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Summary
Generalized hyperinterpolation on the sphere is a constructive and
uniformly convergent approximation method. Even in the case of
discretized Newman-Shapiro operators, where the kernel is known in
formula, the degree of complexity is high, but it can be reduced con-
siderably by truncation if product Gauß quadratures are used. To
avoid unnecessary many evaluations, it is essential that the quadra-
ture is changed off the equator. This work is a completed version of [4].
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1 Introduction

Generalized hyperinterpolation on the unit sphere Sr−1 in IRr, r ∈ IN \{1}, is
a constructive approximation method, which arises from hyperinterpolation
by summation, [2], [3]. Not too surprising in a typical multivariate problem,
the order of complexity is large. But in a particular case, the numerical
expense can be reduced considerably by a particular technique. This is the
topic of what follows.

By ω we denote the standard measure on Sr−1, and put λ := r−2
2

. For µ ∈ IN0

and ν := bµ
2
c, the Newman–Shapiro operator Lµ is defined by

(LµF )(x) :=
∫

Sr−1

F (t)Kµ(tx) dω(t) (1.1)

for F ∈ C(Sr−1) and x ∈ Sr−1, where

Kµ(η) =

[
γν+1 · Cλ

ν+1(η)

η − ην+1

]2

(1.2)
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is a positive polynomial of degree 2ν, and where the constant γν+1 is chosen
such that ∫

Sr−1

Kµ(tx) dω(t) = 1 (1.3)

holds for x ∈ Sr−1. In (1.2), ην+1 denotes the greatest zero of the Gegenbauer
polynomial Cλ

ν+1(η). Note that the value of the constant γν+1 is well-known,
([3], p. 239). Newman and Shapiro used these operators in order to prove
Jackson’s inequality on the sphere, [1], but actually they even allow an error
estimate by the modulus of continuity of the second order, ([3], Th. 6.36).
Moreover, if the integral (1.1) is evaluated by means of a positive quadrature
with nodes t1, . . . , tM and weights A1, . . . , AM , which is exact for all polyno-
mials of degree 2µ, then the positive linear polynomial operators L̂µ, defined
by

(L̂µF )(x) :=
M∑

j=1

AjF (tj)Kµ(tjx) (1.4)

for F ∈ C(Sr−1) and x ∈ Sr−1, arise and form a generalized hyperinterpola-
tion process, which is convergent in the uniform norm ‖ · ‖∞ on Sr−1, ([3],
Th. 6.34). Note that, as in interpolation, the approximant L̂µF is defined by
the function values F (t1), . . . , F (tM) only, which we assume to be available
in the storage.

Moreover, for all sufficiently smooth functions, the error law

‖F − L̂µF‖∞ = O(µ−2)

is valid for µ →∞. This is the best possible approximation order attainable
for a general function by positive polynomial operators, and caused our par-
ticular interest in the discretized Newman–Shapiro operators (1.4).

Convergence still holds if the quadratures are exact only of degree µ + 1, see
proof of ([3], Th. 6.34). However, they should use not too many nodes and
yet provide high exactness. It is advisable to store the real numbers

aj(F ) := AjF (tj), j = 1, . . . , M,

in advance. A good choice are product Gauß quadratures, see [5] or [3],
e.g. But even in their case, the cost of a standard evaluation of (1.4) at a
single point x are at least of the order µr. By means of the fast Fourier
transform, they can be reduced to the order µr−1log µ, though at the price
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of much organisation work. This tool need not be given up in what follows,
but the issue must be to avoid kernel evaluations in advance where ever this
is possible. This the more, if the graph of L̂µF is to be made visable, say by
the help of a 50 × 50–grid, which requires 2500 operator evaluations by an
immense amount of arithmetical operations.

