
Efficient Multilevel Solvers and High Performance
Computing Techniques for the Finite Element
Simulation of Large-Scale Elasticity Problems

Hilmar Wobker1

1Institute of Applied Mathematics and Numerics, TU Dortmund, Germany
email: hilmar.wobker@math.tu-dortmund.de

January 15, 2010

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Introduction/Motivation

Efficiency of iterative linear solvers influenced by

material parameters,

nonlinear effects,

the shape of the geometry,

the size and the quality of the underlying computational mesh,

algorithmic parameters, and

the number of processors in a parallel computing system.

Introduction/Motivation

Three aspects of efficiency:

numerical efficiency: amount of work to achieve a desired goal;
convergence rate and robustness

processor efficiency: ability to exploit the full capacity of modern
hardware

parallel efficiency: communication vs. computation, scalability

Hardware-oriented numerics:
achieve good efficiency in all three aspects

→ difficult to realise due to conflicting demands

→ our attempt: FEAST

Introduction/Motivation

On the one hand:

hardware-oriented library is tedious to develop and to maintain
(multi-core architectures, vector processors, Cache-sizes,
co-processors (GPUs, Cell), latency/speed of interconnects, compiler
issues, ...)

mandatory for high efficiency: a priori known data layout, especially
of FE matrices

On the other hand:

different physical applications ⇒ different matrix structures
(heat transfer, elasticity, Navier-Stokes, Fluid-Solid-Interaction,
2D / 3D, etc.)

‘application programmers’ don’t want to be bothered with technical
details

Introduction/Motivation

Remedy: Realise multivariate operations (operators) as a
series (set) of scalar operations (operators)

Advantages:

facilitates strict separation of low-level kernel/library functionalities
and high-level application code

‘kernel programmers’ can concentrate on the scalar equation case,
do not have to heed all the physical applications

‘application programmers’ can concentrate on the application, do
not have to heed processor architectures, MPI communication,
matrix fill-in patterns, ...

efficiency of the scalar kernel routines automatically available for
multivariate problems

kernel enhancements (new finite element, GPU solvers, ...) usable
without any changes of the application code

→ prototypically demonstrated with FEASTsolid

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

FEAST’s Meshing Concept

Memory wall problem:
‘data moving � data processing’

improvement of hardware characteristics per year (1990–2004):

processor peak performance: 60 %
memory bandwidth: 30 %
memory latency: 5.5 %

1992: 1 memory access ≈ 1 FLOP
2004: 1 memory access ≈ 100 FLOPs

‘memory gap’ is still broadening

unstructured meshes ⇒ indirect adressing
⇒ expensive memory access

plus: low arithmetic intensity (sparse matrices)
⇒ poor processor efficiency (low MFLOP/s rates)

FEAST’s Meshing Concept

Remedy: use structured data with
high spatial and temporal locality

FEAST uses generalised tensor product meshes

rowwise numbering
⇒ exactly 9 matrix bands for bilinear elements

direct adressing, caching

optimised Linear Algebra routines (SparseBandedBLAS)

FEAST’s Meshing Concept

more complex (unstructured) domains by joining
several (structured) TP meshes

local matrices + appropriate border data exchanges
⇒ ‘virtual’ global matrix

Here:

64 TP meshes (=64 local matrices), each refined 10x

distributed over 16 processors

⇒ 1.34 · 108 degrees of freedom in total

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

FEAST’s Adaptivity Concept

Patch-wise
Hanging Nodes: Mesh Deformation:

TP property fulfilled!

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Parallel vs. Numerical Efficiency

improvement of hardware characteristics per year (1990–2004):

processor peak performance: 60 %
network technology (latency, bandwidth): 30 %

physical constraint: speed of light

2004: 1 inter-processor communication ≈ 4000 FLOPs
2020: 1 inter-processor communication ≈ 670 000 FLOPs

number of processors in high-end super computers:
2004: ≈ 4000
2010: > 100 000

similar to the ‘memory wall’ problem

⇒ parallel efficiency determined by amount of data exchange

data locality required for
parallel efficiency

Parallel vs. Numerical Efficiency

On the other hand:

elliptic problems: solution in a point is influenced by all boundary
values

information has to ‘travel’ at least once through the whole grid

fast global data exchange necessary for good iterative convergence
rates

global information required for
numerical efficiency

conflicting demands: data locality vs. fast global data exchange

parallel and numerical efficiency hard to combine

Parallel vs. Numerical Efficiency

Requirements of parallel solution methods:

low inter-processor communication

high processor loads

good scalability

good convergence behaviour

robustness with respect to complicated geometries, mesh refinement
level, mesh irregularities, and number/size of subdomains

