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Problem statement

» Consider an elliptic state equation with random right-hand side, for example, the equa-
tions of linear elasticity with random forcing:

—div [Ae(u(w))]| =f(0) inD,
Ae(u(w))n=0 on Iiree.
Ae(u(®))n=g(w) onIHX

u=20 on FD-

where e(u) = (Vu+ Vu') /2 stands for the linearized strain tensor and A is given by

AB = 2uB + Atr(B)I for all B € R4*4
with the Lamé coefficients A and u satisfying u > 0 and A +2u/d > 0.

» Consider a quadratic shape functional, for example, the compliance of shapes:

C(D,m) :/Ae u(x (0)) ce(u(x,0)) dx
_ / Wdx+ | (g(x,0),u(x,0))doy,

fix
FN

» We aim at minimizing the expectation E[C(D, ®)| of the quadratic shape functional.

Helmut Harbrecht



Related work

References.

p—>g P.D. Dunning and H.A. Kim.
Robust topology optimization. Minimization of expected and variance of compliance.
AIAA Journal, 51(11):2656—2664, 2013.

p—g S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz.
DIE Shape optimization under uncertainty. A stochastic programming approach.
SIAM J. Optim., 19(4):1610-1632, 2009.

= G. Allaire and C. Dapogny.
DIE A deterministic approximation method in shape optimization under random uncertainties.
SMAI J. Comput. Math., 1:83—143, 2015.

Helmut Harbrecht



Statistical quantities

» Expectation or mean:

E[v](x) := /Q v(x, ®) dP(0)
» Correlation:

Cor[v|(x,y) := /QV<X,CO)V<Y,(D) dP(o) = E[v(x)v(y)]

» Covariance:
Covil(x.y) = [ (v(x,0) ~EDI(x)) (v(y,0) ~ ED](y)) dP(o)

= Corv|(x,y) —E[V](x)E[v](y)

» Variance:

Var[V](x) = /Q (v(x, ) — Epy](x))>dP(o)

— Cor[v](x,y) \X:y —EP]?(x) = Cov[V](x,y) yX:y

» k-th moment:

M| (X[, X, . X)) i= /Q v(x1, )V (X0, ) - - - v(x, ©) dP(0)
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PDEs with random right-hand side

Random boundary value problem:

—div [oVu(0)| = f(0) in D, u(w)=0o0noD

— the random solution depends linearly on the random input parameter

Theorem (Schwab/Todor [2003]): It holds

—div [aVE[u]| =E[f]inD, E[u|=E[g] ondD

and
(divediv) [ (a®@a)(V ® V) Corlu]| = Cor[f] inD x D,

Corfu] =0 on d(D x D).

Numerical solution of the correlation equation:

» sparse grid approximation by the combination technique

&= H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th moment analysis of elliptic
QE problems with random diffusion. J. Comput. Phys., 252:128—-141, 2013.

» low-rank approximation by the pivoted Cholesky decomposition

&1 H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition.
QIE Appl. Numer. Math., 62:428—-440, 2012.

» adaptive low-rank approximation by means of # -matrices

=1 J. Dolz, H. Harbrecht, and C. Schwab. Covariance regularity and # -matrix approximation for rough random fields.
QIE Numer. Math., 135(4):1045-1071, 2017.
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Deterministic reformulation of the shape functional

Theorem. The expectation of the quadratic shape functional can be rewritten by

E[C(D, )] = /

A ((Aex : ey) Cor[u]) (x,Y) ‘X:y dx,

where
(Aex: ey) : [Hp, (D)) © [HE, (D)) - LX(D)® L*(D)

is the linear operator induced from the bilinear mapping

uv' — Ae(u) : e(v).

Proof. The assertion follows from

E[C(D,®)] :/Q/DAe(u(X,(x))) ce(u(x,0)) dx
/D [(Aexzey) /Q u(x,m)u(y,w)TdP(m)] .

/D ((Aex : ey) Corfu]) (x,y) ‘X:y dx. 0
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How to compute the correlation?

Theorem. The two-point correlation function Cor[u] € [Hf- (D)]¢ @ [Hf (D)) is
the unique solution to the following tensor-product boundary value problem:

(divx ®divy) | (Aex ® Aey) Cor[u]| = Cor[f] in D x D,

(divx ®Ty) (Aex ® Aey) Cor[u](Ix @ ny) = 0 on D x [lixUtree,
(Ix ® divy) (Aex ® Aey) Corlu] (ng @ Iy) = 0 rﬁfofee x D,
(divx ®Iy)(Aex ®Iy) Cor[u] = 0 on D xI'p,
(Ix ® divy) (Ix ® Aey) Cor[u] = 0 onI'p x D,
(Aex R Aey) Cor[ ](nx R ny) 0 (l—-ﬁxufree % l—-ﬁxufree)

\ (FN X F]%X)a

(Aex ® Aey) Cor|u](nx ®ny) = Cor[g] on F]f{,x 5 TS
(Aex ®Iy) Cor[u](ny @ Iy) =0 Fﬁxufree «Tp
(Ix® Aey) Cor[u] (Ix® ny) 0 on I'p x FﬁXUfree,

Corlu] =0 onI'p xI'p.

Proof. The assertion follows by tensorizing the state equation and the exploiting the linear-
ity when taking the expectation. ]
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Computing the shape gradient

Domain perturbation.