However, the kernel function Kµ(η) is very steep near to the point η = 1. In
other words, it is quickly decreasing off this point. Therefore it suffices in the
calculation of (1.4) to take into account only those nodes which belong to a
given neighbourhood Uµ(x) of x, i.e. to consider, instead of L̂µ, the operator

M̂µ defined by

(M̂µF )(x) :=
∑

tj∈Uµ(x)

aj(F ) ·Kµ(tjx) (1.5)

for F and x as above. We call M̂µ a truncated generalized hyperinterpolation
operator, and proved in [3] that under proper assumptions the approximation
order is not distroyed, while the cost are reduced considerably – provided
the calculation of the nodes, which belong to the neighbourhood, is not too
expensive. However, just this is a serious problem. We show how it can be
mastered in case of product Gauß quadratures, where the nodes are known
explicitly. But foremost we discuss the important question how high degree
kernels can be evaluated efficiently and stably at all.

2 Evaluation of the Approximant

2.1 Reduction of the Kernel Degree

It follows from (1.2) that the evaluation of the kernel Kµ(η) at a point η
requires two multiplications after the evaluation of the polynomial

Aν(η) :=
Cλ

ν+1(η)

η − ην+1

. (2.1)

Near to ην+1, and this is the interesting area, the division by η − ην+1 is
numerically outmost problematic – and avoidable. To prove this we use the
formulae

Cλ
2κ(η) = aλ

κ · P
(λ− 1

2
,− 1

2
)

κ (2η2 − 1), (2.2)

Cλ
2κ+1(η) = bλ

κ · η · P
(λ− 1

2
, 1
2
)

κ (2η2 − 1), (2.3)
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which hold with proper coefficients aλ
κ and bλ

κ, see ([6], p.178).

Now let us assume first that ν = 2κ is even, and that ζκ is the greatest zero

of the Jacobi polynomial P
(λ− 1

2
, 1
2
)

κ (ζ). Substituting

ζ = 2η2 − 1, ζκ = 2η2
κ − 1,

we get from (2.1) and (2.3)

Aν(η) = bλ
κ · η · (η + ην+1) · P

(λ− 1
2
, 1
2
)

κ (ζ)

ζ − ζκ

, (2.4)

where ζκ is the greatest zero of P
(λ− 1

2
, 1
2
)

κ (ζ). We calculate ζκ in advance, and
get ην+1 by putting

ην+1 :=

√
1 + ζκ

2
. (2.5)

Finally we use the Formula of Christoffel–Darboux, which in our case takes
the form

P
(λ− 1

2
, 1
2
)

κ (ζ)

ζ − ζκ

=
κ−1∑

k=0

cλ
k · P

(λ− 1
2
, 1
2
)

k (ζκ) · P (λ− 1
2
, 1
2
)

k (ζ) (2.6)

with well-known coefficients cλ
κ, [6]. We write this in the form

P
(λ− 1

2
, 1
2
)

κ (ζ)

ζ − ζκ

=
κ−1∑

k=0

γλ
k · P

(λ− 1
2
, 1
2
)

k (ζ), (2.7)

and assume that the coefficients, which fortunately are all positive, are eval-
uated and stored also in advance. Now it is easy to evaluate (2.7) by means
of the recurrence relation of the Jacobi polynomial in a Clenshaw-type algo-
rithm, which is remarkably stable.

Summarizing we state that the problematic evaluation of the kernel, which
has the degree µ = 4κ, has been reduced to an unproblematic evaluation of
a polynomial of degree κ− 1 by means of 6 arithmetical operations.

The case ν = 2κ + 1 can be treated likewise by means of (2.1) and of (2.2).
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2.2 Truncation

In what follows let r = 3. We want to define L̂µ and likewise M̂µ by means of
a product Gauß quadrature which is exact of degree 2m + 1, where m ∈ IN0

is allowed to be different from µ, but is assumed to satisfy 2m ≥ µ. Such a
quadrature is described by the formula

∫

S2

F (x) dω(x) =
2m+2∑

j=1

m+1∑

k=1

π
m+1

·ck ·F
(

cos
j− 1

2

m+1
π·sin ψk, sin

j− 1
2

m+1
π·sin ψk, cos ψk

)

to hold for all polynomials F of degree 2m + 1, where the points ξk = cos ψk

are the zeros of the Legendre polynomial C
1
2
m+1, put into the order

−1 < ξm+1 < . . . < ξ1 < 1, (2.8)

while the ck are the corresponding interpolatory weights, see [5] or ([3], p.211
ff.), e.g. Both are assumed to be calculated in advance at full precision – a
serious problem itself.