Suitable solver concepts for elliptic problems:

multigrid methods (MG)

domain decomposition methods (DD)

Multigrid

use a hierarchy of nested grids to solve Ax = b

basic components:

smoothing (level l): x(l) ← x(l) + ωS(l)(b(l) − A(l)x(l))
grid transfer: restriction (l → l − 1), prolongation (l − 1→ l)
coarse grid solving: x(1) = (A(1))−1b(1)

exploiting smoothing property of elementary methods like Jacobi or
Gauß-Seidel

convergence behaviour independent of the refinement level

runtime O(#DOF)

Multigrid

Possibilities to traverse the grid hierarchy:

V-, F- and W-cycle

arithmetic costs vs. convergence speed / robustness

Block-smoothed Multigrid

smoothing operation highly recursive (Gauß-Seidel, ILU)

bad parallelisation potential

remedy: relax the smoothing operation by applying it block-wise
(additively, block-Jacobi)

use minimal overlap (next slide)

number of vertices n, number of subdomains M:
M → 1: standard multigrid with selected smoother
M → n: standard multigrid with Jacobi smoother

Minimal Overlap

Switching between global layer and local layer:
global set of vertices on level l : V(l)

set of vertices of i-th subdomain: V(l)
i

local index of vertex k in subdomain i : loc
(l)
i (k)

prolongation matrix P
(l)
i :

(x(l))k = (P
(l)
i x

(l)
i)k :=

{
(x

(l)
i)

loc
(l)
i (k)

k ∈ V(l)
i

0 k ∈ V(l)\V(l)
i

restriction matrix: R
(l)
i := (P

(l)
i)

T

local matrix: A
(l)
i := R

(l)
i A(l)P

(l)
i

interpretation: ‘ghost cells’, extended Dirichlet boundaries

Domain Decomposition

classical ‘divide & conquer’ strategy:
replace the solution of one large system (global layer) by the solution
of several small systems (local layer)

interpret DD as preconditioner Ã:

x← x + ωÃ(b− Ax)

global coupling typically via Krylov space method

two classes:

non-overlapping methods (substructuring / Schur complement),
extra interface problem
overlapping Schwarz methods

Overlapping Schwarz Methods

one-level Schwarz method: dependence on number of subdomains,
size of the overlap

add coarse grid problem: two-level Schwarz method

generalisation: multilevel Schwarz methods (MLDD)

MLDD methods can be
purely additive (additive within one level / additive between levels)
purely multiplicative (multiplicative/multiplicative)
hybrid (additive/multiplicative or multiplicative/additive)

FEAST uses a hybrid MLDD method with minimal overlap that is
additive within one level
multiplicative between levels

FEAST’s Solution Method

one iteration (multiplicative part between levels):

x(L) ← x(L) + Ã(L)(b(L) − A(L)x(L))

l = L− 1, . . . , 2 :

b(l) ← R(l)(b(l+1) − A(l+1)x(l+1)), x(l) ← Ã(l)b(l)

l = 1 :

b(1) ← R(2)(b(2) − A(2)x(2)), x(1) ←
(
A(1)

)−1
b(1)

l = 2, . . . , L :

x(l) ← x(l) + P(l)x(l−1), x(l) ← x(l) + Ã(l)(b(l) − A(l)x(l))

connection between global and local layer (additive part within one
level):

Ã(l) :=
∑̃M

i=1
P

(l)
i Ã

(l)
i R

(l)
i .

local preconditioner Ã
(l)
i for the local matrix A

(l)
i (slide after next)

FEAST’s Solution Method

Why minimal overlap?

sufficient for robust convergence behaviour of multilevel DD
→ numerical efficiency

local submeshes preserve tensor product property
→ processor efficiency

minimal amount of data exchange between subdomains
→ parallel efficiency

implementation and data structures greatly simplified

The Local Preconditioner

two strategies to realise the local preconditioner Ã
(l)
i :

1 apply one step of an elementary iterative scheme
(Jacobi, Gauß-Seidel, ...)

