
HONEI: A collection of libraries for numerical
computations targeting multiple processor architectures

Danny van Dyka, Markus Gevelerb, Sven Mallachc, Dirk Ribbrockb, Dominik
Göddekeb,∗,1, Carsten Gutwengerc

aInstitut für Physik, TU Dortmund, Germany
bAngewandte Mathematik, TU Dortmund, Germany

cInformatik, TU Dortmund, Germany

Abstract

We present HONEI, an open-source collection of libraries offering a hardware
oriented approach to numerical calculations. HONEI abstracts the hardware,
and applications written on top of HONEI can be executed on a wide range
of computer architectures such as CPUs, GPUs and the Cell processor. We
demonstrate the flexibility and performance of our approach with two test ap-
plications, a Finite Element multigrid solver for the Poisson problem and a
robust and fast simulation of shallow water waves. By linking against HONEI’s
libraries, we achieve a two-fold speedup over straight forward C++ code us-
ing HONEI’s SSE backend, and additional 3–4 and 4–16 times faster execution
on the Cell and a GPU. A second important aspect of our approach is that
the full performance capabilities of the hardware under consideration can be
exploited by adding optimised application-specific operations to the HONEI
libraries. HONEI provides all necessary infrastructure for development and
evaluation of such kernels, significantly simplifying their development.

PACS: 02.70.-c (Computational techniques; simulations), 07.05.Bx (Computer
systems: hardware, operating systems, computer languages, and utilities),
89.20.Ff (Computer Science and Technology), 47.11.-j (Computational
methods in fluid dynamics)

Key words: High performance computing; FEM for PDE; Shallow Water
Equations; mixed precision methods; CUDA; Cell BE

1. Introduction

Computational science in general and numerical simulation in particular
have reached a turning point. The revolution developers are facing is not pri-
marily driven by a change in (problem-specific) methodology, but rather by the

∗Corresponding author
1Supported by DFG, project TU102/22-1, TU102/22-2

Preprint of an article accepted for publication in Computer Physics Communications

fundamental paradigm shift of the underlying hardware towards heterogeneity
and parallelism.

1.1. Hardware
The general expectation that performance of serial codes improves auto-

matically is no longer true. Power and heat considerations have put an end
to aggressively optimising circuits and deeper processor pipelines (power wall).
Frequency scaling is thus limited to ‘natural frequency scaling’ by process shrink-
ing. Ever wider superscalar architectures with more aggressive out-of-order ex-
ecution have reached their limits, the hardware is no longer able to extract
enough instruction-level parallelism to hide latencies (ILP wall).

The primary solution provided by processor manufacturers is the migration
towards on-chip parallelism in the form of chip multiprocessors (CMP); the
(approximately) doubled amount of transistors per chip generation is invested
into a doubling of processing cores. Over the last few years, both Intel and
AMD have established multicore processors in the mass market.

At the same time, memory performance continues to improve at a signifi-
cantly slower rate than compute performance. In particular due to pin limits,
this memory wall problem is even worsened by multicore architectures. Top-end
quadcore processors can achieve a theoretical peak floating point performance
of 12 GFLOP/s per core in double precision (24 GFLOP/s in single precision)
whereas the bandwidth to off-chip memory has barely increased over the last
hardware generations, now reaching approximately 12 GB/s shared between all
cores on a die: Bandwidth asymptotically scales with the number of sockets
and not with the number of cores. In the scope of this paper, the arithmetic
intensity (defined as the ratio of floating point operations on each data item)
determines the attainable performance, ratios of 1:1 are not uncommon. The
traditional approach to add ever larger on-chip cache memory hierarchies with
sophisticated prefetching and replacement policies only alleviates the memory
wall problem if data reuse is possible.

In the context of these three fundamental problems, alternative processor
designs such as graphics processors (GPUs) or the Cell BE processor, which has
been primarily developed for the gaming console PlayStation 3, are of particu-
lar interest. For instance, NVIDIA’s flagship GPU at the time of writing, the
GeForce GTX 285, features 30 multiprocessors (each comprising 8 single preci-
sion streaming processors (SP), one double precision SP, a shared lock-step in-
struction unit and support for transcendentals) delivering more than 1 TFLOP/s
theoretical peak performance in single precision, and more importantly, a sus-
tained, achievable memory bandwidth of 160 GB/s. This outstanding level of
performance is achieved by keeping tens of thousands of threads ‘in flight’ si-
multaneously to effectively hide latencies; context switches between threads are
handled by the hardware at no additional cost. On the other hand, the Cell
processor is an example of on-chip heterogeneity, comprising a standard Power
5 CPU (PPE) and eight on-chip floating point co-processors called Synergistic
Processing Elements (SPEs). The SPEs and the PPE are connected via a fast,
200 GB/s on-chip ring bus, the theoretical peak performance is 230 GFLOP/s in

2

single precision, and off-chip memory is accessible at 25.6 GB/s. With achievable
performance levels significantly exceeding that of commodity designs, and a dra-
matic improvement of toolchain support in the past two years, such processors
migrate from specialised solutions to the general-purpose computing domain
and are widely considered as forerunners of future manycore designs.

