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Physical background

» QCD is the theory of the strong interaction (=color force)
between quarks and gluons inside subatomic particles.

» Quark = elementary particle, fundamental constituent of matter,
e.g., protons and neutrons.

» Gluons = exchange particles for the strong force between
quarks.

» approach to solve the theory of QCD

» investigation of elementary particles using computer simulations ?/5

. . . . =

» formulated on a lattice of points in space and time =
AU

» links U, (z) € SU(3) between points = and z + af %‘:
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Task of Lattice QCD

observables given as expectation of certain operators O:

(0) = /Q OWTI(U)AU  with

» probability space (2, 0(Q2), F11)
» Q= (SU(3))YN, N = lattice size

» probability density TI(U) = exp(—S(U))/Z with
Z = [qexp(=S(U))dU,

» action S actingon U € Q.
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N = 64 - 323, for example

M. Guinther and M. Wandelt, HMC for Lattice QCD



Lattice QCD

Importance sampling

1 n
(0) ~ ~ > O(U)
=1
» choose configurations U; according to the probability
density exp(—S(U))/Z
» prefer configurations that occur with a higher probability

» sequence

» is generated by a Markov chain

» is ergodic

» satisfies the detailed balance condition
— convergence to the unique fixed point distribution
given by the density II(U)
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Hybrid Monte Carlo

Hybrid Monte Carlo

» uses augmented Markov chain

» constructs samples of pairs of links U € Q2 and
momenta P € Q = (su(3))"

» samples generated according to the probability
density v(U, P) given by

vp = 20 S(U ! P,P)/2
v(U,P) = TGXP(— ( ))'(Qﬂ—N/Qexp(_< , P)/2)

=IL(U) = (P)

1
= —exp(—H(U,P)) with
i

Ty = / WU,P)YAU,P), H(U,P)=(P,P)/2+SU)
QxQ
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Transition (U, Fy) — (U*, P*)

(Uo, Py) — g9(Uy, Ry)
for the moment: arbitrary mapping ¢ : 2 x Q — Q x )

> (U*,P*) = g(Uo, Po)
g(Uy, Py) is accepted with probability

a((Uo, Po)g(Uo, Py)) = min (1, M)

V(Uo, Po)
: —(H(g(Uo,Po))—H (Uo, P 5=
— min (1, e~ (H(9(Uo,Po))—H(Uo 0))) 7/4/_::
. . . . ’///F
» otherwise the old configuration is kept: /7‘:
(U*, P*) := (Uy, Po) 794

M. Guinther and M. Wandelt, HMC for Lattice QCD 6/30



| LaticeQCD __ Hybrid Monte Carlo__ Molecular dynamics step__ Geometricintegration ___ Fermioric felds
Demand on g

» g is time-reversible:
S-9(S - g(Uo, Po)") = (U, Po) "

mmsz(f

0 _OI) flipping the momenta

» g is volume-preserving:

’det (M)‘ =

Uy, By)
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Detailed Balance condition |

K((Uy, Py), (2 x Q) = P(U*,P*) e (Q xQ)|(Us, Fy)) ;
= o((Uo, Po),9(Uo, Po))dg(uy,py) (2 x ) +
(1= a((Uo, Po), 9(Uo, Po)))d(u, pe) (' x ).

K (U, ) = P(Up € |Us) = /Q K((Uo, P), (€ x 9))p(P)dP

/ K1 (U, BYI(U)dU = / Ko (U, ATI(U)dU
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Detailed Balance condition I

/ K.(U, BI(U)dU = / K. (U, AIL(U)dU

_
/ / ( ) o(.p)(B x Q)p(P)I(U)dPAU +

/mB/< ' ( gg;))»w(P)H(U)deU.

// <’ g(ng) > S,y (A x Q)p(P)II(U)dPAU +

/BOA/ <1_ ( gg;))»«p( )II(U)dPdU.
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Hybrid Monte Carlo

Detailed Balance condition Il

[ || min (U P, (a0 ) by (B x D(P.) =

[ || min (0 P). (U, P)) 0 (4 x DA(P.D).