2 apply some iterative or direct solution method to (approximately)
solve the local system

first strategy: MLDD coincides with block-smoothed MG

(Ã
(l)
i being the local smoother)

⇒ MLDD generalisation of MG

The Local Preconditioner

First strategy:

Notation of the local 9-band matrix (omitting superscript l):

Ai = (LL
i + LC

i + LU
i) + (CL

i + CC
i + CU

i) + (UL
i + UC

i + UU
i)

some local smoothers:

ÃJacobi
i := (CC

i)−1

ÃGS
i := (LL

i + LC
i + LU

i + CL
i + CC

i)−1

ÃTriGS
i := (LL

i + LC
i + LU

i + CL
i + CC

i + CU
i)−1

ÃMTriGS
i : ÃTriGS

i applied to column-wise numbered grid

ÃADiTriGS
i : alternating application of ÃTriGS

i and ÃMTriGS
i

The Local Preconditioner

Second strategy:

solve local systems Aixi = bi (approximately) via

direct solver if the system is not too large (#DOF< 20 000)
multigrid method, otherwise

local MG uses the same smoothers as block-smoothed (global) MG
(see previous slide)

‘automatically toggle’ between MG and direct solver via truncated
multigrid method

typical local problem size: #DOF≈ 106

⇒ local multigrid mandatory

Using local multigrid within global MLDD is
one of the core ideas of FEAST’s solution

method!

The Local Preconditioner

Comparison of the two strategies (black dot = favoured strategy):

storage requirements 1 ◦ • ◦ ◦ 2
flexibility 1 ◦ ◦ • ◦ 2
‘black box’character 1 ◦ • ◦ ◦ 2
arithmetic costs 1 • ◦ ◦ ◦ 2
communication vs. computation 1 ◦ ◦ ◦ • 2
influence on global iteration 1 ◦ ◦ ◦ • 2
load balancing 1 • ◦ ◦ ◦ 2
using co-processors 1 ◦ ◦ ◦ • 2

The ScaRC Concept

Basic idea of FEAST’s solver concept ScaRC
(Scalable Recursive Clustering):

allow both strategies at the same time

choose local solver components adaptively according to the ‘local
situation’

Advantages of ScaRC:

convergence rates independent of refinement level

convergence rates independent of number of subdomains (in case of
only mild macro anisotropies)

‘simple’ local solvers/smoothers on ‘simple’ subdomains, ‘strong’
ones on ‘difficult’ subdomains

good balance of computational costs and convergence behaviour

hide local irregularities from the global solver

minimise number of global iterations and amount of communication

high processor loads due to local tensor product grids

The ScaRC Concept

Disadvantages of ScaRC:

convergence rates dependent on number of subdomains in case of
stronger macro anisotropies (block-Jacobi character)

can be alleviated by enhancing the global multilevel solver with
Krylov space methods
further idea: ‘Recursive Clustering’ (3-layer-ScaRC, merging
subdomains)

bad ratio computation/communication on coarser grid levels
(inherent to multilevel approaches!)

difficult to realise: ‘automatic adaptation system’ for local solver
components

even more difficult: dynamic load balancing

local multigrid solvers are nonconforming (next slides)

Notations

first strategy: 1-layer-ScaRC
(multigrid scheme only on global layer)

second strategy: 2-layer-ScaRC
(multigrid schemes on global and local layer)

short notation

1-layer-ScaRC:
MG JAC D

MG(1e-6,V44,0.7) JAC D

2-layer-ScaRC:
MG MG-ADI-D D

MG(1e-6,F22,0.7) MG(1e-1,V22)-ADI-D D

‘ ’: layer change
‘D’: direct coarse grid solver
‘1e-6’: relative stopping criterion (‘gain 6 digits’)
‘V22’: cycle type and pre-/postsmoothing steps
‘0.7’: damping parameter

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Nonconforming Local MG

minimal overlap ⇒ extended Dirichlet boundaries

local domain size increases with coarser grid levels

nonnested local grids ⇒ nonconforming local multigrid method

coarse grid correction not optimal

(massive) convergence problems of standard multigrid schemes

loss of level independency

Adaptive Coarse Grid Correction

Remedy:

adaptively damp the suboptimal coarse grid correction:

x(l) ← x(l) + αP(l)x(l−1)

(subscripts for local subdomains omitted)

minimise error in energy norm:

(x(l) − x∗)
T

A(l)(x(l) − x∗)

(x∗ exact solution)

for symmetric A(l):

α =
c(l)T

d(l)

c(l)T
A(l)d(l)

(c(l) := P(l)x(l−1) prolongated coarse grid correction,
d(l) := b(l) − A(l)x(l) current defect)

Adaptive Coarse Grid Correction

Advantages:

established technique

easy to implement

relatively low computational costs (one matrix vector multiplication,
two scalar products)

damping parameter computed per subdomain:

α� 1 for subdomains that suffer strongly from ext. Dirichl. bound.
α ≈ 1 otherwise