1.2. Software
This parallelisation and heterogenisation of resources imposes a major chal-

lenge to the application programmer: Practitioners in computational science
(numerics, natural sciences and engineering) often concentrate primarily on ad-
vancements in domain-specific methodology and hesitate to deal with the com-
plications resulting from the paradigm shift in the underlying hardware. An
important observation, that can be made in many existing software solutions,
is that many algorithms are formulated—on the application level—to concen-
trate most of the actual work in few kernels, separated from the generic control
flow. Examples include both low-level kernels such as matrix-vector products
as well as high-level kernels such as black-box iterative solvers for sparse linear
systems. In these cases, well-defined interfaces between the kernels enable indi-
vidual tuning and, ideally, specialisation for different hardware resources. The
idea to encapsulate the resulting highly tuned kernels into libraries is as old as
scientific computing.

For applications involving sparse rather than dense matrices and correspond-
ingly a low arithmetic intensity, little standardisation exists and therefore, ap-
plications cannot typically be ‘plugged together’ from calls to standard libraries.
In particular, little standardisation exists in terms of data structures.

Ultimately, compiler support to exploit on-chip parallelism efficiently is re-
quired. Experience with preliminary auto-parallelisation and auto-vectorisation
(SIMD, SSE) features in modern compilers or OpenMP-like parallelism guided
by hints given by the programmer, however, has taught us that compilers are still
far from optimising code automatically, in particular codes limited by the mem-
ory wall problem (NUMA etc.). Compiler treatment of heterogeneous resources
is still in its infancies, even though compilers (and associated languages) such
as Sequoia [1], tailored for memory hierarchies, promise better performance.

1.3. Paper contribution
Vendor-supplied BLAS, LAPACK and FFT libraries are available for multi-

core and emerging manycore architectures in the scope of this paper, for instance
the highly tuned implementations of MKL (Intel CPUs), CUBLAS and CUFFT
(NVIDIA GPUs), ACML-GPU (AMD multicore CPUs, AMD/ATI GPUs) and
IBM’s CBE BLAS, LAPACK and FFT libraries. However, all vendor-provided
implementations are closed source, and currently do not yet support the full
functional range of their (single-threaded) CPU counterparts.

We are convinced that in many practical cases, relying on library-based ac-
celeration for common operations is insufficient, simply because little standardi-
sation exists beyond the above mentioned approaches. Rather, it is unavoidable

3

to implement at least a few specialised kernels to achieve application-specific
functionality and a reasonably high performance simultaneously. In order to
port such application-specific kernels to novel and heterogeneous architectures,
application programmers need to learn both a new language to implement the
actual kernels, and an associated runtime environment. The latter is responsible
for scheduling computations, managing data transfers between the coordinating
host CPU and the hardware accelerators; and even the physical data storage,
e.g., by meeting appropriate alignment criteria and converting data structures
on the fly.

In this paper we present HONEI (hardware-oriented numerics efficiently im-
plemented), a collection of architecture-aware libraries designed to alleviate the
conflicting goals outlined above. HONEI is free software, and the existing li-
braries and infrastructural features are already available to the open source
community. Our primary design goal is to abstract from architecture-related
implementational details as much as possible. We addresses two major use case
scenarios simultaneously:

• HONEI enables application-specific kernel development by providing all
necessary architecture-dependent infrastructure in such a way that hard-
ware details are dealt with automatically by a common runtime environ-
ment. As a consequence, the user can concentrate on the actual kernel
implementation and is alleviated from writing, e.g., data transfer opera-
tions or mailbox-code to synchronise low-level communication on the Cell
processor.

• HONEI automatically accelerates applications that are built entirely on
top of its linear algebra operations. Its supported features, in particular
with respect to architecture-aware optimisations, are continuously being
augmented. Users only have to change an architecture tag in function
calls (see Section 3) to benefit from hardware acceleration.

1.4. Related work and comparison with other libraries
Our nomenclature of hardware-oriented numerics is based on the work by

Keyes and Colella et al., who survey trends towards terascale computing for a
wide range of bandwidth-limited applications and conclude that only a combina-
tion of techniques from computer architecture, software engineering, numerical
modelling and numerical analysis will enable a satisfactory and future-proof
scale-out on the application level [2, 3].

Many publications discuss detailed (implementational) aspects of the mem-
ory wall problem for multigrid solvers and sparse matrices in general: Dou-
glas and Thorne, and Douglas, Rüde et al. present cache-oriented multigrid
solver components [4, 5, 6]. Dongarra’s group focuses on dense linear algebra:
They examined mixed precision methods [7]; and with the PLASMA project,
they started research into optimised dense data structures for multicore archi-
tectures [8, 9]. Williams et al. and Owens et al. provide a detailed overview

4

and many examples of scientific computations on the Cell processor and on
GPUs [10, 11, 12].

Publicly available academic software packages simultaneously aiming at nu-
merical and hardware efficiency include PETSc, Trilinos, DUNE and MTL4 [13,
14, 15, 16]. A performance comparison with these packages is beyond the
scope of this paper, and clearly not intended. HONEI emphasises hardware-
orientation and provides both efficient implementations as well as infrastruc-
ture, not limited to general-purpose CPUs. To the best of our knowledge, it
is the only available set of libraries tuned for common CPUs, the Cell proces-
sor and GPUs simultaneously. In order to achieve this, HONEI is not build
on top of established other libraries, but has been designed from scratch. Its
extensible structure dividing data and (architecture-optimised) computation is
continuously augmented. We are aware that other packages are (currently) more
evolved, with a richer set of high level kernels and a much wider application basis
for commodity based CPU (distributed memory) settings.

The recent standardisation of OpenCL provides a common interface to het-
erogeneous multicore hardware. However, OpenCL is very low-level, and high-
level approaches continue to be important for accessibility and usability reasons.

