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Physical background

Quantum Chromo Dynamics (QCD)

I QCD is the theory of the strong interaction (=color force)
between quarks and gluons inside subatomic particles.

I Quark = elementary particle, fundamental constituent of matter,
e.g., protons and neutrons.

I Gluons = exchange particles for the strong force between
quarks.

Lattice QCD

I approach to solve the theory of QCD

I investigation of elementary particles using computer simulations

I formulated on a lattice of points in space and time

I links Uµ(x) ∈ SU(3) between points x and x+ aµ̂

M. Günther and M. Wandelt, HMC for Lattice QCD 2/30
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Task of Lattice QCD
Compuation of observables (particle mass, e.g.)
observables given as expectation of certain operators O:

〈O〉 =

∫
Ω

O(U)Π(U)dU with

I probability space (Ω, σ(Ω), FΠ)

I Ω = (SU(3))N , N = lattice size

I probability density Π(U) = exp(−S(U))/Z with
Z =

∫
Ω exp(−S(U))dU ,

I action S acting on U ∈ Ω.

Problem: integral has very high dimension

N = 64 · 323, for example
M. Günther and M. Wandelt, HMC for Lattice QCD 3/30
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Importance sampling

Approximate integral by

〈O〉 ≈ 1

n

n∑
i=1

O(Ui)

I choose configurations Ui according to the probability
density exp(−S(U))/Z

I prefer configurations that occur with a higher probability

I sequence

I is generated by a Markov chain
I is ergodic
I satisfies the detailed balance condition

=⇒ convergence to the unique fixed point distribution
given by the density Π(U)
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Hybrid Monte Carlo

Method of choice in Lattice QCD
I uses augmented Markov chain
I constructs samples of pairs of links U ∈ Ω and

momenta P ∈ Ω̂ = (su(3))N

I samples generated according to the probability
density ν(U, P ) given by

ν(U,P ) =
(2π)N/2

ZH
exp(−S(U))︸ ︷︷ ︸

:=Π(U)

· 1

(2π)N/2
exp(−〈P, P 〉/2)︸ ︷︷ ︸
:=ϕ(P )

=
1

ZH
exp(−H(U,P )) with

ZH =

∫
Ω×Ω̂

ν(U,P )d(U,P ), H(U,P ) = 〈P, P 〉/2 + S(U)
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Transition (U0, P0)→ (U ?, P ?)

Proposal step

(U0, P0)→ g(U0, P0)

for the moment: arbitrary mapping g : Ω× Ω̂→ Ω× Ω̂

Acceptance step
I (U∗, P ∗) := g(U0, P0)
g(U0, P0) is accepted with probability

α((U0, P0)g(U0, P0)) = min

(
1,
ν(g(U0, P0))

ν(U0, P0)

)
= min

(
1, e−(H(g(U0,P0))−H(U0,P0))

)
I otherwise the old configuration is kept:

(U∗, P ∗) := (U0, P0)

M. Günther and M. Wandelt, HMC for Lattice QCD 6/30
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Demand on g

Detailed balance condition holds if
I g is time-reversible:

S · g(S · g(U0, P0)>) = (U0, P0)>

with S =

(
I 0
0 −I

)
flipping the momenta

I g is volume-preserving:∣∣∣∣det

(
∂g(U0, P0)

∂(U0, P0)

)∣∣∣∣ = 1.

Choice of g?
The Hamiltonian flow!M. Günther and M. Wandelt, HMC for Lattice QCD 7/30
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Detailed Balance condition I

Transition kernel in HMC

K((U0, P0), (Ω′ × Ω̂′)) = P ((U∗, P ∗) ∈ (Ω′ × Ω̂′)|(U0, P0))

= α((U0, P0), g(U0, P0))δg(U0,P0)(Ω
′ × Ω̂′) +

(1− α((U0, P0), g(U0, P0)))δ(U0,P0)(Ω
′ × Ω̂′).