⇒ overall solution process not unnecessarily impaired in general

Heuristic used in FEAST before ACGC:

prolongated values corresponding to subdomain boundary nodes
were not fully added (divided by number of incident subdomains)

equally affects all local solves

fails in some cases

ACGC - Numerical Examples

(outer) geometric boundary conditions:
Neumann (‘N’), Dirichlet (‘D’)

(inner) extended Dirichlet boundaries (‘E’)

only consider local solve on top right subdomain (center figure)

reference computation with standard Dirichlet instead of
extended Dirichlet boundary conditions (right figure)

solve standard Poisson problem −∆u = 1

local solver 1e-6,MG([V|F]22,0.7)-JAC-D

ACGC - Numerical Examples

isotropic subdomain, Jacobi smoother

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

7/8 6/8 5/8 4/8 3/8 2/8 1/8

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

min./max. level

ref
standard
heuristic

ACGC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

7/8 6/8 5/8 4/8 3/8 2/8 1/8
co

nv
. r

at
e

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

min./max. level

ref
standard
heuristic

ACGC

V-cycle (left) and F-cycle (right)

ACGC - Numerical Examples

anisotropic example

consider top right subdomain again

local solver MG(1e-6,[V|F]22,0.6)-JAC-D

ACGC - Numerical Examples

anisotropic subdomain, Jacobi smoother

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

7/8 6/8 5/8 4/8 3/8 2/8 1/8

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

min./max. level

ref
standard
heuristic

ACGC

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

7/8 6/8 5/8 4/8 3/8 2/8 1/8

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

min./max. level

ref
standard
heuristic

ACGC

V-cycle (left) and F-cycle (right)

Summary for W-cycle:
W-cycle with heuristic: converges in most, but not in all cases
⇒ not reliable
standard W-cycle: always converges, but strange oscillations
depending on number of grid levels
W-cycle + ACGC: always converges, no oscillations

ACGC - Numerical Examples

now: use ADiTriGS instead of Jacobi as local smoother

increase anisotropies

consider top right subdomain again

local solver MG(1e-6,[V|F]22,1.0)-ADI-D

solve standard Poisson problem −∆u = 1

ACGC - Numerical Examples

anisotropic subdomain, ADiTriGS smoother

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

7/8 6/8 5/8 4/8 3/8 2/8 1/8

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

level

ref
standard
heuristic

ACGC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

7/8 6/8 5/8 4/8 3/8 2/8 1/8

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

level

ref
standard
heuristic

ACGC

V-cycle (left) and F-cycle (right)

hence, standard/heuristic F-cycle reliable?

no! (next slide)

ACGC - Numerical Examples

anisotropic subdomain, ADiTriGS smoother, F-cycle

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

7/10 6/10 5/10 4/10 3/10 2/10 1/10

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

level

ref
standard
heuristic

ACGC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

7/9 6/9 5/9 4/9 3/9 2/9 1/9

co
nv

. r
at

e
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

level

ref
standard
heuristic

ACGC

isotr. operator −∆u (left), anisotr. operator −10∂xxu − ∂yyu (right)

Summary for W-cycle:

standard W-cycle and W-cycle with heuristic: always converge,
but strange oscillations depending on number of grid levels

W-cycle + ACGC: always converges, no oscillations

ACGC - Numerical Examples

Now: consider arithmetic costs of the global solver scheme

use total arithmetic efficiency:

TAE = − #FLOPs

#DOF×#iter× log10(c)

⇒ How many FLOPs are needed per DOF to gain one digit?

2-layer-ScaRC solver with Jacobi smoother:
MG(1e-6,V11) MG(1e-1,V22,0.7)-JAC-D D

2-layer-ScaRC solver with ADiTriGS smoother:
MG(1e-6,F22) MG(1e-1,V22)-ADI-D D

only vary maximum MG level, fix coarse grid level to 1

ACGC - Numerical Examples

2-layer-ScaRC with local Jacobi smoother, isotropic operator

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

6 7 8 9 10

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

level

V + ACGC
F + ACGC

W + ACGC
W

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

6 7 8 9 10
to

ta
l a

rit
hm

et
ic

 e
ffi

ci
en

cy
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--
level

V + ACGC
F + ACGC

W + ACGC
W

isotropic configuration (left), anisotropic configuration (right)

