# Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD

Andreas Frommer



SONDERFORSCHUNGSBEREICH HADRON PHYSICS FROM LATTICE QCD



MATHEMATICAL MODELLING, ANALYSIS AND COMPUTATIONAL MATHEMATICS



BERGISCHE UNIVERSITÄT WUPPERTAL

### Collaborators

- ► James Brannick, Penn State University
- Björn Leder, Humboldt Universität Berlin
- Stephan Krieg, Jülich Research Centre
- Karsten Kahl, Matthias Rottmann, Artur Strebel, Universität Wuppertal



# What we learned so far

#### Setting:

- Statistical mechanics: Observables are expected values of operators depending on random variables
- ► Lattice QCD: 4d lattice *L* in space-time
- We need configurations  $\mathcal{U} = \{U_{\mu}(x) : x \in \mathcal{L}, \mu = 1, \dots, 4\}$ of gauge links
- These are obtained from fixed point distribution via Markov chain MC
- Computationally: importance sampling via HMC





The Dirac operator Multigrid Numerical results Connection to Michael Günther's talk QCD and Lattice QCD Dirac and Dirac-Wilson

#### QCD is

- the standard model of the strong interaction between quarks as the constituents of matter
- a quantum field theory
- described by the Dirac operator depending on a background field

#### Lattice QCD is

- a discretization of QCD
- requiring a discretized Dirac operator and ...
- ...a discrete version of the background field: a configuration of gauge links





 The Dirac operator
 Connection to Michael Günther's talk

 Multigrid
 QCD and Lattice QCD

 Numerical results
 Dirac and Dirac-Wilson

#### The Dirac operator

 $(\mathcal{D} + mI)\psi = \eta,$ 

where

- $\psi=\psi(x)$  and  $\eta=\eta(x)$  represent quark fields
- $x = (x_0, x_1, x_2, x_3)$  point in space-time
- ▶ *m* (implicitly) sets the quark mass
- gluons are represented in the Dirac operator  ${\cal D}$

$$\mathcal{D} = \sum_{\mu=0}^{3} \gamma_{\mu} \otimes (\partial_{\mu} + A_{\mu})$$



 The Dirac operator
 Connection to Michael Günther's talk

 Multigrid
 QCD and Lattice QCD

 Numerical results
 Dirac and Dirac-Wilson

$$\mathcal{D} = \sum_{\mu=0}^{3} \gamma_{\mu} \otimes (\partial_{\mu} + A_{\mu})$$

 $\blacktriangleright \ \partial_{\mu} = \partial / \partial x_{\mu}$ 

- A is the gluon (background) gauge field, A<sub>µ</sub>(x) ∈ su(3) (3 × 3, skew-Hermitian and traceless)
- $\gamma_{\mu}$  generators of Clifford algebra

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2 \cdot \delta_{\mu\nu} \quad \text{ for } \mu, \nu = 0, 1, 2, 3.$$

#### **Consequences:**

- $\psi(x) \in \mathbb{C}^{12} \equiv \mathbb{C}^{3 \times 4}$ , 3 colors, 4 spins
- $\gamma_5 = \gamma_0 \gamma_1 \gamma_2 \gamma_3$  satisfies

$$\gamma_5 \gamma_\mu = -\gamma_\mu \gamma_5, \ \mu = 0, 1, 2, 3.$$



#### The Dirac-Wilson matrix $D_W$

**Idea:** Approximate via covariate centralized finite differences and regularize with 2nd order term.

- $\psi = \psi(x)$  with  $x \in \mathcal{L}$  discrete quark field
- $U_{\mu}(x) \in SU(3)$  (unitary, det $(U_{\mu}(x)) = 1$ )

$$(D_W\psi)(x) = \frac{m_0 + 4}{a}\psi(x) - \frac{1}{2a}\sum_{\mu=0}^3 \left( (I_4 - \gamma_\mu) \otimes U_\mu(x) \right)\psi(x+\hat{\mu}) - \frac{1}{2a}\sum_{\mu=0}^3 \left( (I_4 + \gamma_\mu) \otimes U_\mu^H(x-\hat{\mu}) \right)\psi(x-\hat{\mu}),$$



 $m_0$  sets the quark mass

 The Dirac operator
 Connection to Michael Günther's talk

 Multigrid
 QCD and Lattice QCD

 Numerical results
 Dirac and Dirac-Wilson

#### Properties of the Dirac-Wilson matrix $D_W$

- $D_W$  is non-normal
- spectral gaps
- m<sub>0</sub> is set s.t. spectrum approaches the imaginary axis from the right
- $\gamma_5 D_W$  is Hermitian
- $\stackrel{\bullet}{\to} \begin{array}{l} (\lambda, x) \text{ right eigenpair} \Leftrightarrow \\ (\overline{\lambda}, \gamma_5 x) \text{ left eigenpair} \end{array}$
- $\mathcal{L}$  of size  $64^4$ :  $D_W \in \mathbb{C}^{192M \times 192M}$



