

High Performance Computing Techniques for the FEM Simulation in Solid Mechanics

Hilmar Wobker Stefan Turek

Institute of Applied Mathematics, Technische Universität Dortmund, 44227 Dortmund, Germany email: hilmar.wobker@math.uni-dortmund.de

Mini-Workshop: Theory and Numerics of Fluid-Solid Interaction Oberwolfach, November 26-30, 2007

Motivation 00 FEAST

Elasticity Problems

UNIVERSITÄT DORTMUND

Overview

Motivation

2 Concepts of FEAST

- Meshing Concept
- Adaptivity Concept
- Solution Concept

Treating Elasticity Problems with FEAST

4 Numerical Results

Motivation 00

FEAST 000000

Elasticity Problems

Overview

Motivation

Concepts of FEAST

- Meshing Concept
- Adaptivity Concept
- Solution Concept

3 Treating Elasticity Problems with FEAST

4 Numerical Results

FEAST 000000

Elasticity Problems

Universităt Dortmund

Motivation

Efficiency of iterative solution methods is influenced by

- physical parameters
- algorithmic parameters
- mesh quality
- number of parallel processors

Distinguish between three aspects:

- processor efficiency
- numerical efficiency
- parallel efficiency

FEAST 00000

Elasticity Problems

Develop a solution method for problems in Computational Solid Mechanics (CSM) with

high efficiency in all three aspects and low dependency on the listed influences

Motivation 00

FEAST 00000

Elasticity Problems 00000

Develop a solution method for problems in Computational Solid Mechanics (CSM) with

high efficiency in all three aspects and low dependency on the listed influences

Realisation with

FEAST

Finite Element Analysis and Solution Tool

http://www.feast.uni-dortmund.de

FEAST 00000 Elasticity Problems

Overview

Motivation

2 Concepts of FEAST

- Meshing Concept
- Adaptivity Concept
- Solution Concept

3 Treating Elasticity Problems with FEAST

4 Numerical Results

Motivation 00

FEAST 000000

Elasticity Problems

FEAST's Meshing Concept

'data moving \gg data processing'

- unstructured meshes \Rightarrow indirect adressing
 - \Rightarrow expensive memory access \Rightarrow poor MFLOP/s rates
- FEAST uses generalised tensor product meshes

rowwise numbering

 \Rightarrow exactly 9 matrix bands for bilinear elements

- direct adressing, caching
- optimised Linear Algebra routines (SPARSE BANDED BLAS)

Motivation 00

FEAST

Elasticity Problems

FEAST's Meshing Concept

More complex domains by joining several TP meshes ('macros')

Here:

- 64 macros (=64 local matrices), each macro refined 10x
- distributed over 16 processors
- $\Rightarrow 1.34 \cdot 10^8$ DOFs in total

FEAST

Elasticity Problems

FEAST's Adaptivity Concept

Patch-wise Hanging Nodes:

Motivation

FEAST

Elasticity Problems

Mesh Deformation:

FEAST's Adaptivity Concept

Patch-wise Hanging Nodes:

TP property fulfilled!

Motivation

FEAST

Elasticity Problems

FEAST's Solution Concept

FEAST uses generalised Multigrid/Domain Decomposition

ScaRC Scalable Recursive Clustering

global MG smoothed by local MG

methods

- locally adapted solution methods
- recursively hide local mesh irregularities
- minimal overlap
- \Rightarrow high numerical and parallel efficiency

FEAST results ('Poisson Problem')

Local MFLOP/s rates:

		MV (5	SparseBanded)
#DOF	www.sparse	var	const
65 ²	422	1111	1605
257 ²	106	380	1214
1025 ²	54	362	1140

Sun V40z 'Opteron'(1800 MHz, peak perf. \approx 2900 MFLOP/s)

C. Becker, 2006

Motivation 00 FEAST 00000 Elasticity Problems

FEAST results ('Poisson Problem')

Local MFLOP/s rates:

	M)/ (Snorro)	MV (S	SparseBanded)
#DUF	WV (Sparse)	var	const
65 ²	422	1111	1605
257 ²	106	380	1214
1025 ²	54	362	1140

Sun V40z 'Opteron'(1800 MHz, peak perf. \approx 2900 MFLOP/s)

Global (parallel) convergence rates:

