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Forward uncertainty propagation in complex systems:

X = S(ξ)

ξ = input (random variable, known pdf)

X = output (random variable, unknown pdf ρ)

S = System’s action (deterministic, known)

Aim: determine the pdf ρ of X (nonintrusively!)

Note: only a finite amount of information can be pushed through S .
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Outline:

Methodology

Error Analysis

Experiments (i.a. rough random obstacle problem)
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Idea 1: (→ Fabio’s talk on Monday)

Determine point values ρ(xi ), for x0 < x1 < · · · < xN

Interpolate for x ∈ (xi , xi+1)

M. B. Giles, T. Nagapetyan, and K. Ritter, Multilevel Monte

Carlo Approximation of Distribution Functions and Densities, SIAM/ASA

J. Uncert. Quantif., 3 (2015), pp. 267–295

Adv.: More point values → better approximation (stability, conv.).

Drawback: Many unknown parameters in the algorithm (complex).

See also the “antiderivative approach”:

S. Krumscheid and F. Nobile, Multilevel Monte Carlo approximation

of functions, MATHICSE technical report Nr. 12.2017
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Idea 2 (explore in this talk):

Determine the (generalized) moments µ1, . . . , µR of X

µk = E[φk(X )]

Reconstruct η that satisfies the moment constraints:

a) µk =

∫
φk(x)η(x) dx

b) η(x) ≥ 0 and

∫
η(x) dx = 1.

C. Bierig and A. Chernov, Approximation of probability density

functions by the Multilevel Monte Carlo Maximum Entropy method,

J. Comput. Physics, 314 (2016), 661–681 a

aBased on earlier works [Csiszár’75], [Barron, Sheu’91], [Borwein, Lewis’91]

Advantage: Only a few parameters (simple)

Drawback: More moments → better approximation? (stability?).
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Observe: If the moments µ1, . . . , µR are consistent, the
reconstructed density η is usually not uniquely determined!

How to select the “most appropriate density”?

The Maximum Entropy (ME) method:

Find ρR = argmax
η

(
−
∫
η(x) ln η(x) dx

)
under constraints:

a) µk =

∫
φk(x)η(x) dx , k = 1, . . . ,R

b) η(x) ≥ 0 and

∫
η(x) dx = 1.

“It is least biased estimate possible on the given information; i.e., it
is maximally noncommittal with regard to missing information.”
[E.T. Jaynes, 1957]
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The Maximum Entropy (ME) method:

The solution to this problem can be equiv. characterized as

ρR ∝ exp

(
R∑

k=0

λkφk(x)

)
, λk ∈ R.

where λ0, . . . , λR satisty the constraints (moment matching):

µk =

∫
φk(x)ρR(x) dx , k = 0, . . . ,R,

with µ0 = 1, φ0(x) = 1.
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In this sense:

Entropy maximization
m

moment matching
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Test example:

ρ is the log-normal distribution with µ = 0 and σ = 0.5 and 0.2

Estimation of moments µ1, . . . , µR by MC with 108 samples

λ = (λ0, . . . , λR) determined by the Newton-Raphson method∫
φk(x)ρR(λ, x) dx = µk , k = 0, . . .R.

Stopping parameters for the Newton-Raphson Method:

∆λ ≤ 10−9 (convergence)

∆λ ≥ 103 (no convergence)

#iter ≥ 1000 (no convergence)
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Breaking convergence for the Fourier basis
by choosing a more concentrated density!

e.g. log-normal with µ = 0, σ = 0.2

skip
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Regain stability of the Legendre basis
by choosing a smaller approximation interval!

e.g. [a, b] = [0, 4]
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Observation: µk are not known exactly, we only have

µ̃k ≈ µk , k = 1, . . . ,R

(approx. moments µ̃k may be computed e.g. by MC or MLMC).

Moment matching with µ̃k ⇒ perturbed density

ρ̃R ∈ E :=

{
pθ ∝ exp

(
R∑

k=0

θkφk(x)

)
, θk ∈ R

}
.

Question: What is the distance between ρ and ρ̃R?

19



Consider the natural “metric”

DKL(p‖q) :=

∫
p(x) ln

p(x)

q(x)
dx

(
Kullback-Leibler divergence

or relative entropy

)

“Pythagoras theorem”

DKL(ρ‖ρ̃R) = DKL(ρ‖ρR)︸ ︷︷ ︸
trunc. error

+DKL(ρR‖ρ̃R)︸ ︷︷ ︸
estim. error

.