The Dirac operator Multigrid Numerical results Challenges Domain decomposition and aggregation History

## Multigrid in a Nutshell



### Challenges for Wilson-Dirac I

The Wilson-Dirac operator is special:

- We only know the gauge links  $U_{\mu}(x)$  for a given lattice
- These are random variables, not just perturbed entries
- $D_W$  has a non-trivial symmetry:  $\gamma_5 D_W = D_W^{\dagger} \gamma_5$
- Eigenvectors to small eigenvalues are not geometrically smooth





# Challenges for Wilson-Dirac II

#### **Consequences:**

- Smoothing (= reducing large eigenmodes) is easy (Jacobi, GMRES, ...)
- Coarse grid system  $D_W^c$  must be constructed algebraically
- ► Using a Galerkin ansatz:  $D_W^c = P^{\dagger} D_W P$  with a prolongation operator P, we aim at
  - preserving  $\gamma_5$  symmetry
  - preserving locality
  - range(P) should approximate eigenvectors to small eigenvalues

# **There is hope:** Local coherence of small eigenmodes [Lüscher 2008]



The Dirac operator Multigrid Numerical results Mumerical results Mumerical results

Two-grid error propagator for  $\nu$  steps of pre-smoothing

$$E_{2g}^{(\nu)} = \underbrace{(I - PD_c^{-1}P^{\dagger}D)}_{\text{coarse grid correction}} \underbrace{(I - MD)^{\nu}}_{\text{smoother}}, \ \underbrace{D_c := P^{\dagger}DP}_{\text{coarse operator}}$$

- low accuracy for  $D_c^{-1}$  and M is sufficient
- introduce recursive construction for  $D_c \rightarrow$  multigrid

**To Do:** Define interpolation P and smoother M

#### $\mathsf{DD} extsf{-}lpha\mathsf{AMG}$

- *M*: Schwarz Alternating Procedure (SAP)
  - P: Aggregation Based Interpolation

#### Preview: The multigrid principle for Dirac-Wilson

#### Smoother: I - MD

- Effective on "large" eigenvectors
- "small" eigenvectors remain





 $Dv_i = \lambda_i v_i$  with  $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$ 

### Preview: The multigrid principle for Dirac-Wilson

**Coarse-grid correction:**  $I - PD_c^{-1}P^{\dagger}D$ 

- small eigenvectors built into interpolation P
  - ⇒ Effective on small eigenvectors



### Preview: The multigrid principle for Dirac-Wilson

Two-grid method:  $E_{2g} = (I - PD_c^{-1}P^{\dagger}(I - MD)^{\nu}D)$ 

- Complementarity of smoother and coarse-grid correction
- Effective on all eigenvectors!





ac operator Challenges Multigrid Domain decomposition and aggregation rical results History

# SAP: Schwarz alternating procedure



- canonical injections  $\mathcal{I}_{\mathcal{L}_i}: \mathcal{L}_i \to \mathcal{L}$
- $\textbf{block restrictions} \\ D_{\mathcal{L}_i} = \mathcal{I}_{\mathcal{L}_i}^\dagger D \mathcal{I}_{\mathcal{L}_i}$
- ► block inverses  $B_{C_{\ell}} = \mathcal{I}_{C_{\ell}} D_{C_{\ell}}^{-1} \mathcal{I}_{C_{\ell}}^{\dagger}$

- 1: in:  $\psi$ ,  $\eta$ ,  $\nu$  out:  $\psi$
- 2: for k = 1 to  $\nu$  do
- 3:  $r \leftarrow \eta D\psi$
- 4: for all green  $\mathcal{L}_i$  do
- 5:  $\psi \leftarrow \psi + B_{\mathcal{L}_i} r$
- 6: end for

7: 
$$r \leftarrow \eta - D\psi$$

8: for all white  $\mathcal{L}_i$  do

9: 
$$\psi \leftarrow \psi + B_{\mathcal{L}_i} r$$

- 10: **end for**
- 11: end for



The Dirac operator Multigrid Numerical results Challenges Domain decomposition and aggregation History

#### Aggregation based interpolation

#### **Construction:**

Define aggregates: domain decomposition
 A<sub>1</sub>, ..., A<sub>s</sub>



- ► Calculate test vectors  $w_1, ..., w_N$
- ▶ Decompose test vectors over aggregates  $A_1, ..., A_s$

$$v^{(1)}, \dots, v^{(k)}) = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_s \end{bmatrix} \rightarrow P = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ \vdots \\ A_s \end{pmatrix}$$

BERGISCHE UNIVERSITÄT WUPPERTAL Dirac operator
 Multigrid
 umerical results
 Challenges
 Domain decom
 History

#### Domain decomposition and aggregation History

#### Setup: how to obtain test vectors



# Some history

 Adaptive algebraic multigrid αAMG: Brezina, Falgout, Manteuffel, MacLachlan, McCormick, Ruge 2004

#### Inexact deflation method: Lüscher 2007. Solves

$$D(I - PD_c^{-1}P^{\dagger}D)\psi = \eta$$

using SAP as a preconditioner.