#DOF	$AR \approx 10$	$AR pprox 10^6$
211 K	0.17 (8)	0.18 (8)
844 K	0.17 (8)	0.17 (8)
3,375 K	0.18 (9)	0.19 (9)
13,500 K	0.19 (9)	0.18 (9)

ScaRC-CG solver, smoothers: 1 glob. ScaRC, 1 loc. MG

C. Becker, 2006

Μ	otivation

FEAST

Elasticity Problems

'HPC meets Modern Numerics'

 \Rightarrow fast and robust solvers for scalar, linear, elliptic equations

Motivation 00

FEAST 000000

Elasticity Problems 00000

'HPC meets Modern Numerics'

 \Rightarrow fast and robust solvers for scalar, linear, elliptic equations

Application to vector-valued, non-linear, time dependent equations in CSM ?

Motivation 00 FEAST 000000 Elasticity Problems

UNIVERSITÄT DORTMUND

Overview

Motivation

2 Concepts of FEAST

- Meshing Concept
- Adaptivity Concept
- Solution Concept

Treating Elasticity Problems with FEAST

4 Numerical Results

Motivation 00

FEAST 000000

Elasticity Problems

Example: 2D Linearised Elasticity

- Basic idea: Reduction to solution of scalar problems
- $\bullet~$ Lamé equation $\rightarrow~$ weak formulation $\rightarrow~$ FE discretisation
- Separate displacement ordering ⇒ block-structured linear system:

$$\begin{pmatrix} \textbf{K}_{11} & \textbf{K}_{12} \\ \textbf{K}_{12}^{\mathsf{T}} & \textbf{K}_{22} \end{pmatrix} \begin{pmatrix} \textbf{u}_1 \\ \textbf{u}_2 \end{pmatrix} = \begin{pmatrix} \textbf{f}_1 \\ \textbf{f}_2 \end{pmatrix}$$

- K₁₁ and K₂₂ correspond to scalar elliptical operators
 Basic iteration: block preconditioned Richardson methods
- Basic iteration: block-preconditioned Richardson method

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \mathbf{\tilde{K}}^{-1}(\mathbf{f} - \mathbf{K}\mathbf{u}^k),$$
e. g. Block-Jacobi $\mathbf{\tilde{K}}^{-1} = \begin{pmatrix} \mathbf{K}_{11}^{-1} & \mathbf{0} \\ 0 & \mathbf{K}_{22}^{-1} \end{pmatrix}$

Motivation 00

FEAST 00000

Elasticity Problems

Example: 2D Linearised Elasticity

- Basic idea: Reduction to solution of scalar problems
- $\bullet~$ Lamé equation $\rightarrow~$ weak formulation $\rightarrow~$ FE discretisation
- Separate displacement ordering \Rightarrow block-structured linear system:

$$\begin{pmatrix} \textbf{K}_{11} & \textbf{K}_{12} \\ \textbf{K}_{12}^{\mathsf{T}} & \textbf{K}_{22} \end{pmatrix} \begin{pmatrix} \textbf{u}_1 \\ \textbf{u}_2 \end{pmatrix} = \begin{pmatrix} \textbf{f}_1 \\ \textbf{f}_2 \end{pmatrix}$$

- $\bullet~\textbf{K}_{11}$ and \textbf{K}_{22} correspond to scalar elliptical operators
- Basic iteration: block-preconditioned Richardson method

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \tilde{\mathbf{K}}^{-1}(\mathbf{f} - \mathbf{K}\mathbf{u}^k),$$

e. g. Block-Jacobi $\tilde{\mathbf{K}}^{-1} = \begin{pmatrix} \mathbf{K}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{22}^{-1} \end{pmatrix} \begin{bmatrix} \text{Exploit} \\ \text{FEAST} \\ \text{concepts!} \end{bmatrix}$

Motivation 00

FEAST

Elasticity Problems

Example: 2D Linearised Elasticity

- Basic idea: Reduction to solution of scalar problems
- $\bullet~$ Lamé equation $\rightarrow~$ weak formulation $\rightarrow~$ FE discretisation
- Separate displacement ordering \Rightarrow block-structured linear system:

$$\begin{pmatrix} \textbf{K}_{11} & \textbf{K}_{12} \\ \textbf{K}_{12}^{\mathsf{T}} & \textbf{K}_{22} \end{pmatrix} \begin{pmatrix} \textbf{u}_1 \\ \textbf{u}_2 \end{pmatrix} = \begin{pmatrix} \textbf{f}_1 \\ \textbf{f}_2 \end{pmatrix}$$