1.5. Paper organisation
Section 2 provides the background of the two model applications used in this

paper. In the subsequent three sections, HONEI’s paradigms and structure are
described in detail. Section 6 finally presents numerical and benchmark results
for the components and applications.

We deliberately omit code samples in this paper to improve readability and
keep the presentation compact. Instead, the accompanying tarball as well as
our homepage http://www.honei.org offer a detailed tutorial, demonstrating
HONEI use cases and providing a more hands-on, code-oriented introduction to
HONEI features and concepts.

2. Theoretical background

This section describes the theoretical background of two example applica-
tions built on top of HONEI, that are used throughout this paper: The Poisson
problem is a fundamental model problem as it appears as a subproblem in many
different areas, for instance in electrostatics, solid mechanics and fluid dynam-
ics. Solving the Shallow Water Equations (SWE) is of huge interest for many
practical flow problems such as Tsunami simulations. Its implementation uses
a wide variety of non-trivial operations and containers, justifying its choice as
a demo application for the HONEI framework.

2.1. The Poisson problem
Our first test problem is the well-known Poisson equation on a 2D unit square

domain Ω:
−∆u = f (1)

5

http://www.honei.org

We apply mixed Dirichlet and Neumann boundary conditions, discretise the
domain with bilinear conforming Finite Elements from the Q1 space and enu-
merate the degrees of freedom in a generalised tensor product fashion. The
resulting stiffness matrix has thus an a-priori known band structure, which can
be exploited in linear algebra components via cache blocking [17]. A grid re-
finement level of L yields (2L + 1)2 unknowns, and we employ a (geometric)
multigrid scheme to solve the associated sparse linear system. Even though it
suffices to employ a matrix stencil for this simple grid, we still assemble the
matrix fully, as this is the relevant case in practice due to grid and operator
anisotropies.

2.2. The 2D Shallow Water equations
Our second application is a fully explicit 2D shallow water simulation. The

governing equations for the application—the 2D Shallow Water equations (SWE)—
can be written as

Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω, t ≥ 0, U = (h hu1 hu2)T (2)

where h is the water depth and ui are the velocities in x- and y-direction.
F and G denote the flow in x- and y- direction, respectively.

We use the relaxation scheme proposed by Delis and Katsaounis with a sec-
ond order accurate Finite Difference discretisation in space and a Runge Kutta
time stepping mechanism [18]. The solver is capable of computing numerically
critical scenarios with low or even zero-valued initial water depth (dry states)
and takes properties of the bed topography into account by applying a source
term S. Space constraints prohibit a detailed description of the complex scheme,
and we refer the reader to the original publication for details. Instead, we note
that as the solver is explicit, no linear systems have to be solved per timestep,
and the entire algorithm can be reformulated in terms of elementary linear al-
gebra operations.

3. Overview of the software structure

HONEI comprises a set of shared libraries that applications (library clients
in our terminology) can build upon. These libraries form a typical frontend-
backend structure. The frontend libraries provide high-level numerical opera-
tions and container data structures such as dense, sparse and banded matri-
ces, as well as dense and sparse vectors. Frontend libraries also provide utility
functions and application-specific operations. The backend libraries provide
the necessary infrastructure and low-level, hardware-specific implementations
to execute the frontends computations on the different supported architectures.

For instance, the Cell backend provides mechanisms to efficiently dispatch
jobs on the SPEs and perform data transfers between their local storage and
main memory. These implementational details are not visible to the user.
Generic template programming enables the desired functionality and lets the
user select the target platform individually for each operation or globally for all

6

operations performed in an application by applying architecture tags such as
tags::Cell or tags::CPU::SSE.

A general high-level implementation, using STL-style iterators and archi-
tecture independent parts of the C++ programming language only, provides a
generic default version for all operations. This implementation does in general
not receive a tremendous amount of tuning, but is guaranteed to work on all
architectures that provide a reasonably modern C++ compiler.

Figure 1: HONEI bottom up structure and components, from the underlying hardware to the
application level.

Figure 1 visualises the bottom-up structure of HONEI and the growing level
of abstraction. Users can immediately benefit from HONEI’s hardware ab-
straction by building applications using the templated top-level functions only.
HONEI then automatically assures that highly tuned code is issued on the target
architecture. To facilitate fine-tuning, the configuration file .honeirc provides
access to runtime parameters, such as the number of SPEs to use when execut-
ing Cell programs or the thread block partition for the GPU backend. At the
same time, experienced developers are free to write their own hand-tuned im-
plementations on top of HONEI’s backends addressing more application-specific
optimisation techniques.

4. Description of the individual software components

4.1. Frontends
The most important frontend library is libhoneila, HONEI’s linear algebra

library. It provides templated container classes for different matrix and vector
types. For instance, banded matrices support both arbitrary and fixed posi-
tions of the bands, the latter ones can be exploited for improved performance
of matrix-vector products. All containers follow an explicit-copy idiom, i.e.,
copy operations on their data will only occur by invoking a container’s copy()
method. A rich set of linear algebra operations has been implemented and spe-
cialised for the supported architectures SSE, CUDA and Cell, currently focussing
mostly on operations needed for sparse problems.