We introduce the map x : IR× [0, π] → S2 by

x(φ, ψ) := (cos φ sin ψ, sin φ sin ψ, cos ψ)′, (2.9)

and define the nodes
tj,k := x(φj, ψk) ∈ S2 (2.10)

by the help of the angles

φj :=
j− 1

2

m+1
π (2.11)

for j ∈ ZZ and k ∈ {1, . . . , m + 1}. Note that the nodes are periodic with
respect to j with period 2µ + 2. This will make the notation easier in what
follows. Note also that our quadrature can now be written in the form

∫

S2

F (x) dω(x) =
2m+2∑

j=1

m+1∑

k=1

π
m+1

· ck · F (tj,k). (2.12)

It is uniquely determined by its node system

Tm
3 :=

{
tj,k | j = 1, . . . , 2m + 2, k = 1, . . . , m + 1

}
, (2.13)

where the subscript indicates that it is generated from the (x1, x2)–plane by
a product with respect to the x3–axis. Likewise we define the node systems
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Tm
1 and Tm

2 with respect to cyclically permutated axes.

We have not yet decided which of these quadratures is to be used in the
definition of the approximants L̂µ and M̂µ. We decide to use all three to-
gether, in dependence of the location of x, and this for the following reason.
The node density, say of Tm

3 , near to the poles ±e3 is much larger than at
the equator x3 = 0. Therefore the number of nodes, which are located, for
instance, in a neighbourhood of e3, causes much more evaluation work than
if the neighbourhood belongs to an equator point. For this reason we use Tm

3

in the definition of the approximant only if x belongs to the collar

− 1√
3
≤ x3 ≤ 1√

3
. (2.14)

For Tm
1 and Tm

2 similar holds. To be more precise, under the condition (2.14),
(1.5) takes the form

(
M̂m

µ F
)
(x) =

(
M̂m

µ,3F
)
(x) :=

∑

tj,k∈Uµ(x)

aj,k(F ) ·Kµ(tj,kx), (2.15)

with
aj,k(F ) := π

m+1
· ck · F (tj,k),

see (2.12) and (2.13), and we change and complete the definition in the
remaining cases by putting

(
M̂m

µ F
)
(x) :=





(
M̂m

µ,3F
)
(x) for x2

3 ≤ 1
3
,(

M̂m
µ,1F

)
(x) for x2

3 > 1
3

and x2
1 ≤ 1

3
,(

M̂m
µ,2F

)
(x) for x2

3 > 1
3
, x2

1 > 1
3
, and x2

2 < 1
3
,

where M̂m
µ,1 and M̂m

µ,2 are defined by means of Tm
1 or Tm

2 , respectively.

After that we consider without restriction of generality the case (2.14), (2.15),
where (M̂m

µ F )(x) is defined by the help of Tm
3 . We assume that all values

aj,k(F ), at least all which are really needed, are calculated and stored in
advance. Moreover we assume that a truncation number κ ∈ IN0 is given
which satisfies 2κ < m and

−ξm+1−κ = ξ1+κ >
1√
3
. (2.16)

Such a number exists if m is sufficiently large in comparison to κ.
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After that let x = x(φ, ψ) ∈ S2 be given and satisfying (2.14). We want to
determine the neighbourhood of x such that Qκ(x) := Uµ(x) ∩ Tm

3 takes the
form

Qκ(x) :=
{
tj,k | j ∈ {p− κ, . . . , p + κ}, k ∈ {q − κ, . . . , q + κ}

}
(2.17)

with numbers p ∈ {1, . . . , 2m+2} and q ∈ {1+κ, . . . , m+1−κ}. The center
tp,q of Qκ(x) should be located as near to x, as possible, and its evaluation
should be rather easy.