- ► αAMG for lattice QCD: Babich, Brannick, Brower, Clark, Manteuffel, McCormick, Osborn, Rebbi 2010.
- **DD**-α**AMG:** F., Kahl, Leder, Krieg, Rottmann 2013
- 2016: Alexandrou, Bacchio, Finkenrath, F., Kahl, Rottmann: extension to "twisted mass" Dirac operator
- currently: further improvemet for setup

The Dirac operator Multigrid Numerical results Parameters and configuration Snapshots on performance

#### Parameters

|           | parameter                                                                                           |            | default          |
|-----------|-----------------------------------------------------------------------------------------------------|------------|------------------|
| setup     | number of iterations                                                                                | $n_{inv}$  | 6                |
|           | number of test vectors                                                                              | N          | 20               |
|           | size of lattice-blocks for aggregates on level $1$                                                  |            | $4^{4}$          |
|           | size of lattice-blocks for aggregates on level $\ell > 1$ coarse system relative residual tolerance |            | $2^{4}$          |
|           | (stopping criterion for the coarse system) $^{(st)}$                                                | $\epsilon$ | $5\cdot 10^{-2}$ |
| solver    | restart length of FGMRES                                                                            | $n_{kv}$   | 10               |
|           | relative residual tolerance (stopping criterion)                                                    | tol        | $10^{-10}$       |
|           | number of post-smoothing steps <sup>(*)</sup>                                                       | ν          | 5                |
|           | size of lattice-blocks in SAP <sup>(*)</sup>                                                        |            | $2^{4}$          |
|           | number of Minimal Residual (MR) iterations to                                                       |            |                  |
|           | solve the local systems in $SAP^{(*)}$                                                              |            | 3                |
| K-cycle   | maximal length <sup>(*)</sup>                                                                       |            | 5                |
| -         | maximal restarts <sup>(*)</sup>                                                                     |            | 2                |
|           | relative residual tolerance (stopping criterion) $^{(st)}$                                          |            | 10 <sup>-1</sup> |
| samo in c | solver and setup                                                                                    |            | ÷                |

A. Frommer, Multigrid in Lattice QCD

The Dirac operator Multigrid Numerical results Parameters and configurations Snapshots on performance

# Configurations

| id | lattice size       | pion mass          | CGNR       | shift     | clover        | provided by |
|----|--------------------|--------------------|------------|-----------|---------------|-------------|
|    | $N_t \times N_s^3$ | $m_\pi~[{ m MeV}]$ | iterations | $m_0$     | term $c_{sw}$ |             |
| 1  | $48\times 16^3$    | 250                | 7,055      | -0.095300 | 1.00000       | BMW-c       |
| 2  | $48 \times 24^3$   | 250                | $11,\!664$ | -0.095300 | 1.00000       | BMW-c       |
| 3  | $48 \times 32^3$   | 250                | $15,\!872$ | -0.095300 | 1.00000       | BMW-c       |
| 4  | $48 \times 48^3$   | 135                | $53,\!932$ | -0.099330 | 1.00000       | BMW-c       |
| 5  | $64 \times 64^3$   | 135                | $84,\!207$ | -0.052940 | 1.00000       | BMW-c       |
| 6  | $128 \times 64^3$  | 270                | $45,\!804$ | -0.342623 | 1.75150       | CLS         |
| 7  | $128 \times 64^3$  | 190                | $88,\!479$ | -0.33485  | 1.90952       | CLS         |

Table: Ensembles used



he Dirac operator Multigrid Numerical results

Snapshots on performance: setup time vs solve time

| number of setup steps $n_{inv}$ | average<br>setup<br>timing | average<br>iteration<br>count | lowest<br>iteration<br>count | highest<br>iteration<br>count | average<br>solver<br>timing | average<br>total<br>timing |
|---------------------------------|----------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|----------------------------|
| 1                               | 2.08                       | 149                           | 144                          | 154                           | 6.42                        | 8.50                       |
| 2                               | 3.06                       | 59.5                          | 58                           | 61                            | 3.42                        | 6.48                       |
| 3                               | 4.69                       | 34.5                          | 33                           | 36                            | 2.37                        | 7.06                       |
| 4                               | 7.39                       | 27.2                          | 27                           | 28                            | 1.95                        | 9.34                       |
| 5                               | 10.8                       | 24.1                          | 24                           | 25                            | 1.82                        | 12.6                       |
| 6                               | 14.1                       | 23.0                          | 23                           | 23                            | 1.89                        | 16.0                       |
| 8                               | 19.5                       | 22.0                          | 22                           | 22                            | 2.02                        | 21.5                       |
| 10                              | 24.3                       | 22.5                          | 22                           | 23                            | 2.31                        | 26.6                       |

Table: Evaluation of DD- $\alpha$ AMG-setup $(n_{inv}, 2)$ , 48<sup>4</sup> lattice, configuration id 4), 2,592 cores, averaged over 20 runs.