The numerics and math library libhoneimath contains high performance
kernels for iterative linear system solvers as well as other useful components like
interpolation and approximation. While the latter are comparatively straight

7

forward kernels, the iterative solvers are almost applications in themselves, spe-
cialised to support different preconditioning and smoothing operators as well
as mixed precision schemes. Here generic programming provides the oppor-
tunity to keep interfaces clean, which in particular means that a given solver
can be trivially plugged into another solver as its preconditioner. We refer to
the sample code in file honei/math/multigrid.hh and the associated client in
clients/poisson/scenario controller.hh in the HONEI tarball for details.

Application specific operations for solving the Shallow Water equations on
a specific backend with the fully explicit solver described in Section 2.2 are
included in the libhoneiswe library. For performance reasons, few kernels have
been reimplemented and hand-tuned instead of being built via straight forward
concatenation of HONEI frontend calls. These kernels are naturally highly
specialised in such a way that they cannot be reused in other applications. We
discuss this trade-off further in Section 6.3.

4.2. Backends
The variety of the supported architectures is reflected by the set of different

backend libraries. Immediate user interaction with these backend libraries is
neither intended nor guaranteed to work under all circumstances. For details
on the Cell BE we refer to Pham et al., Kahle et al., Buttari et al. and the
IBM documentation [19, 20, 21, 22]; for a description of GPU architecture
and the CUDA programming environment see Lindholm et al. and the CUDA
documentation [23, 24].

The current implementation does not yet virtualise memory. This means
that the limited amount of device memory poses a hard restriction that the
application programmer has to keep in mind. However, HONEI exits cleanly if
more memory than available is requested.

libhoneibackendssse, selected by the tag tags::CPU::SSE, provides fast
SSE2 implementations of the most important frontend functions like norms
or matrix-vector products. We rely on the SSE built-ins of the Intel C++
Compiler, which are also supported by the GNU C++ Compiler.

libhoneibackendscell, selected by the tag tags::Cell, is a compound li-
brary comprising implementations of the most important frontend functions as
well as a supporting build-system to create SPE programs (kernels) at runtime.
These kernels are written in C++, however, in order to not bloat the limited
SPE memory which needs to hold both instructions and data, we decided to
disable support for RTTI and exception handling, resulting in a memory foot-
print comparable to plain C programs while still supporting C++ features like
templates. This library additionally provides a remote procedure call (RPC)
system to relay function calls from the PPE to the SPEs. It relies on libspe2,
a library provided by IBM [25] and some tools provided by the IBM Cell BE
SDK 2.0 [26]. Last but not least, there are templates to facilitate writing of new
callable functions and registering them with the RPC system. When a given
operation is passed to the Cell backend, a new instruction (consisting of an op-
code and the operation parameters) is generated and stored in an instruction
queue. If one of the available and idle SPEs has previously been configured

8

to process this opcode (and hence is running a kernel that is able to execute
the instruction), the scheduler wakes it up. Otherwise it signals an idle SPE
to load the necessary kernel. The activated SPE pulls the instruction and the
corresponding data from main memory, processes the instruction and finally
stores the result to main memory again. With this approach, we achieve good
load distribution among the SPEs and disburden the PPE’s DMA controller by
distributing all DMA transfers to the SPE’s DMA controllers. The Cell backend
has been successfully tested on the PlayStation 3 and on QS20 and QS22 blade
systems by IBM.

libhoneibackendscuda, selected by the tag tags::GPU::CUDA, is based on
NVIDIA’s CUDA programming environment [24] in version 2.0. The GPU de-
vice portion of the library comprises the same set of functions as those collected
in libhoneibackendssse. The device code is written in an extension of plain
C and compiled with the CUDA compiler nvcc. To avoid unnecessary memory
transfers from main memory to the GPU’s device memory or vice versa, we
implemented a transparent memory scheduler, which decides if processed data
needs to be transferred. For details on CUDA programming, we refer to the
programming guide [24] and previous work [27].

4.3. Client applications
The clients directory finally stores client applications built on top of the

HONEI libraries. In the scope of this paper, the clients honei-poisson and
honei-swe solve the Poisson problem (Section 2.1) and perform SWE simula-
tions (Section 2.2) respectively.

5. Installation instructions

HONEI is installed through the usual GNU tool chain. For details, we refer
to the README file provided in the installation tarball.

6. Results

In this section, we present results for the two example applications intro-
duced in Section 2. Besides performance, we are particularly interested in eval-
uating HONEI’s library approach; one of the most important aspects here is to
assess the benefits and limitations of the concept of hardware abstraction on
the level of individual applications.

For the CPU computations we use two common x86 machines, an Intel
Core2Duo 6320 (1.86 GHz, 4 MB shared L2 cache) and an AMD Opteron X2
2214 (2.2 GHz, 1 MB L2 cache per core). Code is compiled with gcc version 4.1.2
and compiler settings tuned for each machine. In this paper we only use a single
core per CPU; a multi-core CPU backend is currently being developed. All Cell
results are obtained on the Sony PlayStation 3 (PS3) running Yellow Dog Linux
4, and we use an NVIDIA GeForce 8800 GTX graphics board included in the
Opteron machine for the GPU tests. It is worth noting that the usable device

9

memory on the PS3 amounts to only 200 MB due to the needs of the operating
system, which significantly inhibits the tests we can perform. In contrast, more
than 700 MB are available on the GPU.

6.1. Basic architecture comparison
We first demonstrate low level benchmarks (see Figure 2) for the standard

saxpy operation, and observe a 16-fold (GPU) and 2.5-fold (PS3 using 4 SPEs)
speedup versus the Core2Duo system, which reflects the available off-chip band-
width, the decisive performance factor for this purely memory bound operation.
On CPUs, performance drops once the data does not fit into cache anymore,
while on the Cell and on GPUs, performance only surges once the problem
sizes are large enough to hide the configuration overhead associated with these
devices.