ACGC - Numerical Examples

2-layer-ScaRC with local ADiTriGS smoother, anisotropic configuration

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

6 7 8 9 10

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

level

V + ACGC
F + ACGC

W + ACGC
W

W + heuristic

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

6 7 8 9 10
to

ta
l a

rit
hm

et
ic

 e
ffi

ci
en

cy
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--
level

V + ACGC
F + ACGC

W + ACGC
W

W + heuristic

isotropic operator (left), anisotropic operator (right)

ACGC - Summary

Adaptive coarse grid correction:

method to alleviate the negative effects of the extended Dirichlet
boundary conditions (‘increasing subdomain size’)

easy to implement

low arithmetic costs

facilitates the use of V- and F-cycle multigrid

smoothes oscillatory convergence behaviour of W-cycle

often less expensive than standard W-cycle (GPUs!)

and: can also improve standard (conforming) multigrid methods

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

1-layer-ScaRC vs. 2-layer-ScaRC

Is 2-layer-ScaRC really superior to 1-layer-ScaRC?

use slightly anisotropic operator −∂xxu − 4∂yyu = 1

use multigrid-Krylov solvers:

1-layer-ScaRC: MG-FGMRES4 JAC D

2-layer-ScaRC: MG-FGMRES4 MG(T7)-BICG-JAC-D D

use more complex grids (see next slides):

crossover-iso: 64 subdomains, 16.8M DOF (level 9),
aspect ratio 2.91
crossover-aniso: aspect ratio 20.4
asmo: 70 subdomains, 18.4M DOF (level 9), aspect ratio 18.2

1-layer-ScaRC vs. 2-layer-ScaRC

crossover

1-layer-ScaRC vs. 2-layer-ScaRC

asmo

1-layer-ScaRC vs. 2-layer-ScaRC

crossover-iso (left), crossover-aniso (right), asmo (bottom)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

5 6 7 8 9

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

max. level

MG-FGMRES__JAC
MG-FGMRES__MG-BICG-JAC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

5 6 7 8 9

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

max. level

MG-FGMRES__JAC
MG-FGMRES__MG-BICG-JAC

 0

 5000

 10000

 15000

 20000

5 6 7 8 9

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

max. level

MG-FGMRES__JAC
MG-FGMRES__MG-BICG-JAC

1-layer-ScaRC vs. 2-layer-ScaRC

Number of global smoothing steps
(⇒ amount of communication)

MG-FGMRES4 MG-FGMRES4 MG

lev cr-i cr-a1 as-i cr-i cr-a1 as-i

5 88 352 776 32 32 48
6 96 464 1016 32 32 48
7 104 552 1296 32 32 48
8 112 624 1504 32 32 48
9 120 680 1688 32 32 56

2-layer-ScaRC successfully hides the local irregularities (anisotropies)
from the global solver

⇒ strongly favoured in a massively parallel computation

1-layer-ScaRC vs. 2-layer-ScaRC

But:

for ADiTriGS as local smoother, examples to show superiority of
2-layer-ScaRC not found yet

current favourite: 1-layer-ScaRC solver BiCG-MG ADI D

reason: for ADiTriGS, mesh anisotropies are not really irregularities
⇒ there is ‘nothing to hide’ within a 2-layer-ScaRC solver

future attempts: massively parallel computations, more complicated
physical equations, 3D

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Basic Relations of Elasticity

Elasticity:

continuum mechanical discipline about deformation of solid elastic
bodies

solid and deformable: forces change the body’s shape, but not its
continuous coherence

elastic: deformation process is reversible

assumptions:

material is homogeneous and isotropic
only small deformations (linearised elasticity)

Basic Relations of Elasticity

solid body Ω̄ ⊂ R3

boundary Γ := ∂Ω, Γ = ΓD ∪ ΓN

deformation mapping Φ : Ω̄→ R3 with det(∇Φ) > 0

displacements u(x) =
(
u1(x), u2(x), u3(x)

)T
of material point x ∈ Ω̄,

Φ = id + u

kinematic relation between displacements and strains:
linearised strain tensor ε = 1

2 (∇u +∇uT)

Basic Relations of Elasticity

Stress principle of Euler and Cauchy:
existence of a vector field t : Ω̄× S1 → R3 (Cauchy stress vector) with:

for arbitrary V ⊂ Ω̄ (g applied surface force):

t(x,n) = g(x), x ∈ ΓN ∩ ∂V

axiom of force balance (f applied body force):∫
V

f(x)dx +

∫
∂V

t(x,n)da = 0

axiom of balance of angular momenta:∫
V

x× f(x)dx +

∫
∂V

x× t(x,n)da = 0

Basic Relations of Elasticity

Cauchy’s theorem:
existence of a symmetric tensor field σ : Ω̄→M3 (Cauchy stress tensor)
that satisfies

t(x,n) = σ(x)n, x ∈ Ω̄,n ∈ S1,

the PDE
−div

(
σ(x)

)
= f(x), x ∈ Ω,

and the boundary conditions

σ(x)n = g(x), x ∈ ΓN.

