomes
larger, since a quite large amount of stabilization has to be applied for being able to
compute the corresponding solutions. Besides, for the Giesekus model it was not possible
to reach significantly larger Weissenberg numbers as in the case of UCM, like it was done
for a present solvent contribution above, which again illustrates the complexity of this
flow configuration. But still, the “Tensor Diffusion” approach provides reasonable results.

Additionally recall, that µ is approximated in Q0 only, which is of lower order than the
corresponding approximation of σ in Q2. Naturally, results obtained from the original
problem (34) are expected to be of higher accuracy anyway. But nevertheless, applying
the “Tensor Diffusion” approach gives simulation results of a similar quality as the original
approach. Consequently, the novel “Tensor Diffusion” approach provides reasonable results
for the “Flow around cylinder” benchmark – even for very challenging configurations like
the “no solvent” case – indicating the principle applicability of this technique also in case
of complex flow configurations.
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5. Conclusion

In this work, the novel “Tensor Diffusion” approach is introduced, where in principle
the extra-stress tensor in the momentum equation of the viscoelastic model is replaced
by a product of the so-called “Tensor Diffusion” and the strain-rate tensor.

The underlying assumption, that such a stress decomposition exists in general, is ver-
ified in a first step for fully developed channel flows. In this context, the validity of
the approach is analyzed by reproducing solutions originally arising from differential or
integral (non)linear viscoelastic flow models. Additionally, for these simple flow configu-
rations, the “Tensor Diffusion” can be given (semi-)analytically, offering the possibility to
reduce the full viscoelastic model to a generalized “Tensor Stokes” problem, i.e. a general-
ized Stokes-like problem including a tensor-valued viscosity. Consequently, the nonlinear
viscoelastic solution might be simply computed from a Stokes-like problem, where the
velocity and pressure fields are the only unknowns and the corresponding extra-stress
tensor is computed in simple postprocessing.

Furthermore, the principle applicability of the “Tensor Diffusion” approach in terms of
general two-dimensional flow configurations is evaluated in the context of the “Flow around
cylinder” benchmark. For the typical benchmark configuration, including a present solvent
contribution, as well as the much more challenging “no solvent” case, the drag coefficients
resulting from the original viscoelastic model as well as reference results – if available – are
reproduced quite well for both, the Upper-Convected Maxwell and the Giesekus model.

However, in contrast to the simple fully developed channel flows, for general two-
dimensional flow configurations, the “Tensor Diffusion” needs to be calculated numeri-
cally. Therefore, currently an algebraic equation is considered. Naturally, a further study
on determining the “Tensor Diffusion” should be performed, e.g. by means of a partial
differential equation arising from inserting the stress decomposition into the (differential)
constitutive equation regarding the extra-stress tensor. Additionally, it should be inves-
tigated, whether the numerical solver – especially the linear solver within the Newton
scheme – can be improved by applying multigrid. This is of intensified interest in the “no
solvent” case, since in the original approach the linear systems for this case are solved via
direct linear solvers.

But nevertheless, the main goal of future work regarding general two-dimensional con-
figurations is to establish the novel “Tensor Diffusion” approach in the same way as pro-
posed for fully developed channel flows. In detail, the corresponding flow model shall be
reduced to a pure “Tensor Stokes” problem, that means to a Stokes-like problem involving
a tensor-valued viscosity only depending on the shear-rate of the flow. Thus, viscoelastic
material behaviour should be predicted without the need to consider a (differential or
integral) constitutive equation or even a stress variable at all.
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