- $\bullet~\textbf{K}_{11}$ and \textbf{K}_{22} correspond to scalar elliptical operators
- Basic iteration: block-preconditioned Richardson method

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \tilde{\mathbf{K}}^{-1}(\mathbf{f} - \mathbf{K}\mathbf{u}^k),$$

e. g. Block-Jacobi $\tilde{\mathbf{K}}^{-1} = \begin{pmatrix} \mathbf{K}_{11}^{-1} & \mathbf{0} \\ 0 & \mathbf{K}_{22}^{-1} \end{pmatrix} \begin{bmatrix} \text{Exploit} \\ \text{FEAST} \\ \text{concepts!} \end{bmatrix}$

• Acceleration: Krylov-space methods, MG

Motivatio 00 FEAST

Elasticity Problems

Nearly Incompressible Material

$$u \to 0.5 \quad \Rightarrow \quad \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \to \infty$$

Difficulties:

Increasing degree of anisotropy in the operator

$$-(2\mu+\lambda)\partial_{xx}-\mu\partial_{yy}$$

- Deterioration of the FE approximation ('volume locking') Remedy:
 - Introduce new variable ('pressure'): $p = -\lambda \operatorname{div} u$

$$-2\mu \operatorname{div} \varepsilon(u) + \nabla p = f, \qquad x \in \Omega$$
$$-\operatorname{div} u - \frac{1}{\lambda}p = 0, \qquad x \in \Omega$$

Motivation 00 Elasticity Problems

Solving the Saddle Point Problem

$$\begin{pmatrix} \textbf{K} & \textbf{B} \\ \textbf{B}^\mathsf{T} & \textbf{C} \end{pmatrix} \begin{pmatrix} \textbf{u} \\ \textbf{p} \end{pmatrix} = \begin{pmatrix} \textbf{f} \\ \textbf{g} \end{pmatrix}$$

- $\bullet\,$ compressibility and stabilisation terms \rightarrow C
- Schur complement $\mathbf{S} := \mathbf{B}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{B} \mathbf{C}$

Motivation 00

FEAST 00000

Elasticity Problems

Solving the Saddle Point Problem

$$\begin{pmatrix} \textbf{K} & \textbf{B} \\ \textbf{B}^\mathsf{T} & \textbf{C} \end{pmatrix} \begin{pmatrix} \textbf{u} \\ \textbf{p} \end{pmatrix} = \begin{pmatrix} \textbf{f} \\ \textbf{g} \end{pmatrix}$$

- $\bullet\,$ compressibility and stabilisation terms \rightarrow C
- Schur complement $\mathbf{S} := \mathbf{B}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{B} \mathbf{C}$

First solving strategy: Block-Preconditioning approach

• Krylov-space method with block-preconditioner

$$\begin{pmatrix} \tilde{\mathbf{K}} & \mathbf{0} \\ \mathbf{B}^{\mathsf{T}} & -\tilde{\mathbf{S}} \end{pmatrix}$$

 ${\ {\bullet} \ }$ preconditioners \tilde{K} and \tilde{S}

FEAST 000000

Elasticity Problems

Solving the Saddle Point Problem

$$\begin{pmatrix} \textbf{K} & \textbf{B} \\ \textbf{B}^\mathsf{T} & \textbf{C} \end{pmatrix} \begin{pmatrix} \textbf{u} \\ \textbf{p} \end{pmatrix} = \begin{pmatrix} \textbf{f} \\ \textbf{g} \end{pmatrix}$$

 $\bullet\,$ compressibility and stabilisation terms \rightarrow C

• Schur complement $\mathbf{S} := \mathbf{B}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{B} - \mathbf{C}$

Second solving strategy: Pressure Schur Complement approach

• 'Cancelling' displacements $\mathbf{u} = \mathbf{K}^{-1}(\mathbf{f} - \mathbf{B}\mathbf{p})$

$$\mathbf{S}\mathbf{p} = \mathbf{B}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{f} - \mathbf{g}$$

Basic iteration:

$$\mathbf{p}^{k+1} = \mathbf{p}^k + \mathbf{\tilde{S}}^{-1} (\mathbf{B}^\mathsf{T} \mathbf{K}^{-1} \mathbf{f} - \mathbf{g} - \mathbf{S} \mathbf{p}^k)$$