In order to realize these requirements, we put

p :=

⌊
m + 1

π
φ

⌋
+ 1, (2.18)

such that
φp − π

2(m + 1)
≤ φ < φp +

π

2(m + 1)
(2.19)

holds, while the calculation of q takes two steps.

First we define q̄ ∈ {1 + κ, . . . ,m− κ} such that

ψq̄ ≤ ψ < ψq̄+1

holds. Such a number exists because of the assumption (2.16). Moreover,
following ([6], p. 183), we get the inequalities

q̄ − 1
2

m + 3
2

π ≤ ψq̄ ≤ ψ < ψq̄+1 ≤ q̄ + 1

m + 3
2

π. (2.20)

Now we calculate the number

s :=

⌊
m + 3

2

π
ψ

⌋
. (2.21)

¿From (2.20) we obtain s − 1 < q̄ ≤ s + 1, and hence q̄ ∈ {s, s + 1}, and
applying the cosine-function to (2.20) we find that either

ξs+1 < x3 ≤ ξs

or
ξs+2 < x3 ≤ ξs+1
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must hold. Therefore we get q̄ by the statement

if ξs+1 < x3 then q̄ := s else q̄ := s + 1. (2.22)

Moreover, it follows from the definition of q̄ that

ξq̄+1 < x3 ≤ ξq̄

holds, where one of the points is located nearest to x3, say ξq. We calculate
q finally by the statement

if (ξq̄ + ξq̄+1)/2 ≤ x3 then q := q̄ else q := q̄ + 1. (2.23)

As a summary we state, that we could determine the point tp,q ∈ Tm
3 under

the restriction (2.14) by the simple statements (2.18) and (2.21) – (2.23), and
this such that

|φ− φp| ≤ π

2(m + 1)

and

|x3 − ξq| ≤ ξq̄ − ξq̄+1

2
is valid. In this sense tp,q is located nearest to x. Finally we remark that
(2.15) takes now the form

(
M̂m,κ

µ F
)
(x) =

(
M̂m,κ

µ,3 F
)
(x) :=

∑

tj,k∈Qκ(x)

aj,k(F ) ·Kµ(tj,kx), (2.24)

If x does not belong to the collar x2
3 ≤ 1

3
, then we have either x2

1 ≤ 1
3

or

x2
2 < 1

3
, and the definition of (M̂m,κ

µ F )(x) is completed by a similar construc-
tion, where Tm

1 or Tm
2 , respectively, takes the part of Tm

3 .

In all cases the calculation of (M̂m,κ
µ F )(x) is straight-forward and requiring

(2κ + 1)2–times an evaluation of the kernel, i.e. of the univariate polynomial
(2.7). By using the recurrence relation of the Jacobi polynomials, we can
solve this task by ≈ κ2 ·µ arithmetical operations. By the fast Fourier trans-
form, the cost could be reduced to ≈ log κ · µ operations, but the numerical
profit arising from formula (2.7) would get lost. Moreover, κ will be a small
number in practice.

We finish this section by mentioning that it is possible to derive upper bounds
to the error

‖F − M̂m,κ
µ F‖∞

by the method presented in ([3], Section 6.10).
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2.3 The Number of Nodes

Each of the systems Tm
3 , Tm

1 , and Tm
2 contains M(m) = 2(m + 1)2 nodes,

but not all of them are participating in the definition of M̂m,κ
µ . We want to

estimate the number of nodes which are really used. To this end we define
the subsets

Z3 := {x ∈ S2 |x2
3 ≤ 1

3
},

Z1 := {x ∈ S2 |x2
3 > 1

3
, x2

1 ≤ 1
3
},

Z2 := {x ∈ S2 |x2
3 > 1

3
, x2

1 > 1
3
, x2

2<
1
3
},

and put
T̂m

j := Tm
j ∩ Zj,

nj := card (T̂m
j ) (2.25)

for j = 1, 2, 3. Obviously, for every j ∈ {1, 2, 3} the nj nodes of T̂m
j partici-

pate, but there are at most 4(κ+1)(m+1) further nodes of Tm
j participating,

namely those which are located on a parallel circle xj = ±ξn−1, . . . ,±ξn−1−κ,
up to 2(m+1) in number on each circle, where n is the lowest number which
satisfies

ξn ≤ 1√
3
.