ρ is the exact density

ρR ∈ E is the ME solution for exact moments µ1, . . . , µR

ρ̃R ∈ E is the ME solution for approx. moments µ̃1, . . . , µ̃R

Truncation error: DKL(ρ‖ρR)→ 0 when R →∞
Estimation error: DKL(ρR‖ρ̃R)→ 0 when µ̃k → µk .

Our aim is the rigorous quantification of these statements.
20



From DKL to Lp-norms:

Relation to Lp-norms

i)
1

2
‖ρ−η‖2L1 ≤ DKL(ρ‖η); ii) Cp‖ρ−η‖pLp ≤ DKL(ρ‖η), ρ, η ∈ L∞.

Relation to L2-norms of the log-density

For two pdf’s ρ and η with ln(ρ/η) ∈ L∞

DKL(ρ‖η) ≥ 1

2
e−‖ ln(ρ/η)‖L∞

∫ ∣∣ ln(ρ/η)
∣∣2ρ dx and

DKL(ρ‖η) ≤ 1

2
e‖ ln(ρ/η)−c‖L∞

∫ ∣∣ ln(ρ/η)− c
∣∣2ρ dx (#)

for any c ∈ R.
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Truncation error is driven by the smoothness of ρ:

polynomial moments
span{1, φ1, . . . , φR} = PR

 
polynomial best
approximation

Conv. of the truncation error

DKL(ρ‖ρR) ≤ 1

2
inf

v∈PR

[
exp

{
‖ ln ρ− v‖L∞

}
‖ ln ρ− v‖2L2(ρ)

]

.

{
R−2s , when ln ρ ∈ Hs , s ≥ 1

exp(−bR), when ln ρ is analytic.

Proof: Choose η = ev/
∫
ev for ∀v ∈ PR in (#).
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Estimation error is driven by the perturbation of moments:

Conv. of the estimation error (a.s.-version)

Suppose ‖µ− µ̃‖ ≤ (2ARCR)−1 where AR ,CR are explicit constants†,

then ρ̃R exists and there holds

DKL(ρR‖ρ̃R) ≤ CR‖µ− µ̃‖2
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Estimation error is driven by the perturbation of moments:

Conv. of the estimation error (a.s.-version)

Suppose ‖µ− µ̃‖ ≤ (2ARCR)−1 where AR ,CR are explicit constants†,

then ρ̃R exists and there holds

DKL(ρR‖ρ̃R) ≤ CR‖µ− µ̃‖2

†AR = max
{
‖v‖L∞/‖v‖L2 : v ∈ PR

}
and CR = 2 exp

{
1 + ‖ ln ρR‖∞

}
.
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Estimation error is driven by the perturbation of moments:

Conv. of the estimation error (a.s.-version)

Suppose ‖µ− µ̃‖ ≤ (2ARCR)−1 where AR ,CR are explicit constants†,

then ρ̃R exists and there holds

DKL(ρR‖ρ̃R) ≤ CR‖µ− µ̃‖2

Caution:
If µ̃k is computed by MC ⇒ ρ̃R may fail to exist (with some prob.)
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Estimation error is driven by the perturbation of moments:

Conv. of the estimation error (probabilistic version, simplified)

Suppose E‖µ− µ̃‖2 ≤ (2ARCR)−2 with the same AR ,CR ,

then ρ̃R exists with prob. 1− p (for p ∈ [p∗, 1]) and it holds

DKL(ρR‖ρ̃R) ≤ CRp
−1E‖µ− µ̃‖2 (∗)
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Estimation error is driven by the perturbation of moments:

Conv. of the estimation error (probabilistic version, simplified)

Suppose E‖µ− µ̃‖2 ≤ (2ARCR)−2 with the same AR ,CR ,

then ρ̃R exists with prob. 1− p (for p ∈ [p∗, 1]) and it holds

DKL(ρR‖ρ̃R) ≤ CRp
−1E‖µ− µ̃‖2 (∗)

Here E‖µ− µ̃‖2 =
R∑

k=1

E|µk − µ̃k |2︸ ︷︷ ︸
standard MSE(µ̃k )

←
can be handled
by the standard
(ML)MC theory
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Structure of the estimate:

DKL(ρ‖ρ̃R) = DKL(ρ‖ρR) + DKL(ρR‖ρ̃R)

⇓ assuming ln ρ ∈ H1

DKL(ρ‖ρ̃R) .
polynomial

best approx.
+

CR

p

R∑
k=1

MSE(µ̃k)

⇓ assuming

{
ln ρ ∈ Hs , s ≥ 1
ln ρ is analytic

}

DKL(ρ‖ρ̃R) .