Restricted Transition kernel

KL(U0,Ω
′) = P (U0 ∈ Ω′|U0) =

∫
Ω̂
K((U0, P ), (Ω′ × Ω̂))ϕ(P )dP

Detailed Balance condition for all A,B ∈ σ(Ω)∫
A

KL(U,B)Π(U)dU =

∫
B

KL(U,A)Π(U)dU

M. Günther and M. Wandelt, HMC for Lattice QCD 8/30
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Detailed Balance condition II

Detailed Balance condition for all A,B ∈ σ(Ω)∫
A

KL(U,B)Π(U)dU =

∫
B

KL(U,A)Π(U)dU

Left-hand side∫
A

∫
Ω̂

min

(
1,
ν(g(U,P ))

ν(U,P )

)
δg(U,P )(B × Ω̂)ϕ(P )Π(U)dPdU +∫

A∩B

∫
Ω̂

(
1−min

(
1,
ν(g(U,P ))

ν(U,P )

))
ϕ(P )Π(U)dPdU.

Right-hand side∫
B

∫
Ω̂

min

(
1,
ν(g(U,P ))

ν(U,P )

)
δg(U,P )(A× Ω̂)ϕ(P )Π(U)dPdU +∫

B∩A

∫
Ω̂

(
1−min

(
1,
ν(g(U,P ))

ν(U,P )

))
ϕ(P )Π(U)dPdU.
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Detailed Balance condition III

To be shown∫
A

∫
Ω̂

min (ν(U,P ), ν(g(U,P ))) δg(U,P )(B × Ω̂)d(P,U) =∫
B

∫
Ω̂

min (ν(U,P ), ν(g(U,P ))) δg(U,P )(A× Ω̂)d(P,U) .

With δg(U,P )(B × Ω̂) = δ(U,P )(g
−1)(B × Ω̂))∫

(A×Ω̂)∩g−1(B×Ω̂)

min (ν(U,P ), ν(g(U,P ))) d(P,U)︸ ︷︷ ︸
F1=

=

∫
(B×Ω̂)∩g−1(A×Ω̂)

min (ν(U,P ), ν(g(U,P ))) d(P,U)︸ ︷︷ ︸
F2=

M. Günther and M. Wandelt, HMC for Lattice QCD 10/30
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Detailed Balance condition IV

ϕ(P ) = ϕ(−P ), ν(U, P ) = ν(U,−P ) & g time reversible
ν(g(U,P )) = ν(g−1(U,−P )) & g(U,−P ) = g−1(U,P )

Rewrite F1 as
F1 =

∫
g−1(B×Ω̂)

min (ν(U, P ), ν(g(U, P ))) δ(U,P )(A× Ω̂)d(P, U) =

∫
B×Ω̂

min
(
ν(g
−1

(U, P )), ν(U, P )
)
δ
g−1(U,P )

(A× Ω̂) ·

∣∣∣∣∣det
dg−1(U, P )

d(U, P )

∣∣∣∣∣ d(P, U) =

∫
B×Ω̂

min (ν(g(U,−P )), ν(U,−P )) δ
g−1(U,P )

(A× Ω̂) ·

∣∣∣∣∣det
dg−1(U, P )

d(U, P )

∣∣∣∣∣ d(P, U) =

∫
B×Ω̂

min (ν(g(U,−P )), ν(U,−P )) δg(U,−P )(A× Ω̂) ·

∣∣∣∣∣det
dg−1(U, P )

d(U, P )

∣∣∣∣∣ d(P, U) =

∫
(B×Ω̂)∩g−1(A×Ω̂)

min (ν(g(U, P )), ν(U, P ))

∣∣∣∣∣det
dg−1(U, P )

d(U, P )

∣∣∣∣∣︸ ︷︷ ︸
= 1

d(P, U) = F2
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Choice of g

Demand on g:
time-reversible and volume-preserving mapping
I Natural choice: use Hamiltonian flow
H(U, P ) = 〈P, P 〉/2 + S(U)

I Problem: analytical flow not available
I Way-out: use numerical approximation using

geometric integration
I accuracy of less importance (only to get high

acceptance rate)

Demand on numerical approximation of g
I time-reversible & volume preserving numerical flow
I compatible with non-Abelian structure of
U ∈ (SU(3))N and P ∈ (su(3))N

M. Günther and M. Wandelt, HMC for Lattice QCD 12/30



Lattice QCD Hybrid Monte Carlo Molecular dynamics step Geometric integration Fermionic fields