So the total number N(m,κ) of nodes used in the definition of M̂m,κ
µ satisfies

N(m,κ) ≤ n1 + n2 + n3 + 12(κ + 1)(m + 1). (2.26)

To get an upper bound of n3, we count the parallel circles x3 = ξn, . . . , ξm+2−n

which are contained in Z3. Their number is m+3−2n. Following again ([6],
p. 183), we get

arccos
1√
3
≤ ψn ≤ n

m + 3
2

· π,

and hence
n ≥ (m + 3

2
) · c (2.27)

with the constant

c :=
1

π
arccos

1√
3
.
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Moreover, each of these parallel circles contains exactly 2(m + 1) nodes of
Tm

3 , so we get n3 = 2(m + 3− 2n)(m + 1), and hence, in view of (2.27),

n3 ≤ 2
(
m + 3− (2m + 3)c

)
· (m + 1). (2.28)

Next we estimate n1 by considering the orthogonal projection of S2 onto the
(x2, x3)–plane. Here the nodes of T̂m

1 occur on the circles x2
2 + x2

3 = 1 − x2
1

with x1 ∈ {ξn, . . . , ξm+2−n}, restricted to the domain x2
3 > 1

3
. On each of

these circle restrictions there are at most as many nodes, as angles φj, j ∈
{1, . . . , 2m + 2} exist which satisfy

| sin φj| > 1√
3
.

By symmetry, this is twice the number attainable under the restriction j ∈
{1, . . . , m + 1}. In view of the symmetry φm+2−j = π − φj, we may assume
that these are the angles

φj, j ∈
{
k, . . . ,m + 2− k

}
, k ∈

{
1, . . . , bm+2

2
c
}
. (2.29)

Obviously, their number is m + 3− 2k, where k satisfies sin φk > 1√
3
, which

implies

k >
1

2
+ (m + 1) · s,

where

s :=
1

π
arcsin

1√
3
.

Altogether this yields n1 ≤ 2(m + 3− 2n)(m + 3− 2k), and hence

n1 ≤ 2
(
m + 3− (2m + 3)c

)
·
(
m + 2− 2(m + 1)s

)
. (2.30)

Likewise we estimate n2 by considering the orthogonal projection of S2 onto
the (x3, x1)–plane. The nodes of T̂2 can now be counted by the number of
parallel circles x2

3 + x2
1 = 1 − x2

2, x2 ∈ {ξn, . . . , ξm+2−n}, and the number of
j–s which satisfy

| sin φj| > 1√
3

and | cos φj| > 1√
3
.
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This is fourtimes the number of the corresponding φj–s which are located in
the interval [0, π

2
). Assume these are exactly the angles

φj, j ∈ {k, . . . , l}, (2.31)

where k is as above, while l satisfies cos φl > 1√
3
. Then their number is

l + 1− k, where

l <
1

2
+ (m + 1) · c,

c as above. Altogether this yields n2 ≤ 4(m + 3− 2n)(l + 1− k), and hence

n2 ≤ 4
(
m + 3− (2m + 3)c

)
·
(
1 + (m + 1)(c− s)

)
. (2.32)

Finally we obtain from (2.28),(2.30), and (2.32) the inequalities

n1 + n2 + n3 < 2
(
m + 3− (2m + 3)c

)
·
(
2m + 5 + 2(m + 1)(c− 2s)

)

<∼ 4(1− 2c)(1 + c− 2s)(m + 1)2

< 0.72 ·M(m). (2.33)

Therefore the following corollary holds in view of (2.26).