Acceleration: Krylov-space method

Motivation 00

FEAST

Elasticity Problems

 $\begin{array}{c} \mbox{Essential for both approaches:} \\ \mbox{efficient Schur complement preconditioner } \mathbf{\tilde{S}}^{-1} \end{array}$

Motivation 00

FEAST 00000

Elasticity Problems

Essential for both approaches: efficient Schur complement preconditioner $\boldsymbol{\tilde{S}}^{-1}$

Stationary case:

$$\boldsymbol{\mathsf{S}}^{-1} = (\boldsymbol{\mathsf{B}}^\mathsf{T} \boldsymbol{\mathsf{K}}^{-1} \boldsymbol{\mathsf{B}} - \boldsymbol{\mathsf{C}})^{-1}$$

stabilisation terms are of magnitude O(h²)
 ⇒ can be omitted in preconditioner

$$\tilde{\mathbf{S}}^{-1} := \begin{cases} \left(\frac{1}{2\mu} \mathbf{M}_{\rho}\right)^{-1} & \text{if } \nu = 0.5\\ \left(\left(\frac{1}{2\mu} + \frac{1}{\lambda}\right) \mathbf{M}_{\rho}\right)^{-1} & \text{if } \nu < 0.5 \end{cases}$$

Motivation 00 FEAST 0000C

Elasticity Problems

Transient case:

$$\begin{pmatrix} \frac{\rho}{\tau^2 \beta} \mathbf{M}_u + \mathbf{K} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{C} \end{pmatrix}$$
$$\Rightarrow \mathbf{S}^{-1} = \left(\mathbf{B}^{\mathsf{T}} \left(\frac{\rho}{\tau^2 \beta} \mathbf{M}_u + \mathbf{K} \right)^{-1} \mathbf{B} - \mathbf{C} \right)^{-1}$$

• Goal: efficiency for all relevant time step sizes au

Motivation 00 FEAST 00000 Elasticity Problems

Transient case:

$$\begin{pmatrix} \frac{\rho}{\tau^2 \beta} \mathbf{M}_u + \mathbf{K} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{C} \end{pmatrix}$$
$$\Rightarrow \mathbf{S}^{-1} = \left(\mathbf{B}^{\mathsf{T}} \left(\frac{\rho}{\tau^2 \beta} \mathbf{M}_u + \mathbf{K} \right)^{-1} \mathbf{B} - \mathbf{C} \right)^{-1}$$

- $\bullet\,$ Goal: efficiency for all relevant time step sizes $\tau\,$
- Idea: distinctly precondition

$$\begin{aligned} \left(\mathbf{B}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{B} \right)^{-1} & \text{with} & \mathbf{M}_{p}^{-1} \\ \left(\mathbf{B}^{\mathsf{T}} \mathbf{M}_{u}^{-1} \mathbf{B} \right)^{-1} & \text{with} & \mathbf{P}_{p}^{-1} \end{aligned}$$

$$\mathbf{ ilde{S}}^{-1} := ig(rac{ au^2eta}{
ho} \mathbf{P}_{
ho}ig)^{-1} + ig(rac{1}{2\mu} \mathbf{M}_{
ho}ig)^{-1}$$

Motivation 00

FEAST

Elasticity Problems

UNIVERSITÄT DORTMUND

Overview

Motivation

2 Concepts of FEAST

- Meshing Concept
- Adaptivity Concept
- Solution Concept

3 Treating Elasticity Problems with FEAST

4 Numerical Results

Motivation 00

FEAST 000000

Elasticity Problems

Results: Preconditioning

Influence of ScaRC and Schur complement preconditioning

($\nu = 0.5$, block-preconditioned BiCGstab, $\varepsilon_{rel} = 1.0e-8$)

Motivation 00

FEAST 0000

Elasticity Problems

Results: Long Beam under Gravity

CSM part of Fluid-Solid-Interaction-Benchmark: Beam attached to cylinder in channel (DFG FOR 493)

• Comparing three different lengths:

• Comparing two meshings:

Results: Long Beam under Gravity

isot eler	isotropic elements 0.08 × 0.02 r 4 macros		× 0.02 m macros	0.32 x 0.02 m 16 macros		1.28 × 0.02 m 64 macros	
Solver	#elem	it	sec	it	sec	it	sec
BiCG BGS	65 K 262 K 1049 K	13 14 14	3.6 14.9 62.3	28 28 31	9.1 32.5 142.7	132 113 114	68.6 167.3 608.8

anisotropic 0.08 x 0		x 0.02 m	0.32 x 0.02 m		1.28 × 0.02 m		
elen	nents	1 macro 1 m		macro 1 macr		macro	
Solver	#elem	it	sec	it	sec	it	sec
BiCG BGS	65 K 262 K 1049 K	14 16	3.7 18.9 71.0	33 35	8.5 38.4 156 3	149 154 210	38.7 169.1 1078 0

 Outer Krylov-subspace scheme with Block-GS preconditioning not sufficient (strong dependence on global anisotropy)

Motivation 00

FEAST

Elasticity Problems

Results: Long Beam under Gravity

isot	ropic	0.08 x 0.02 m		0.32 x 0.02 m		1.28 x 0.02 m	
elen	nents	4	macros	16 macros 64 macros		macros	
Solver	#elem	it	sec	it	sec	it	sec
BiCG BGS	65 K 262 K 1049 K	13 14 14	3.6 14.9 62.3	28 28 31	9.1 32.5 142.7	132 113 114	68.6 167.3 608.8
BiCG MG BGS	65 K 262 K 1049 K	4 4 4	4.7 18.5 73.7	5 5 5	7.3 24.2 88.9	6 6 5	19.2 51.8 126.5

aniso	anisotropic		0.08 x 0.02 m		0.32 x 0.02 m		1.28 x 0.02 m	
elen	nents	1	macro	1 macro		1 macro		
Solver	#elem	it	sec	it	sec	it	sec	
BiCG BGS	65 K 262 K 1049 K	14 16 14	3.7 18.9 71.9	33 35 34	8.5 38.4 156.3	149 154 210	38.7 169.1 1078.9	
BiCG MG BGS	65 K 262 K 1049 K	4 5 5	4.2 19.5 83.4	5 5 6	5.2 21.8 102.9	9 8 7	9.4 34.8 129.1	

- Outer Krylov-subspace scheme with Block-GS preconditioning not sufficient (strong dependence on global anisotropy)
- Remedy: Use multigrid (applied to the whole system!) as preconditioner

Motivation 00

FEAST

Elasticity Problems

Universität Dortmund

Results: Parallel efficiency

- Compute cluster: 128 nodes, each one equipped with 2 Intel XEON CPUs (3.4 GHz) and 1 NVIDIA Quadro FX1400 GPU (350 MHz)
- Linear Elasticity, compressible material, outer BiCGstab solver, $\varepsilon_{\rm rel} = 10^{-6}$

Results: Parallel efficiency

	CPU			GPU		
#DOFs	#CPUs	#iters	time	#GPUs	#iters	time
3.36e+7	8	5.5	221.8	4	5.5	202.8
6.71e+7	16	6.5	270.7	8	6.5	247.3
1.34e+8	32	6	249.0	16	6	237.6
2.68e+8	64	6	250.9	32	6	225.6
5.37e+8	128	7	293.6	64	7	278.4
1.07e+9	256	6.5	273.0	128	6.5	246.9

Outlook

Current state (CSM):

- Finite Deformation (St. VK, Neo-Hooke)
- Compressible + incompressible
- Damped Newton solver, Jacobian via Finite Differences
- Transient computations

Outlook (FSI):

$$\frac{\partial \mathbf{F}(\mathbf{u}, \mathbf{v}, p)}{\partial (\mathbf{u}, \mathbf{v}, p)} = \begin{pmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}} & \mathbf{K}_{\mathbf{u}\mathbf{v}} & \mathbf{0} \\ \mathbf{K}_{\mathbf{v}\mathbf{u}} & \mathbf{K}_{\mathbf{v}\mathbf{v}} & \mathbf{B}_{\mathbf{u}} + \mathbf{B}_{\mathbf{v}} \\ \mathbf{B}_{\mathbf{u}}^{\mathsf{T}} & \mathbf{B}_{\mathbf{v}}^{\mathsf{T}} & \mathbf{C} \end{pmatrix}$$

- Step 1: Applying fully-coupled Vanka-schemes (modified for Q1/Q1)
- Step 2: SC approach + reduction to scalar ScaRC solvers
- Step 3: Efficient Schur complement preconditioner ?!?

FEAST

Elasticity Problems

Thank you for your attention!

Motivation 00

FEAST 0000C

Elasticity Problems