Derivation of Equation of Motion

Time Derivative of Links Uµ(x) ∈ SU(3)

derived via an infinitesimal rotation on the group manifold
U̇µ(x) = Pµ(x)Uµ(x)

Time Derivative of Momenta Pµ(x) ∈ su(3)

I usually: solve Ḣ(U, P ) = 0 for Ṗµ(x)

I via the link differential operator

Ṗµ(x) = −∂x,µH(U, P ) = −∂x,µS(U)

∂x,µf(U) = T i∂ix,µf(U) with ∂ix,µf(U) =
df(Us)

ds

∣∣∣∣∣
s=0

(Us)ν(y) =

{
esT

i
Uµ(x) if (y, ν) = (x, µ)

Uν(y) otherwise
.

M. Günther and M. Wandelt, HMC for Lattice QCD 13/30
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Example: Wilson action

Sg(U) = − β
N

Re tr(Uµ(x)Σ†µ(x)) + terms indep. of Uµ(x)

Staples Σµ(x) defined by
∑
ν 6=µ

[
Uν(x)Uµ(x+ aν̂)Uν(x+ aµ̂)−1 + Uν(x− aν̂)−1Uµ(x− aν̂)Uν(x− aν̂ + aµ̂)

]

⇒ ∂ix,µSg(U) = −
β

N
Re tr

{
T iUµ(x)Σ†µ(x)

}
⇒ ∂x,µSg(U) = −

β

N
T iRe tr

{
T iUµ(x)Σ†µ(x)

}
=

β

2N
{Uµ(x)Σ†µ(x)}TA

Time Derivative of Momenta Pµ(x) ∈ su(3)

Ṗµ(x) = −∂x,µSg(U) = − β

2N
{Uµ(x)Σ†µ(x)}TA

M. Günther and M. Wandelt, HMC for Lattice QCD 14/30
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Numerical integration on Lie groups

Structure of ODE-IVP

U̇ = diag(Pµ(x)Uµ(x)), U(t0) = U0

Ṗ = −∂x,µS(U), P (t0) = P0

with U ∈ (SU(3))N , P ∈ (su(3))N .

Problem for Numerical integration schemes
I multiplicative structure of Lie group does not fit the

additive structure of integrations schemes (RK and
others)

I way-out: bypass via the Lie algebra with its additive
structure (Magnus, 1954)

M. Günther and M. Wandelt, HMC for Lattice QCD 15/30
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Bypass via Lie algebra

Lie algebra parameterization of U

U(t) = Ψ(Ω(t))U0 with Ψ(t0) = 0

Transformation of ODE

U̇ =

(
d

dΩ
Ψ(Ω(t))

)
Ω̇(t)U0

=
(

dΨΩ(t)

(
Ω̇(t)

))
Ψ(Ω(t))U0

=
(

dΨΩ(t)

(
Ω̇(t)

))
︸ ︷︷ ︸

=P (t)!

U(t)

⇒ P (t) = dΨΩ(t)

(
Ω̇(t)

)
⇒ Ω̇(t) = dΨ−1

Ω(t) (P (t)) .

M. Günther and M. Wandelt, HMC for Lattice QCD 16/30
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Transformed ODE system

Solve ODE-IVP on Lie-algebra

Ω̇µ(x) = dΨ−1
Ωµ(x) (Pµ(x)) , Ωµ(x)(t0) = 0,

Ṗ = −∂x,µS(Ψ(Ω)U0), P (t0) = P0

⇒ links can be obtained via the transformation

Uµ(x)(t) = Ψ(Ωµ(x)(t))U0

Possible choice of parameterization
I Exponential map: Ψ(Ω) = exp(Ω) =

∑∞
k=0

1
k!

Ωk

I Cayley map: Ψ(Ω) = cay(Ω) = (I − Ω)−1(I + Ω)

M. Günther and M. Wandelt, HMC for Lattice QCD 17/30
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Exponential map
ψ(Ω) = exp(Ω) =

∑∞
k=0

1
k!

Ωk

Ω̇(t) = d exp−1
Ω (P (t))

=
∑
k≥0

Bk

k!
adkΩ(P (t))

= P (t)− 1

2
[Ω(t), P (t)] +

1

12
[Ω(t), [Ω(t), P (t)]] + . . .