 0

 2000

 4000

 6000

 8000

 10000

 12000

65K 655K 1.3M 2.7M 4M

M
F

LO
P

/s

Problem size

HONEI-CUDA
HONEI-CELL
HONEI-SSE

GotoBLAS

Figure 2: Performance of an axpy kernel with different HONEI architectures and GotoBLAS.

These experiments also confirm the asymptotical ‘optimality’ of HONEI’s
SSE backend for vector-vector operations, as we achieve exactly the same per-
formance level as (single threaded) GotoBLAS [28], an SSE assembly BLAS
implementation that has been extremely tuned with respect to cache and TLB
blocking. We note that we achieve similar speedups for other BLAS level 1
operations.

6.2. Multigrid Poisson solver
To solve the Poisson equation, a fundamental model problem in many appli-

cation domains (see Section 2.1), we employ HONEI’s generic multigrid solver,
implemented in libhoneimath. We configure the solver to perform a V cycle
with two damped pre- and postsmoothing Jacobi steps, and use an unprecondi-
tioned Conjugate Gradient solver for the coarse grid problems. Internally, the
solvers call basic low level linear algebra operations from libhoneila, and there-
fore this experiment is well-suited to assess how low-level performance translates
to the application level, and thus HONEI’s generic library approach in gen-
eral. The application itself is implemented once, and hardware specialisation

10

is achieved transparently to the user by setting the corresponding architecture
and precision tags (see Section 3 for details).

As the supported architectures compute much faster in single than in double
precision (SSE, Cell) or do not support double precision at all (8800 GTX GPU),
we employ a (slightly more costly) mixed precision solution scheme [29]. The
basic idea is to execute a simple defect correction scheme in double precision on
the CPU, which is preconditioned by performing two multigrid cycles (which
amounts to gaining one digit in the residual) in single precision on a co-processor.
In this test, we use HONEI’s SSE and CUDA backends on the Opteron machine.

6.2.1. Accuracy
Assessing the accuracy of our mixed precision scheme is very important. We

use the analytically known Laplacian of a polynomial test function (with pure
Dirichlet boundary conditions) as right-hand side to the Poisson equation. We
thus know the exact analytical solution, and can compare the computed results
in the integral L2 norm. For the bilinear nonconforming Finite Elements that
we use for the discretisation, the L2 error reduces by a factor of four per mesh
refinement step (h2) provided that the computation is performed with sufficient
floating point precision. Table 1 summarises our results; recall that refinement
level L yields a problem size of (2L + 1)2 degrees of freedom.

single precision double precision mixed precision
level L2 error red. L2 error red. L2 error red.

2 5.1845E-5 - 5.1843E-5 - 5.1843E-5 -
3 1.2121E-5 4.28 1.2124E-5 4.27 1.2124E-5 4.28
4 2.9944E-6 4.05 2.9748E-6 4.07 2.9748E-6 4.08
5 1.0683E-6 2.80 7.4013E-7 4.02 7.4013E-7 4.02
6 1.5614E-6 0.68 1.8481E-7 4.00 1.8481E-7 4.00
7 5.7570E-6 0.27 4.6188E-8 4.00 4.6188E-8 4.00
8 2.7530E-2 0.00 1.1546E-8 4.00 1.1546E-8 4.00
9 3.8110E-1 0.07 2.8864E-9 4.00 2.8761E-9 4.01

10 6.2065E0 0.06 7.2134E-10 4.00 7.1745E-10 4.01

Table 1: Accuracy tests of the multigrid Poisson solver: Reduction of L2 errors in various
precision formats.

We observe that computing entirely in double precision is accurate enough
for this test problem, the L2 errors reduce as expected. In single precision2

however, the results are completely wrong, already for the small problem size
of 1089 unknowns (level 5): Increasing the level of refinement and hence the
problem size even increases the error again. The rightmost columns in Table 1
show that the mixed precision scheme achieves exactly the same accuracy as
computing entirely in double precision.

2The L2 error is of course computed in double precision.

11

6.2.2. Performance
To demonstrate the flexibility of HONEI’s multigrid solver, we evaluate per-

formance based on a Poisson problem with mixed (free) Neumann and (geo-
metric) Dirichlet boundary conditions. To assess the absolute performance, we
perform the same experiment with a second Finite Element toolkit, FEAST [30],
which is extremely tuned for this problem. Figure 3 summarises our performance
evaluation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

7 8 9 10

T
ot

al
 ti

m
e

to
 s

ol
ut

io
n

[s
]

Refinement level L

HONEI-CPU(double)
HONEI-SSE(double)

FEAST(double)
HONEI-SSE(mixed)

HONEI-CUDA(mixed)

Figure 3: Performance tests of the multigrid Poisson solver on the Opteron system and the
GPU.

We first observe that in double precision, the HONEI SSE solver is slightly
slower than FEAST. For the larger problem sizes, FEAST is typically 20% faster
due to its more aggressive exploitation of the banded matrix structure. Compar-
ing HONEI’s default CPU implementation that relies on compiler optimisations
alone with the double precision SSE implementation, we observe a speedup by
a factor of two on the highest refinement levels. HONEI’s mixed precision SSE
implementation executes more than 1/3 faster than the double precision SSE
version and outperforms FEAST, while delivering the same result accuracy.
This last observation is important, as mixed precision is essentially for free in
HONEI due to its templated software design, in contrast to the established,
Fortran-based FEAST toolkit.