A. Frommer, Multigrid in Lattice QCD

The Dirac operator Multigrid Numerical results Parameters and configurations Snapshots on performance

#### Comparison of 2, 3 & 4 Level DD- $\alpha$ AMG

|               | configuration lattice size pion mass $m_\pi$ | $\begin{array}{c} 4 \\ 48 \times 48^3 \\ 135  \mathrm{MeV} \end{array}$ | $\begin{array}{c} 5 \\ 64 \times 64^3 \\ 135  \mathrm{MeV} \end{array}$ | $\begin{array}{c} 6 \\ 128 \times 64^3 \\ 270  \mathrm{MeV} \end{array}$ | $\begin{array}{c} 7 \\ 128 \times 64^3 \\ 190  \mathrm{MeV} \end{array}$ |
|---------------|----------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| two levels    | setup time                                   | 316 <b>s</b>                                                            | 736 <b>s</b>                                                            | 630 <b>s</b>                                                             | 701s                                                                     |
|               | solve time                                   | 48.6s                                                                   | 130s                                                                    | 113s                                                                     | 141s                                                                     |
| three levels  | setup time                                   | 374s                                                                    | 744s                                                                    | 719s                                                                     | 948s                                                                     |
|               | solve time                                   | 42.6s                                                                   | 75.2s                                                                   | 74.0s                                                                    | 79.0s                                                                    |
| four levels   | setup time                                   | -                                                                       | 806s                                                                    | 755s                                                                     | $1,\!004s$                                                               |
|               | solve time                                   | -                                                                       | 79.8s                                                                   | 75.7s                                                                    | 79.1s                                                                    |
|               | processes                                    | 81                                                                      | 128                                                                     | 256                                                                      | 256                                                                      |
| local lattice | level 1                                      | $16 \times 16^3$                                                        | $32 \times 16^3$                                                        | $32 \times 16^3$                                                         | $32 \times 16^3$                                                         |
|               | level 2                                      | $4 \times 4^3$                                                          | $8 \times 4^3$                                                          | $8 \times 4^3$                                                           | $8 \times 4^3$                                                           |
|               | level 3                                      | $2 \times 2^3$                                                          | $4 \times 2^3$                                                          | $4 \times 2^3$                                                           | $4 \times 2^3$                                                           |
|               | level 4                                      | -                                                                       | $2 \times 1^3$                                                          | $2 \times 1^3$                                                           | 2 × 1 <sup>3</sup>                                                       |

► Conf. 1 slight speed up by using 3rd level

The Dirac operator Multigrid Numerical results

Snapshots on performance: oe-BiCGStab vs DD- $\alpha$ AM

|            | BiCGStab      | $DD-\alpha AMG$ | speed-up factor | coarse grid   |
|------------|---------------|-----------------|-----------------|---------------|
| setup time |               | 22.9s           |                 |               |
| solve iter | $13,\!450$    | 21              |                 | $3,716^{(*)}$ |
| solve time | 91.2 <b>s</b> | 3.15s           | 29.0            | 2.43s         |
| total time | 91.2s         | 26.1s           | 3.50            |               |

Table: BiCGStab vs. DD- $\alpha$ AMG with default parameters, configuration id 5, 8,192 cores, (\*) : coarse grid iterations summed up over all iterations on the fine grid.



he Dirac operator Multigrid Numerical results

#### Snapshots on performance: mass scaling and levels



Figure: Mass scaling of 2, 3 and 4 level DD- $\alpha$ AMG, 64<sup>4</sup> lattice configuration id 5, restart length  $n_{kv} = 10$ , 128 cores

he Dirac operator Multigrid Numerical results

#### Snapshots on performance: mass scaling and levels



Figure: Mass scaling of 2, 3 and 4 level DD- $\alpha$ AMG, 64<sup>4</sup> lattice configuration id 5, restart length  $n_{kv} = 10$ , 128 cores

## Conclusions

- Stochastic entries require algebraic multigrid
- Adaptive setup is mandatory
- Setup is relatively costly
- Aggregation based coarsening justified because of local coherence
- Other adaptive setups are possible: bootstrap AMG [Brandt, Brannick, Kahl, Livshits 2011]
- Underlying assumption: a small set of small eigenmodes locally represents all small eigenmodes, at least approximately