/ i ~ min (v(U, P),v(g(U, P)))d(P,U) =
(AxQ)Ng—1(BxQ)

Fi=

min (v(U, P),v(g(U, P))) d(P,U)

_/

/(Bxﬁ)ng—l(AxQ)

Fo=

M. Guinther and M. Wandelt, HMC for Lattice QCD

N
i

4\\‘ \

N

_
s
3



Detailed Balance condition IV

v(g(U, P)) =v(g~'(U,=P)) & g(U-P)=g '(U,P)

Fi= [ | min (U P)(a(U P)) u,p) (A x 2)d(P,U) =
g~ (BXxQ)

: _ 2 dg~' (U, P)
/Bmmm (672U, P, v(U, P)) 6,1 7. py (A X ) - oty AP ) =
1
/ min (W(g(U, —P)), (U —P)) 611 o (A x Q) - |dat PPV yp oy =
BxQ 9=~ (U.P) d(U, P)
; A dg~'(U, P) -
/;XQmln(y(g(U7_P))7V(U7_P))(Sg(Uy_P)(A X Q) - detW d(P,U) = , -
- =
/(Bm)n gy ™ W P (U P) det% A(P,U) = Fy '/4//=
‘ : =

=1

N
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Choice of ¢

» Natural choice: use Hamiltonian flow
H(U,P)=(P,P)/2+4 S(U)

» Problem: analytical flow not available

» Way-out: use numerical approximation using
geometric integration

» accuracy of less importance (only to get high
acceptance rate)

» time-reversible & volume preserving numerical flow

» compatible with non-Abelian structure of
U € (SU3))N and P € (su(3))Y

M. Guinther and M. Wandelt, HMC for Lattice QCD




Derivation of Equation of Motion

derived via an infinitesimal rotation on the group manifold
U, (x) = Pu()U, (=)

» usually: solve H (U, P) = 0 for P, ()
» via the link differential operator

PN('T) - _az,,uH(U’ P) = _az,uS(U)

N
™

O f(U) =T"0L ,f(U) with 6;#](([]):%1815)

a=

4\\‘ \
Nl
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N

o ST (2 if (y,v) = (x, ‘
(Us)u(y)—{ eUu(y)H( ) I<)t§1yer\/v)ise( e =

M. Guinther and M. Wandelt, HMC for Lattice QCD 13/30



Example: Wilson action

Staples X, () defined by

Z [Uv(2)Up(z + ad)Uy (z + ap) "t + Uy (z — ad) " UL (z — ad)Uy (z — ad + afi)]
v#Ep

= 0t,5(0) = ~GReu({r'U,@le)

= Oz,uSg(U)

_%TiRetr{TiUu(I)ZL(Z)}

= %{Uu(m)EL(E)}TA

Pul@) = ~00,Sy(0) = ~ oAU (@) S (@) ra
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Numerical integration on Lie groups

U = diag(P,(x)Uu(z)),  Ulte) = Uy
P = —&WS(U), P(to) = P()
with U € (SU3))Y, P € (su(3))N.

» multiplicative structure of Lie group does not fit the
additive structure of integrations schemes (RK and -

others) %—:f

. . o . 4 7=

» way-out: bypass via the Lie algebra with its additive fl_;/g
structure (Magnus, 1954) YH
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Bypass via Lie algebra

U(t) = W)Uy with T(tg) = 0

o = (35e@) a0,

\
/

Il

el
N
i

= P(t) = d¥q (Q(t))
= Q(¢)
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Transformed ODE system

Qu(z) = AV (Pu(@)),  Qu(@)(to) =0,
P = —0,,5(%(Q)), P(t) = P,
= links can be obtained via the transformation
Uu(z)(t) = ¥(Qu(x) (1)) Vo

» Exponential map: ¥(Q) = exp(Q) = > 7o, 4 QF
» Cayley map: ¥(Q) =cay(Q) = (I — Q)11 + Q)
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Geometric integration

Exponential map

= P()— 3 [2), P()] + 15|

» Problem: for numerical integration schemes, infinite
sum has to be truncated: >, ., ~ > i,

» Compatability with numerical integration schemes:
Order p if a) RK scheme has order pand b) ¢ +2 > p
holds (Munthe-Kaas).

M. Guinther and M. Wandelt, HMC for Lattice QCD
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Geometric integration

Cayley map

O(t) = deayg! (P(1))
1

= ST —Q@)PEI +9)

» No infinite series, no trunaction needed
» No compatability condition
» cheap evaluations!
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Geometric integration

The basis scheme: leap frog

h
Py = Po= 58.,5(Un),

Q1 = Qn+h-dexp§1(Pn+%)%Qn—f—h.pn%,
Uny1 = exp(Qpt1)Un,

h
Popn = Py — Eam’uS(UnH)-

Elimination of the auxiliary €2 variable

h
U1 = explh- (P, — Eax,,,S(Un)))Un,

Py = P,— g@awS(Un) = g(?x,MS(exp(h (P, —

) \\‘\\.\\\
ﬁ ™
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Geometric integration

The basis scheme: leap frog

h
P’n+% = Pn- an,uS(Un)a
Qi1 = Qu+h- dcayal(Pn+%)
h
= Qn+§(IfQH)Pn+%(I+Qn),
Unt1 = cay(Qnt+1)Un = (I — QnJrl)_l(I"‘ Qnt1)Un,
h
Pn+1 = Pn+% = Eaz,“S(UnH).