For the trivial problem sizes not included in Figure 3, the GPU accelerated
solver is slower than the SSE version which computes entirely in cache as ob-
served in the previous experiment. For the largest problem instances, we achieve
speedup factors of 3 versus the mixed precision SSE implementation and 4 ver-
sus the double precision SSE version, in line with expected performance. The
limiting factor in these experiments is the expensive data transfer over the PCIe
bus within the mixed precision scheme. Newer GPUs support native double pre-
cision, removing this bottleneck. These timing measurements confirm that for a
solver constructed entirely from low-level operations, HONEI’s library approach
works extremely well and hardware abstraction on the level of individual op-
erations translates directly to application speedup. In addition, the hardware
oriented approach provides high performance kernels completely independent of

12

the compiler in use.

6.3. Shallow Water solver
We execute our SWE solver on the Core2Duo machine and the PlayStation

3. Figure 4 shows a typical circular dambreak simulation.

6.3.1. Application-specific optimisations
Our initial implementation used a concatenation of HONEI linear algebra

operators for matrix and vector assembly (which is done once per timestep),
using the default CPU backend without SSE optimisations. Detailed analysis
revealed that almost 50% of the execution time is spent in these stages of the
algorithm, and the compiler is not able to optimise the code properly due to
irregular memory access patterns. We thus implemented manually optimised
SSE and Cell versions of these kernels as an example of application-specific tun-
ing. Figure 5 shows the effect of this optimisation. Note that the difference
between the default CPU implementation and the SSE version increases signifi-
cantly with the problem size and is much higher than for the Poisson solver due
to the abovementioned irregular memory access patterns. The results clearly
highlight the impact of such efforts, especially if the percentage of application
specific code is quite high. Application programmers are therefore encouraged
to take advantage of the infrastructure provided by the HONEI backends to
implement hardware-specific application kernels if necessary.

The HONEI tutorial illustrates in detail how such application-specific kernels
are created, using the norm of a generalised residual calculation based on the
same banded matrix container as needed by the Poisson solver: s = ||αy +
βAx||2. This composite kernel is not part of HONEI’s linear algebra library, only
the three atomic operations it comprises are. In particular, the code examples
in the tutorial allow to assess the implementational effort to realise application-
specific kernels using the infrastructure HONEI provides.

6.3.2. Accuracy and performance on the Cell processor
As peak single precision arithmetics on the Cell processor is roughly 14 times

faster than double precision performance, we have designed two novel mixed pre-
cision configurations for the solver to exploit this performance difference: Our
first idea was to execute every k-th iteration in double precision, and employ sin-
gle precision otherwise. We then analysed the internal structure of one timestep
in more detail and identified the stages where double precision has the highest
effect on the accuracy of the results. We found that the predictor/corrector
scheme is most crucial for final result accuracy, and our resulting final mixed
precision scheme executes the prediction step in double precision and everything
else in single precision.

As no analytic solution is available, we examine the solver’s mass conser-
vation capabilities to assess the impact of varying precision on the achievable
accuracy. Figure 6 shows the relative volume error measured at fixed timesteps
during the simulation. The fixed single and double precision results differ sig-
nificantly, and the mixed precision configurations (double precision timesteps

13

 4
 4.2
 4.4
 4.6
 4.8
 5
 5.2
 5.4
 5.6
 5.8
 6

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 2

 4

 6

 8

 10

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 2

 4

 6

 8

 10

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 2

 4

 6

 8

 10

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 2

 4

 6

 8

 10

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 4: Circular dambreak simulation on a 100× 100 grid computed with our SWE solver
on the PS3. Top down: Water height after t = 10.42s, t = 20.83s, t = 31.25s and t = 46.6s.
Left column shows 3D view and right column the associated height map. ∆x = ∆y = 5m.

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 50 100 150 200 250

T
im

e
pe

r
tim

es
te

p
[s

]

Problem size

libhoneila single
libhoneila double

manual optimisation single
manual optimisation double

Figure 5: SWE solver performance comparison: Hand-crafted SSE application kernels vs.
compiler-crafted ones on the Core2Duo.

1e-5

3e-5

5e-5

7e-5

9e-5

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
el

at
iv

e
vo

lu
m

e
er

ro
r

Timestep

fixed single
fixed double
mixed k=15
mixed k=5
mixed k=2

mixed prediction

Figure 6: Relative volume error for different fixed and mixed precision SWE solver configura-
tions on the PS3 on a 100× 100 grid.

with k ∈ {2, 5, 15} and the double precision prediction method) are distributed
between them, as expected. The best result is achieved by employing dou-
ble precision for the prediction step, and even though format conversion and
transfer have to be performed twice per iteration (each timestep consists of two
prediction and correction steps), this method is also the fastest mixed precision
configuration (see Figure 7). To be more precise, while the latter method is
not significantly slower than solving with fixed single precision, it halves the
error. Executing the entire solver in double precision is more accurate, but
much slower. Figure 7 also illustrates the performance gains of our Cell imple-
mentation vs. the fastest CPU version using HONEI’s SSE backend, we obtain
a speedup factor of 2.5. These results are obtained with the fast, manually
optimised assembly routines.