Corollary.

Assume κ = κ(m) satisfies κ(m) = o(m). Then the total number N(m,κ) of
nodes which occur in the definition of M̂m,κ

µ satisfies

N(m,κ) <∼ 0.72 ·M(m)

for m →∞, where M(m) = 2(m + 1)2 is the number of nodes in a product
Gauß quadrature which is exact of degree 2m + 1.

The Corollary says that though we use three different product Gauß quadra-
tures, instead of one, the number of function values which are used is reduced
significantly. This effect is due to the minor node density near to the equator.

3 Numerical Examples

In ([3], Section 6.10) we discussed a numerical example in order to show that
the approximation order is not increased essentially by modest truncation.
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However, to get a reasonable processing time, we allowed the quadrature to
depend on the point in calculation. This method is no more constructive,
contrary to the method defined in Section 2.2 of this paper, which we inves-
tigate numerically in what follows for various parameter values. The kernel
degree has the value µ = 160 or 300, while the product Gauß quadratures
are exact for all polynomials of degree to 161, 181, or 321, respectively.

To make figurative, how truncation works, we consider first the action of L̂µ

on the unity function F0 = 1. We use a product Gauß quadrature which is
exact for all polynomials of degree 2m+1 = 161, such that Lµ1 = 1 = L̂µ1 is
valid. Its number of nodes is M = 13122. To obtain Figure 1, we ordered the
nodes tj by their distance from the test point x = e3, and asked how much
do the first n nodes contribute to the sum (1.4). In other words, Figure 1
shows the function f defined by

f(n) :=
n∑

j=1

AjK160(tje3) →
(
L̂1601

)
(e3) = 1

for n = 1, . . . , M , where we use a logarithmic scale in the n–direction.

M

f(n)

n

0.5

1

0

100001000100101

Figure 1. Contribution of the First n Points to Unity.

Obviously, the first 10 nodes are important, the next 40 increase the accu-
racy, but the remaining are more or less redundant. This result is covered
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by our theory developped in ([3], Section 6.10).

To obtain the following numerical results, we used a Maple implementation
of the operator M̂m,κ

µ , as it is defined in Section 2.2 by the help of the node
systems Tm

3 , Tm
1 , and Tm

2 .

Tabular 1 shows, again for F0 = 1, the error caused by the truncated opera-
tors. This function stands for an arbitrary harmless function.

κ node ‖1− M̂80,κ
160 1‖∞

number ≈
0 1 7 · 10−1

1 9 3 · 10−2

2 25 4 · 10−3

3 49 1 · 10−3

4 81 5 · 10−4

5 121 3 · 10−4

Tabular 1. Error of the Truncated Operator (F0 = 1).
The product Gauß quadrature is exact of degree 161

and acts on M=13122 nodes.

In comparison to the cost, the gain of accuracy is great in the beginning, say
from κ = 0 to κ = 1 or κ = 2, but a greater κ is just causing evaluation cost
– in correspondence to our reasoning from above.

In the following we raise the parameters. For m = 90 (160), the product
Gauß quadrature is exact for all polynomials of degree 181 (321), and using
M = 16252 (52842) nodes. Moreover, in the representation of spherical
functions, we use the parametrisation x = x(u) of S2 defined by

x1 =

√
1− u2

1 + u2
2

4
· u1,

x2 =

√
1− u2

1 + u2
2

4
· u2,

x3 = 1− u2
1 + u2

2

2

for u2
1 + u2

2 ≤ 4. It is one-to-one, except for the margin u2
1 + u2

2 = 4, which
corresponds to the ’south pole’ −e3. The map u 7→ x(u) is area preserving,
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such that the originals of the nodes occur on the disk u2
1 + u2

2 ≤ 4 with the
same density as the nodes on the sphere S2 themselves.