Basic Relations of Elasticity

constitutive law: relation between strains and stresses

Hooke’s law for isotropic material:

σ = 2µε+ λ tr(ε)I

Lamé constants µ and λ

relation to Young’s modulus E and Poisson ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)

ν → 0.5 (λ→∞): compressibility of material decreases

Material E [N/m2] ν [-] µ [N/m2] λ [N/m2]

Steel/Iron 2.1 · 1011 0.29 8.14 · 1010 1.1 · 1011

Lead 1.6 · 1010 0.44 5.6 · 109 4.1 · 1010

Rubber 2.5 · 107 0.499–0.5 8.2 · 106 4.1 · 109

Basic Relations of Elasticity

resulting boundary value problem - the Lamé Equation:

−2µ div(ε)− λ∇ div(u) = f in Ω

u = ū on ΓD

σn = g on ΓN

bilinear form:

k(u, v) :=

∫
Ω

2µε(u) : ε(v) + λ div(u)div(v)dx

weak formulation: Find u− ū ∈ V :=
{

v ∈ H1(Ω)3
∣∣ v = 0 on ΓD

}
such that

k(u, v) =

∫
Ω

f · v dx +

∫
ΓN

g · v da, v ∈ V

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Operator Splitting

motivation: reduction to scalar components

rewrite left hand side of BVP (now 2D):

− 2µ div(ε)− λ∇ div(u)

=

(
(2µ+ λ)∂11 + µ∂22 (µ+ λ)∂12

(µ+ λ)∂21 µ∂11 + (2µ+ λ)∂22

)(
u1

u2

)
rewrite left hand side of weak form:

k(u, v) =

∫
Ω

(2µ+ λ)∂1u1∂1v1 + µ∂2u1∂2v1 dx

+ ... (mixed terms)

+

∫
Ω

µ∂1u2∂1v2 + (2µ+ λ)∂2u2∂2v2 dx

= ... (next slide)

Operator Splitting

rewrite left hand side of weak form:

k(u, v) =

∫
Ω

[(
2µ+λ 0

0 µ

)
∇u1

]
·∇v1 dx︸ ︷︷ ︸

=:k11(u1,v1)

+ k12(u2, v1)

+ k21(u1, v2) +

∫
Ω

[(µ 0
0 2µ+λ

)
∇u2

]
·∇v2 dx︸ ︷︷ ︸

=:k22(u2,v2)

FE discretisation (Q1) ⇒ block structured linear equation system:(
K11 K12

K21 K22

)(
u1

u2

)
=

(
f1

f2

)
(‘separate displacement ordering’; not used, e. g., in FEAP)

K11 and K22 correspond to scalar elliptic operators
(‘anisotropic Laplace operator’)

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Solution Concept

basic iteration - block preconditioned Richardson method:

uk+1 = uk + K̃−1(f −Kuk)

defect computation:

f −Kuk =

(
f1 −K11uk

1 −K12uk
2

f2 −K21uk
1 −K22uk

2

)
e. g., block Jacobi preconditioner:

K̃−1
BJac =

(
K−1

11 0

0 K−1
22

)

reduction to scalar components ⇒ exploit FEAST concepts!

note: each global matrix Kij is represented by
local 9-band matrices corresponding to TP subdomains

Solution Concept

condition number of the preconditioned system:

κ := κ(K̃−1
BJacK) 6

1

cK

(
1 +

1

1− 2ν

)
three observations:

1 κ does not depend on mesh size parameter h
⇒ single-grid outer solver (i. e., Krylov method) can be sufficient

2 κ depends on Korn’s constant cK = cK(Ω, ΓD)
⇒ convergence depends on boundary conditions / geometry (e. g.,
cantilever beam)
(Korn’s inequality: ∃ cK = cK(Ω, ΓD) > 0 : ‖ε(v)‖2

0 > cK‖v‖2
1, v ∈ V)

3 κ depends on Poisson ratio ν
⇒ condition of the system increases with incompressibility of the
material (ν → 0.5)

block Gauß-Seidel or block SOR instead of block Jacobi
⇒ no such estimate, but more efficient in most cases

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Selected Numerical Examples

dependence on mesh anisotropies

dependence on geometry

1-layer-ScaRC vs. 2-layer-ScaRC

parallel efficiency

Dependence on Mesh Anisotr.