15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20 40 60 80 100 120 140 160 180 200

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

Problem size

CPU mixed prediction
Cell fixed double

Cell mixed k=2
Cell mixed k=5

Cell mixed k=15
 Cell mixed prediction

Cell fixed single

Figure 7: Total execution time of the SWE solver for different fixed and mixed precision
configurations on the PS3 and the Core2Duo system.

7. Conclusions and future work

We have presented HONEI, a collection of libraries that simplify program-
ming for both conventional CPU designs and nonstandard emerging architec-
tures. In particular, the user can program an application once, and then compile
it for execution on the SIMD SSE units of CPUs, CUDA-enabled GPUs or Cell
processors.

For applications and components like linear system solvers, this hardware ab-
straction works particularly well, and microbenchmark performance translates
directly to acceleration on the application level. However, not all applications
can benefit immediately from tuned basic operations, we have demonstrated
this with a solver for the Shallow Water equations. The fusion of general ba-
sic routines with application specific kernels (which lack generality, but which
can often be reused in the same global context like CFD) therefore remains a
future-proof concept especially when the increasing discrepancy between hard-
ware development compared to compiler development is taken into account. In
this case, the infrastructure provided by HONEI’s backend libraries simplifies
hardware-aware programming to a great extend.

HONEI is being continuously developed. Both the CUDA backend and the
Cell backend will be extended in the near future by new and further optimised
kernels. In addition, a Lattice Boltzmann Method (LBM) based application for
solving the SWE and the Navier Stokes equations focusing on very fast and
robust real-time computations is being implemented. Finally, with respect to
emerging manycore architectures like Intel’s Larrabee, a pthread-based multi-
core backend and a MPI backend are in early beta stage.

HONEI is available as Open Source under the GPL licence and developer
snapshots of the source code can be obtained via http://www.honei.org.

16

http://www.honei.org

Acknowledgements

Parts of this work were supported by the German Science Foundation (DFG),
projects TU102/22-1 and TU102/22-2. We thank all participants of PG512 at
TU Dortmund for initial support. Thanks to NVIDIA for generous hardware
donations.

References

[1] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y.
Park, M. Ren, A. Aiken, W. J. Dally, P. Hanrahan, Sequoia: Programming the
memory hierarchy, in: SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, 2006. doi:10.1145/1188455.1188543.

[2] D. E. Keyes, Terascale implicit methods for partial differential equations, in:
X. Feng, T. P. Schulze (Eds.), Recent Advances in Numerical Methods for Partial
Differential Equations and Applications, Vol. 306 of Contemporary Mathematics,
American Mathematical Society, 2002, pp. 29–84.

[3] P. Colella, T. H. Dunning Jr., W. D. Gropp, D. E. Keyes, A science–based case
for large–scale simulation, Tech. rep., Office of Science, US Department of Energy,
http://www.pnl.gov/scales (Jul. 2003).

[4] C. C. Douglas, D. T. Thorne, A note on cache memory methods for multigrid in
three dimensions, Contemporary Mathematics 306 (2002) 167–177.

[5] C. C. Douglas, J. Hu, W. Karl, M. Kowarschik, U. Rüde, C. Weiß, Fixed and
adaptive cache aware algorithms for multigrid methods, in: E. Dick, K. Riem-
slagh, J. Vierendeels (Eds.), Multigrid Methods VI, Vol. 14 of Lecture Notes in
Computational Science and Engineering, Springer, 2000, pp. 87–93.

[6] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, C. Weiß, Cache optimization for
structured and unstructured grid multigrid, Electronic Transactions on Numerical
Analysis 10 (2000) 21–40.

[7] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. J. Dongarra, Tools
and techniques for performance – exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for
linear systems), in: SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006, p. 113. doi:10.1145/1188455.1188573.

[8] A. Buttari, J. J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov,
The impact of multicore on math software, in: Proceedings of PARA 2006,
Applied Parallel Computing. State of the Art in Scientific Computing, Vol.
4699 of Lecture Notes In Computer Science, Springer, 2006, pp. 1–10. doi:

10.1007/978-3-540-75755-9_1.

[9] A. Buttari, J. J. Dongarra, J. Kurzak, PLASMA Web page, http://icl.cs.utk.
edu/plasma (2009).

17

http://dx.doi.org/10.1145/1188455.1188543
http://www.pnl.gov/scales
http://dx.doi.org/10.1145/1188455.1188573
http://dx.doi.org/10.1007/978-3-540-75755-9_1
http://dx.doi.org/10.1007/978-3-540-75755-9_1
http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/plasma

[10] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, The potential
of the Cell processor for scientific computing, in: CF ’06: Proceedings of the
ACM International Conference on Computing Frontiers, 2006, pp. 9–20. doi:

10.1145/1128022.1128027.

[11] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
T. J. Purcell, A survey of general-purpose computation on graphics hardware,
Computer Graphics Forum 26 (1) (2007) 80–113. doi:10.1111/j.1467-8659.

2007.01012.x.

[12] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips, GPU
computing, Proceedings of the IEEE 96 (5) (2008) 879–899. doi:10.1109/JPROC.
2008.917757.

[13] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, H. Zhang, PETSc Web page, http://www.mcs.anl.gov/
petsc (2001).

[14] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, K. S. Stanley, An
overview of the Trilinos project, ACM Transactions on Mathematical Software
31 (3) (2005) 397–423, http://trilinos.sandia.gov/. doi:10.1145/1089014.

1089021.

[15] M. Blatt, P. Bastian, On the generic parallelisation of iterative solvers for the finite
element method, International Journal of Computational Science and Engineering
4 (1) (2008) 56–69. doi:10.1504/IJCSE.2008.021112.