In this parametrisation, the next test function is given by

F1(x(u)) =
1

1 + 8(u1 − 1
2
)2 + 3(u2 − 3

10
)2 (3.1)

for |u| ≤ 2. It is no more a polynomial, satisfies

0 ≤ F1(x(u)) ≤ 1,

and represents an average function. Figure 2 shows this function, Figure 3a
and Figure 3b error functions belonging to it for the truncation parameter
κ = 3, both restricted to the northern hemisphere S2

+ := {x ∈ S2 | x3 ≥ 0},
which corresponds to the disk u2

1 + u2
2 ≤ 2.

–1

0

1

u1

–101
u2

0

0.2

0.4

0.6

0.8

1

Figure 2. Original Function F1((x(u)).
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–1

0

1

u1

–101
u2

0

0.002

0.004

0.006

Figure 3a. Error Function belonging to Figure 2.
(µ = 160, m = 90, κ = 3)

–1

0

1

u1

–101
u2

0

0.002

0.004

0.006

Figure 3b. Error Function belonging to Figure 2
(µ = 300, m = 160, κ = 3)
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Finally we consider the test function defined by

F2(x(u)) = 1
2

(
1 + sin [5(u1 − u2)(u2 − 3

5
)]

)
(3.2)

for |u| ≤ 2, which satisfies again

0 ≤ F2(x(u)) ≤ 1,

but is no more so harmless. It is thought to simulate a geodetic situation,
with mountains, valleys, and a saddle-point. We introduced it already as a
test function in [3]. Note that it is far off being a polynomial.

Tabular 2 shows the error caused by truncation for several parameter values.

κ node ‖F − M̂90,κ
160 F‖∞ ‖F − M̂160,κ

160 F‖∞ ‖F − M̂160,κ
300 F‖∞

number ≈ ≈ ≈
0 1 7 · 10−1 9 · 10−1 8 · 10−1

1 9 6 · 10−2 3 · 10−1 4 · 10−2

2 25 3 · 10−2 5 · 10−2 1 · 10−2

3 49 3 · 10−2 3 · 10−2 1 · 10−2

4 81 3 · 10−2 3 · 10−2 1 · 10−2

5 121 3 · 10−2 3 · 10−2 1 · 10−2

Tabular 2. Error of Truncated Approximation (F = F2).

Obviously, in view of areas where the curvature of F is very large, it does
not pay to use locally more than 25 or at most 49 nodes, or even to evaluate
(L̂µF )(x) at full precision, such that we may speak of κ–saturation.

Moreover, it is worthwhile to consider the general case m = µ, where L̂µ is
a hyperinterpolation operator in the strict sense, see ([3], Definition 6.7). In
this case, the number of quadrature nodes is M = 2(µ+1)2, and the average
of the weights equals 4π

M
. Therefore we get, by the arguments used in ([4],

page 253, Remark 3), that the average–weighted kernel function satisfies

2π

(µ + 1)2
Kµ(1) ∼ 1

2j2
0,1

≈ 0.0862 ≈ 1

12
,

where j0,1 is the lowest positive zero of the Bessel function J0. This says that
the 11 or 12 nodes nearest to x, must contribute already the essential part
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to the value of (L̂µF )(x) – in accordance to our experimental results.

Figure 4 and Figure 5a and 5b show the original function and the correspond-
ing error functions for m = 90 and m = 160, both restricted to S2

+, again for
the truncation parameter κ = 3.

Finally we want to give an impression of the processing time needed: A single
evaluation u 7→ (M̂90,3

160 F )(x(u)), for instance, takes about 1.5 seconds on a
simple personal computer (Pentium-S, CPU at 133 MHz). Accordingly, the
calculation of a whole image, based on a usual 15 × 15–grid, requires about
6 minutes. However, the untruncated operator would need about 20 hours.
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0

1

u2
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1

Figure 4. Original Function F2((x(u))
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Figure 5a. Error Function belonging to Figure 4.
(µ = 160, m = 90, κ = 3)
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Figure 5b. Error Function belonging to Figure 4.
(µ = 300, m = 160, κ = 3)
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