I Problem: for numerical integration schemes, infinite
sum has to be truncated:

∑
k≥0  

∑q
k=0

I Compatability with numerical integration schemes:
Order p if a) RK scheme has order p and b) q + 2 ≥ p
holds (Munthe-Kaas).

M. Günther and M. Wandelt, HMC for Lattice QCD 18/30
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Cayley map

ψ(Ω) = cay(Ω) = (I − Ω)−1(I + Ω)

Ω̇(t) = dcay−1
Ω (P (t))

=
1

2
(I − Ω(t))P (t)(I + Ω(t))

I No infinite series, no trunaction needed
I No compatability condition
I cheap evaluations!

M. Günther and M. Wandelt, HMC for Lattice QCD 19/30
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The basis scheme: leap frog
Exponential map: Update (Un, Pn) (Un+1, Pn+1)

Pn+ 1
2

= Pn −
h

2
∂x,µS(Un),

Ωn+1 = Ωn + h · d exp−1
Ω (Pn+ 1

2
) ≈ Ωn + h · Pn+ 1

2
,

Un+1 = exp(Ωn+1)Un,

Pn+1 = Pn+ 1
2
− h

2
∂x,µS(Un+1).

Elimination of the auxiliary Ω variable

Un+1 = exp(h · (Pn −
h

2
∂x,µS(Un)))Un,

Pn+1 = Pn −
h

2
∂x,µS(Un)− h

2
∂x,µS(exp(h · (Pn −

h

2
∂x,µS(Un))))

M. Günther and M. Wandelt, HMC for Lattice QCD 20/30
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The basis scheme: leap frog

Cayley map: Update (Un, Pn) (Un+1, Pn+1)

Pn+ 1
2

= Pn −
h

2
∂x,µS(Un),

Ωn+1 = Ωn + h · dcay−1
Ω (Pn+ 1

2
)

= Ωn +
h

2
(I − Ωn)Pn+ 1

2
(I + Ωn),

Un+1 = cay(Ωn+1)Un = (I − Ωn+1)−1(I + Ωn+1)Un,

Pn+1 = Pn+ 1
2
−
h

2
∂x,µS(Un+1).

Elimination of the auxiliary Ω variable
Un+1 = cay(h · dcay−1

Ω (Pn −
h

2
∂x,µS(Un)))Un,

Pn+1 = Pn −
h

2
∂x,µS(Un)−

h

2
∂x,µS(cay(h · dcay−1

Ω (Pn −
h

2
∂x,µS(Un))))

M. Günther and M. Wandelt, HMC for Lattice QCD 21/30
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Higher-order schemes — Composition

Starting point: basis scheme ϕht
order p, time-reversible & volume-preserving(

Un+1

Pn+1

)
= ϕhtn

(
Un
Pn

)

Composition of m basic schemes
ϕ̃htn = ϕγ1h

tn
◦ ϕγ2h

tn
◦ · · · ◦ ϕγmhtn

I Volume-preservation
√

I Condition for time-reversibility:

γm+1−k = γk, k = 1, . . . ,m− 1

I Order p+ 1, if the underlying scheme has order p:
m∑
j=1

γj = 1,

m∑
j=1

γpj = 0

I For leap-frog to get p = 4: m = 3, γ1 = γ3 = (2− 3
√

2)−1/3, γ2 = 1− 2γ1.

M. Günther and M. Wandelt, HMC for Lattice QCD 22/30
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Higher-order schemes — Splitting

Starting point: sequence of link and momenta updates
Momenta Update

U̇µ(x) = 0

Ṗµ(x) = −∂x,µS(U)

Link Updata
U̇µ(x) = Pµ,x · Uµ,x
Ṗµ(x) = 0

I in general: order 1
I at least order 2, if splitting symmetric
I important classes: Omelyan and force-gradient

schemes

M. Günther and M. Wandelt, HMC for Lattice QCD 23/30
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Higher-order schemes — Examples