[16] P. Gottschling, D. S. Wise, M. D. Adams, Representation-transparent matrix
algorithms with scalable performance, in: ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, 2007, pp. 116–125. doi:10.1145/

1274971.1274989.

[17] S. Turek, C. Becker, S. Kilian, Hardware–oriented numerics and concepts for
PDE software, Future Generation Computer Systems 22 (1-2) (2004) 217–238.
doi:10.1016/j.future.2003.09.007.

[18] A. I. Delis, T. D. Katsaounis, Numerical solution of the two-dimensional shallow
water equations by the application of relaxation methods, Applied Mathematical
Modelling 29 (8) (2005) 754–783. doi:10.1016/j.apm.2004.11.001.

[19] D. C. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. R. Johns,
J. A. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. L.
Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,
K. Yazawa, The design and implementation of a first-generation CELL processor,
in: Solid-State Circuits Conference, ISSCC 2005, Digest of Technical Papers,
2005, pp. 184–592 Vol. 1. doi:10.1109/ISSCC.2005.1493930.

[20] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, D. Shippy,
Introduction to the Cell multiprocessor, IBM Journal of Research and Develop-
ment 45 (4/5) (2005) 589–604, http://www.research.ibm.com/journal/rd/494/
kahle.html. doi:10.1147/rd.494.0589.

18

http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://trilinos.sandia.gov/
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1504/IJCSE.2008.021112
http://dx.doi.org/10.1145/1274971.1274989
http://dx.doi.org/10.1145/1274971.1274989
http://dx.doi.org/10.1016/j.future.2003.09.007
http://dx.doi.org/10.1016/j.apm.2004.11.001
http://dx.doi.org/10.1109/ISSCC.2005.1493930
http://www.research.ibm.com/journal/rd/494/kahle.html
http://www.research.ibm.com/journal/rd/494/kahle.html
http://dx.doi.org/10.1147/rd.494.0589

[21] Sony Corporation, Toshiba Corporation, IBM Corporation, Cell BE processor
and blade systems, http://www-03.ibm.com/technology/splash/qs20/, http:

//www.ibm.com/developerworks/power/cell.

[22] A. Buttari, P. Luszczek, J. Kurzak, J. J. Dongarra, G. Bosilca, SCOP3: A rough
guide to scientific computing on the PlayStation 3, Tech. rep., Innovative Com-
puting Laboratory, University of Tennessee Knoxville, UT-CS-07-595 (2007).

[23] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: A unified
graphics and computing architecture, IEEE Micro 28 (2) (2008) 39–55. doi:

10.1109/MM.2008.31.

[24] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture
Programming Guide (Version 2.0), http://www.nvidia.com/cuda (2008).

[25] IBM Corporation, SPE Runtime Management Library, http://www-01.ibm.com/
chips/techlib/techlib.nsf/pages/main (2007).

[26] M. P. Perrone, T. Sowadagar, Cell BE software programming and toolkits, in: SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 2006.
doi:10.1145/1188455.1188466.

[27] D. Göddeke, R. Strzodka, Performance and accuracy of hardware-oriented na-
tive, emulated- and mixed-precision solvers in FEM simulations (part 2: Double
precision GPUs), Tech. rep., Fakultät für Mathematik, Technische Universität
Dortmund, Nummer 370, invited talk at NVISION 2008 - The World of Visual
Computing (2008).

[28] K. Goto, GotoBLAS, http://www.tacc.utexas.edu/resources/software/

#blas.

[29] D. Göddeke, R. Strzodka, S. Turek, Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations, In-
ternational Journal of Parallel, Emergent and Distributed Systems 22 (4) (2007)
221–256. doi:10.1080/17445760601122076.

[30] C. Becker, Strategien und Methoden zur Ausnutzung der High-Performance-
Computing-Ressourcen moderner Rechnerarchitekturen für Finite Element Sim-
ulationen und ihre Realisierung in FEAST (Finite Element Analysis & Solu-
tion Tools), Ph.D. thesis, Universität Dortmund, http://www.logos-verlag.de/
cgi-bin/buch?isbn=1637 (May 2007).

19

http://www-03.ibm.com/technology/splash/qs20/
http://www.ibm.com/developerworks/power/cell
http://www.ibm.com/developerworks/power/cell
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1109/MM.2008.31
http://www.nvidia.com/cuda
http://www-01.ibm.com/chips/techlib/techlib.nsf/pages/main
http://www-01.ibm.com/chips/techlib/techlib.nsf/pages/main
http://dx.doi.org/10.1145/1188455.1188466
http://www.tacc.utexas.edu/resources/software/#blas
http://www.tacc.utexas.edu/resources/software/#blas
http://dx.doi.org/10.1080/17445760601122076
http://www.logos-verlag.de/cgi-bin/buch?isbn=1637
http://www.logos-verlag.de/cgi-bin/buch?isbn=1637

	Introduction
	Hardware
	Software
	Paper contribution
	Related work and comparison with other libraries
	Paper organisation

	Theoretical background
	The Poisson problem
	The 2D Shallow Water equations

	Overview of the software structure
	Description of the individual software components
	Frontends
	Backends
	Client applications

	Installation instructions
	Results
	Basic architecture comparison
	Multigrid Poisson solver
	Accuracy
	Performance

	Shallow Water solver
	Application-specific optimisations
	Accuracy and performance on the Cell processor

	Conclusions and future work