4× 2 subdomains (left), 8× 4 subdomains (right)

Dependence on Mesh Anisotr.

BiCG-BJac (left), BiCG-BSor (right)

 0

 5

 10

 15

 20

4.3k 16.8k 66.3k 263.7k 1051.7k

bl

oc
k

pr
ec

on
d.

 c
al

ls
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

#DOF

 0

 5

 10

 15

 20

4.3k 16.8k 66.3k 263.7k 1051.7k

bl

oc
k

pr
ec

on
d.

 c
al

ls
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

#DOF

4x2 iso
4x2 aniso1
4x2 aniso2
4x2 aniso3

8x4 iso
8x4 aniso1
8x4 aniso2
8x4 aniso3

convergence independent of mesh refinement level
(outer single-grid Krylov solver!)

BSor roughly halves number of iterations compared to BJac

anisotropies are fully ‘absorbed’ by the scalar subsolves

Dependence on Geometry

typical cantilever beam configuration:
left side fixed, other sides free, vertical body force applied

increasing global anisotropy: L/H = 4, 16, 64

two meshings:
4/16/64 isotropic subdomains vs. 1 anisotropic subdomain

two solvers:

BiCG-BSor: outer single-grid Krylov solver
BiCG-MG-BSor: multigrid (applied to block system!) as
preconditioner for Krylov solver

Dependence on Geometry

4/16/64 iso subdomains (left), 1 aniso subdomain (right)

 0

 50

 100

 150

 200

 250

 300

2e+3 9e+3 3.4e+4 1.3e+5 5.3e+5

bl

oc
k

pr
ec

on
d.

 c
al

ls
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

#DOF

BiCG-BSor, aniso04
BiCG-BSor, aniso16
BiCG-BSor, aniso64

BiCG-MG-BSor, aniso04
BiCG-MG-BSor, aniso16
BiCG-MG-BSor, aniso64

 0

 50

 100

 150

 200

 250

 300

2e+3 9e+3 3.4e+4 1.3e+5 5.3e+5

bl

oc
k

pr
ec

on
d.

 c
al

ls
<

--
--

 s
m

al
le

r
is

 b
et

te
r

<
--

--

#DOF

BiCG-BSor, aniso04
BiCG-BSor, aniso16
BiCG-BSor, aniso64

BiCG-MG-BSor, aniso04
BiCG-MG-BSor, aniso16
BiCG-MG-BSor, aniso64

single-grid Krylov solver not sufficient: convergence (more or less)
independent of refinement level, but strongly dependent on global
anisotropy

additional multigrid greatly weakens this dependency
(at least in case of isotropic subdomains)

applying multigrid scheme only to scalar subsystems is not sufficient!

1-layer-ScaRC vs. 2-layer-ScaRC

two variants: iso (max. aspect ratio 2.2) and aniso (max. aspect
ratio 63.6) (only aniso shown)
compare three solvers:

using 1-layer-ScaRC:
BiCG-MG(1,V11)-BSor[MG(1e-1)-FGMRES4 JAC D]

using 2-layer-ScaRC:
BiCG-MG(1,V11)-BSor[MG(1e-1)-FGMRES4 MG-BICG-JAC-D D]

‘standard solver’: MG(F11)-BiCG(2)-Jac (using point Jacobi
smoother, disregarding the block structure)

1-layer-ScaRC vs. 2-layer-ScaRC

iso (left), aniso (right)

 1

 10

 100

 1000

526.3k 2101.3k 8396.8k

pr

ec
. c

al
ls

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

#DOF

1-layer
2-layer

BSorAS
standard

 1

 10

 100

 1000

526.3k 2101.3k 8396.8k

pr

ec
. c

al
ls

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

#DOF

>
>

>
>

>
>

convergence behaviour of 1-layer-ScaRC and 2-layer-ScaRC variants
(nearly) independent of the configuration

the standard solver suffers signficantly

2-layer-ScaRC always needs 1 iteration per call,
1-layer-ScaRC between 6 (iso) and 70 (aniso) iterations
⇒ communication amount of 2-layer-ScaRC variant much smaller!