Symmetric five-stage Omelyan scheme

Pλh ◦ Uh/2 ◦ P(1−2λ)h ◦ Uh/2 ◦ Pλh with

λ =
1

2
− (2
√

326 + 36)1/3

12
+

1

6(2
√

326− 36)1/3

Still order 2, but minimal leading error coefficient

Five stage force-gradient scheme of order 4

P̃λh,ξh3 ◦ Uh/2 ◦ P̃(1−2λ)h,χh3 ◦ Uh/2 ◦ P̃λh,ξh3 with

λ =
1

6
, ξ = 0, χ =

1

72

M. Günther and M. Wandelt, HMC for Lattice QCD 24/30
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Higher-order schemes — Discussion

Exponential mapping

I leap-frog scheme used as basic scheme

I time-reversibility & volume preservation
√

I but: truncation order q = 0

I Problem: −(H(g(U0, P0)−H(U0, P0)) = O((∆t)2) only

I high order only with respect to modified equation of motion
Ω̇µ(x) = Pµ(x),

Uµ,x(t) = exp (Ωµ(x)(t))Uµ(x)(0)

Ṗµ(x) = −∂x,µS(U)

I possible way out: if modified equation of motion based on
modified Hamiltonian H̃(U,P ), use g(U,P ) := H̃(U,P )
instead of H(U,P )

M. Günther and M. Wandelt, HMC for Lattice QCD 25/30
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Fermionic fields

Additional action: pseudofermionic field
Partition function now given by

Z =

∫
exp (−Sg(U))det(DD†)dU with

det(DD†) =

∫
exp (−Spf (U, φ))dφ,

Spf (U, φ) = 〈φ, (DD†)−1φ〉

⇒ H(U, P ) =
1

2
〈P, P 〉+ Sg(U) + Spf (U, φ)

M. Günther and M. Wandelt, HMC for Lattice QCD 26/30



Lattice QCD Hybrid Monte Carlo Molecular dynamics step Geometric integration Fermionic fields

Computation of pseudofermionic force

Additional action: pseudofermionic field

∂x,µSpf(U,φ) = −2ReT i〈(DD†)−1φ, δix,µφ 〉

(δix,µφ)(y) = −δy,x
1

2
(1− γµ)T iUµ(x)D−1φ(x+ µ̂)

+δy,x+µ̂
1

2
(1 + γµ)U−1

µ (x)TiD
−1φ(x)

Note: Computation requires two expensive inversions of
the Wilson-Dirac operator

M. Günther and M. Wandelt, HMC for Lattice QCD 27/30
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Nested integration - multirate schemes

Idea: use different activity levels
I gauge field Sg: fast dynamics, cheap evaluations
I pseudofermionic field Spf : slow dynamics, expensive

evaluations
I exploit different dynamics by multirate schemes:

higher/lower sample rate for fast/slow part
I introduce additional activity splitting of

pseudofermionic field: even-odd preconditioning,
domain decomposition and determinant splitting

Spf (U, φ ) =
M∑
m=1

Sk[U, φ],

⇒ H(U, P ) = 〈P, P 〉/2 + Sg(U) +
M∑
m=1

Sk[U, φ].

M. Günther and M. Wandelt, HMC for Lattice QCD 28/30



Lattice QCD Hybrid Monte Carlo Molecular dynamics step Geometric integration Fermionic fields

Sexton and Weingarten
First step
I macro step size h0

I micro step size h1 = h0/m1

Leap-frog step

VH (h0) = VH2
(h0/2)

(
VH1

(h1)
)m1 VH2

(h0/2) with

H1(U, P ) = 〈P, P 〉/2 + Sg [U ] +

M−1∑
m=1

Sk[U, φ], H2(U, P ) = SM [U, φ]

Nesting
I next finer step size h2 = h1/m2

I further splitting H1 into

H1(U, P ) = H11(U, P ) +H12(U, P ) with

H11(U, P ) = 〈P, P 〉/2 + Sg [U ] +

M−2∑
m=1

Sk[U, φ], H12(U, P ) = SM−1[U, φ]

I replace VH1
(h1) above by

VH1
(h1) = VH12

(h1/2)
(
VH11

(h2)
)m2 VH12

(h1/2).

M. Günther and M. Wandelt, HMC for Lattice QCD 29/30
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More to read ...

M. Günther and M. Wandelt, HMC for Lattice QCD 30/30
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