Elimination of the auxiliary €2 variable
Upt1 = cay(h- dcay(_ll(Pn — gax,MS(Un)))Un,

h h _ h
Po1 = Pu—50:uS(Un) = 300 uS(cay(h- deayg (Pu — 300 uS(Un)))

M. Guinther and M. Wandelt, HMC for Lattice QCD
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Higher-order schemes — Composition

Un+1 _h Un
(1) =+ (&)

~h _ 7mh v2h Ymh
P, = Pr, ©OPi, O o

> Volume-preservation /
» Condition for time-reversibility:
TYm+1—k = Vk; k=1,...,m—1

N
™

» Order p + 1, if the underlying scheme has order p:

m m
2=l YA =0
j=1 j=1

> Forleapfrogtogetp =4:m=3,y1 =73 = (2— ¥/2)"1/3, 30 = 1 — 21.

\“
N

N
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Geometric integration

Higher-order schemes — Splitting

Momenta Update .

Ufz) = 0
P,(x) = —0,,50)

Link Updata .
Uu(x) = Pus - Uup

» in general: order 1
» at least order 2, if splitting symmetric

» important classes: Omelyan and force-gradient
schemes

M. Guinther and M. Wandelt, HMC for Lattice QCD

TRON
\ |Iﬁ ||!l|l!

N

23/30



B e L e N e
Higher-order schemes — Examples

Pyn o Upya 0 Pa—axyn © Upjz 0 Py, With

1 (2v/326 + 36)'/3 1
A=—-— -
2 12 6(21/326 — 36)1/3

Still order 2, but minimal leading error coefficient

pAh,£h3 o Uh/2 o P(l*Z)\)h,xh?’ o Uh/2 o pAh7£h3 with
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Geometric integration

Higher-order schemes — Discussion

» leap-frog scheme used as basic scheme

» time-reversibility & volume preservation /

v

but: truncation order ¢ = 0

v

Problem: —(H (g(Uy, Py) — H(Uy, Py)) = O((At)?) only

» high order only with respect to modified equation of motion
Qu(x) = Pula),
Upalt) = exp(Qu(e)(t)Un()(0) y
P,(z) = —8,,5U) Y=
K K ////,E

v

possible way out: if modified equation of motion based on 7 o
modified Hamiltonian H (U, P), use (U, P) := H(U, P) ¢//£
instead of H (U, P) =
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Fermionic fields

Fermionic fields

Partition function now given by
Z = / exp (—S,(U))det(DDT)dU  with

det(DDY) = [ exp (=S,/(U,0))d,
Spf(U7 ¢) — <¢7 (DDT)_1¢>

= H(U, P) = 3{P, P) + 5,(U) + S,4(U,6)

M. Guinther and M. Wandelt, HMC for Lattice QCD
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Fermionic fields

Computation of pseudofermionic force

OuyuSprwey = —2ReT((DD")™'¢,8% )
(0,,90)(y) = —5y,x§(1—%)T’Uu(fﬁ)D_l(ﬁ(Hﬂ)

1 _ _
bty (14 2)U; (2)TD ()

Note: Computation requires two expensive inversions of
the Wilson-Dirac operator

Y=
%z

Y=

S
4

N
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Lattice QCD Hybrid Monte Carlo Molecular dynamics step Geometric integration Fermionic fields

Nested integration - multirate schemes

Idea: use different activity levels
» gauge field S,: fast dynamics, cheap evaluations

» pseudofermionic field S,;: slow dynamics, expensive
evaluations

» exploit different dynamics by multirate schemes:
higher/lower sample rate for fast/slow part
» introduce additional activity splitting of

pseudofermionic field: even-odd preconditioning,
domain decomposition and determinant splitting

! ==

S0 ¢ )= ) SilU,g), 4=
m=1 M %’/%

~ H{U,P) = (PP)2+5,U)+Y SilU.¢. 4
m=1 -
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Sexton and Weingarten

P macro step size kg
P micro step size h1 = ho/m1

Leap-frog step
Vi(ho) = Viy(ho/2) (Viry (h1)) ™ Vi, (ho/2) with
M-—1
H1(U,P) = (P,P)/2+Sg[Ul+ > SklU,¢], Ha(U,P)=Sn[U,¢]
m=1

P next finer step size ho = hy /mo
P further splitting F; into

Hy(U,P) = Hi1(U,P)+ Hi2(U, P) with
M—2 -a

Hi1(U,P) = (P,P}/2+5,U1+ 3. SglU,¢l, H12(U, P)=Sp_1[U, ] ?/_——
m=1 9/=

s —

Y=

> replace Vi, (h1) above by
Vi, (h1) = Vi, (h1/2) (Vi (h2)) ™2 Vi, (k1 /2).

N
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More to read ...

attice Quantum
Chromodynamics

Practical Essentials
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