1-layer-ScaRC vs. 2-layer-ScaRC

iso (left), aniso (right)

 1000

 10000

 100000

 1e+06

526.3k 2101.3k 8396.8k

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

#DOF

 1000

 10000

 100000

 1e+06

526.3k 2101.3k 8396.8k

to
ta

l a
rit

hm
et

ic
 e

ffi
ci

en
cy

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

#DOF

arithmetic costs of 2-layer-ScaRC very high on iso configuration

arithmetic costs of 1-layer-ScaRC and the standard solver increase
drastically on the aniso configuration ⇒ 2-layer-ScaRC superior

just ‘proof of concept’ ! (with ADiTriGS: TAE ≈ 1000)

Parallel Efficiency

weak scalability: increase problem size and resources by the same
factor

‘perfect weak scalability’: runtime remains constant

smallest problem: 4× 1 subdomains, 4.2 M vertices, 4 processors

largest problem: 16× 8 subdomains, 134.2 M vertices, 128 proc.

Parallel Efficiency

 0

 10

 20

 30

 40

 50

 60

 70

4p
8.4M

8p
16.8M

16p
33.6M

32p
67.1M

64p
134.3M

128p
268.5M

lin
ea

r
so

lv
in

g
tim

e
[s

ec
]

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

#proc, #DOF

BiCG-BSor
BiCG-MG-BSor

MG-BiCG-BSorAS

good weak scalability

comparable to scalar FEAST solvers

parallel efficiency of the scalar FEAST library fully transfers to
elasticity solvers

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Overview

1 Introduction/Motivation

2 Multilevel Solvers for Scalar Elliptic Equations
FEAST’s Meshing Concept
FEAST’s Adaptivity Concept
FEAST’s Solver Concept
Local Multigrid Solvers
1-layer-ScaRC vs. 2-layer-ScaRC

3 Multilevel Solvers for Compressible Elasticity Problems
Basic Relations of Elasticity
Operator Splitting
Solution Concept
Selected Numerical Examples

4 ML Saddle Point Solvers for Incompressible Elasticity Problems
Just a Brief Overview...

Incompressible Elast. Problems

rubber-like materials are (nearly) incompressible, important for many
industrial applications

basic problem: ν → 0.5⇒ λ→∞
pure displacement formulation: ‘volume locking’

significant deterioration of FE approximation and solver behaviour

remedy: mixed displacement-pressure u/p formulation

leads to Stokes-like saddle point problem Ax = b with

A :=

(
A B

BT C

)
, x :=

(
u
p

)
, b :=

(
f
0

)
C contains compressibility and, if necessary, stabilisation terms
(e. g., for Q1/Q1)

distinguish segregated (uncoupled) and coupled solution methods

Saddle Point Solvers

Segregated methods:

solve subsystems for u and p

Uzawa / pressure Schur complement methods:

pk+1 = pk + S̃−1(BTA−1f − (BTA−1B− C)pk),

S̃−1 preconditioner for Schur complement S := BTA−1B− C

block-triangular preconditioners:(
uk+1

pk+1

)
=

(
uk

pk

)
+

(
Ã 0

BT −S̃

)−1(
f − Auk − Bpk

0− BTuk − Cpk

)
,

essential for both variants:
a good Schur complement preconditioner

Saddle Point Solvers

Segregated methods (continued):

Schur complement preconditioning often involves solution of scalar
systems
⇒ scalar ScaRC solvers!

solve Ã-systems with techniques from compressible elasticity
⇒ scalar ScaRC solvers!

hence: also the solution of saddle point systems can essentially be
brought down to the solution of scalar systems

multigrid can be applied to the whole saddle point system
⇒ overall solver potentially contains four (!) nested MG schemes

beam configurations: three nested MG schemes can be beneficial in
terms of numerical efficiency (with corresponding bad parallel
efficiency)

Saddle Point Solvers

Coupled methods:

multigrid with Vanka smoothers

solve whole saddle point system at once, but reduction to small
subdomains (one element, patch of few elements)

combine local solutions in multiplicative fashion (block Gauß-Seidel)

mesh anisotropies need special treatment

no Schur complement preconditioner needed

no reduction to scalar subsystems, ScaRC solvers not applicable

In the context of my work:
segregated methods clearly superior to coupled

Vanka methods (up to 30x - 40x faster)

Thank you
for your attention!

	Introduction/Motivation
	Multilevel Solvers for Scalar Elliptic Equations
	FEAST's Meshing Concept
	FEAST's Adaptivity Concept
	FEAST's Solver Concept
	Local Multigrid Solvers
	1-layer-ScaRC vs. 2-layer-ScaRC

	Multilevel Solvers for Compressible Elasticity Problems
	Basic Relations of Elasticity
	Operator Splitting
	Solution Concept
	Selected Numerical Examples

	ML Saddle Point Solvers for Incompressible Elasticity Problems
	Just a Brief Overview...