{
R−2s

exp(−bR)

}
+

CR

p

R∑
k=1

Bias(µ̃k)2 + Var(µ̃k)

CR is unif. bounded when ln ρ ∈ Hs , s > 1

Error vs. cost theorems ← balancing the error contributions
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Theorem (Monte Carlo-ME: Accuracy / Cost, simplified)

Assume in addition that

a) E[(X − X`)
2] . N−β` , b) Cost(X`) . Nγ

`

Then DKL(ρ‖ρ̃R) < ε with probability ≥ 1− p and for the

• single level approximation of Legendre moments:

Cost(ρ̃R) . (pε)−
β+γ
β

 ε
−β+γ(δ+1)

2sβ if ln(ρ) ∈ Hs ,

| ln(ε)|
β+γ(δ+1)

β if ln(ρ) is analytic;

• multilevel approximation of Legendre moments:

Cost(ρ̃R) . (pε)−
max(β,γ)

β

 ε
− (δ+1) max(β,γ)

2sβ if ln(ρ) ∈ Hs ,

| ln(ε)|
(δ+1) max(β,γ)

β if ln(ρ) is analytic.

Here δ is such that E[(φk (X )− φk (X`))2] . kδN−β` and β 6= γ.
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Contact with rough surfaces

ψ(x)
Courtesy: Prof. Udo Nackenhorst, IBNM, Univ. Hannover

Unknown parameter: ψ(x) is the road surface profile.
(irregular microstructure)
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Model: Contact of an elastic membrane with a rough surface (2d)

−∆u ≥ f , u ≥ ψ,
(∆u + f )(u − ψ) = 0,

}
in D,

u = 0 on ∂D.

(
here

D = [−1, 1]2

)

QoI: Membrane deformation u(x); Contact Area Λ(ω) = {x : u(x) = ψ(x)}.
27



Example: Rough obstacle models

Power spectrum [Persson et al.’05]:

ψ(x) =
∑

q0≤|q|≤qs

Bq(H) cos(q · x + ϕq)

where Bq(H) =
π

5
(2πmax(|q|, ql ))−H−1 →

Many materials in Nature and technics

obey this law for amplitudes.

H ∼ U(0, 1) random roughness

ϕq ∼ U(0, 2π) random phase

Forward solver:

Own implementation of MMG (TNNM)

[Kornhuber’94,. . . ]
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Obstacle surfaces of variable/random roughness ψ = ψ(x , ω):
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Estimation of the PDF ρX of the contact area X = |Λ| by
the Maximum Entropy method
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ME r = 60

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface

More experiments and rigorous error analysis in [Bierig/Chernov, JCP, 2016]. 30
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Estimation of the PDF ρX of the contact area X = |Λ| by
the Maximum Entropy method
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38 L2 Projektion R=200, MLMC L=9

ME R=50, MLMC L=9

kde l=4

kde l=5

kde l=6

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface

More experiments and rigorous error analysis in [Bierig/Chernov, JCP, 2016].
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Summary:

Rigorous convergence analysis for the MLMC-Maximum
Entropy Method for compactly suported densities

Num. experiments: smoothness assumptions may be relaxed

Open issue: how to select the number of moment constraints R
in practical computations (in the pre-asymptotic regime)?
Adaptivity?

With appropriate R the method is able to produce good
approximations for a broad class of densities.

Thank you for your attention!
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Numerical examples for synthetic pdf’s of different smoothness:
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Exact synthetic pdf’s ρ1, . . . , ρ5
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Numerical examples for synthetic pdf’s of different smoothness:

−1 −0.5 0 0.5 1
0

0.5

1
Maximum Entropy
KDE r = 2

ln ρ1 is analytic: smoothness assumptions are satisfied

Best maximum entropy approximation over R = 1, . . . , 60 moments
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Numerical examples for synthetic pdf’s of different smoothness:
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Numerical examples for synthetic pdf’s of different smoothness:
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Estimation of the PDF ρX of the contact area X = |Λ| by
the Maximum Entropy method
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ME r = 60

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface

More experiments and rigorous error analysis in [Bierig/Chernov, JCP, 2016]. 34
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