Dy =(I+V)(D), VeW'™RLRY), ||Vl mmdge <5

Definition (Shape derivative). A functional J(D) of the domain is shape differen-
tiable at D if the underlying mapping V ~— J(Dy) which maps W1 (R4, R¢) into R
is Fréchet-differentiable at V = 0. The related Fréchet derivative V — J'(D)[V] at
D satisfies the following asymptotic expansion in the vicinity of V = 0:

o)l v-s0

0.
||V||W1’°°(Rd,Rd)

J(Dy) =J(D)+J (D)|V] +0(V), where

Theorem. The functional E[J(D, )] is shape differentiable at any shape D € U,
and its derivative reads

SElCD0) = [

v e (V,n)((Aex : ey) Cor[u]) (x,y) }X:y doy.
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A further example

Problem. Minimize the L2-tracking type functional

1
1(D,0) = 5 [ Julx,) ~ uo(x) dx,
B
where the state u(®) is given by

—Au(®) = f(®) in D, u(®w)=0inadD.

Reformulation. The expectation of the functional J(D, ®) can be rewritten as

E[(D, )] = % /B (Corfu)(x,x) — 2uo(x)E[u] (x) + 1 (x) ) dx
where
—AR[u] = E[f]in D, E[u] =0o0naD,
and

(Ax ® Ay) Cor[u] = Cor|f] in D x D,
Cor|u] =0 ind(D x D).
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A further example

Shape gradient. The gradient is given by

%J(D,(o) = —/E)D<V,n>g—ﬁ(®)g—ﬁ(®) doy;

where the adjoint state p(®) € H& (D) satisfies the boundary value problem

—Ap(0) = —xp(u(®) —ug) in D, p(®)=0o0nadD.

Reformulation. The shape gradient of the expected shape functional is given by

EVD.) == [ v |(she 5 Corlpalxy)

Here, the correlation function Cor[p, u] € H(% (D) ®H6 (D) can be calculated by solving the

dox.
X=y

boundary value problem

—(Ax®1y) Cor[p,u] = —(xp@1y)(Corlu] — ug ®E[u]) in D x D,
Cor[p,u] =0 on d(D x D).
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Low-rank approximation

» Approximation of the input correlation. Assume low-rank approximations
Corlf] ~ Y ££], Corg] ~ Zgjg}.
I J

Such expansions can efficiently be computed by e.g. a pivoted Cholesky decomposition.
» Approximation of the shape functional. The shape functional is simply given by

E[C( / ZAe u; ;) :e(u; ;)dx,

—div [Ae(ui,j)} — fi in D,
Ae(uijj)n =0 on Ffree

Ae(u,-,j)n =g on F

where

u; j = 0 on FD-
» Approximation of the shape gradient. The shape gradient is given by

d
SEU(D,0)) = /F . ZAe u; ;) : e(u; ;) doy.

» Alternative approach. A direct discretization of Cor[ | in a sparse grid space is possible
as well.
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Implementation

» Level-set approach to represent the domain under consideration. Represent the
shape D C R4 as the negative subdomain of a level set function

O(x) <0 ifxeD,
0:R?Y 5 R suchthat { ¢(x)=0 ifxeaD,
o(x) >0 ifxeR4\D.

» Motion of the domain. The motion of the domain D(z), induced by a velocity field
V(z,x) with normal amplitude, translates in terms of an associated level set function
O(t,-) as a Hamilton-Jacobi equation:

99

= +(V,[Vol) =0, 1€(0,T), x€ R

» In the present situation, V stems from the analytical formula for the shape derivative of
the objective under consideration.

» Ersatz material approach for computing the elastic displacement u. The boundary
value problem problem is transferred to a problem on a box D by filling the void part
Dy \ D with a very soft material, whose Hooke’s law is €A with € < 1.

» Low-rank approximation. We use the pivoted Cholesky decomposition to compute the
low-rank approximation.
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First example

Sketch:
Problem. A bridge is clamped on its lower part two sets of| ",
loads g, = (1,—1) and g, = (—1, 1) are applied on its top, i.e.,
g(x,0) = £1(0)gq(x) +Er(w)gp(x). 1
The choice E[&;] =0, Var[§;] = 1, Cor[;,E&p] = o implies
T T T T
Cor[g] = gag, + 8p8), + (gagb + gbga> : r,
< 1 >
Convergence hlstorles for the mean value and the volume
L als#:ao;* ;f}\ \ B0 Initial guess:
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First example

o=—1
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Second example

Problem. A bridge is clamped on its lower part two sets of loads g' = Sketch:
(gil,gé), i =1,2,3, are applied on its top such that A

Cor[gh](x,y) = 10°h; (M) e 101 —1]

2
Corlgh] (x,y) = 10%;" (%) e~ 10k, :
where
2

hl(t):1_4(t_§> , ki(t) = / I

< 1 >
hy(t) =2t(1—1t)+ =, ko (1) = Initial guess:

vV N
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Second example

surface load g! (o) surface load g%() surface load g> ()
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About measurement noise in EIT

Problem. Minimize

F(D)= (1-)E[J(D,0)] + 0 /Var [J(D,)] — inf,

where the random shape functional reads as

J(D,®) = /HV w) ||?dx — inf
and the states read as
Av(w) =0 Aw=0 inD,
v(w) =0 w=0 onT,
ov

—(0) =g(0) w=f onZX.

We assume that the Neumann data g are given as a Gaussian random field

M
g(x,0) = go(x) + ; gi(x)Y;(o)

where the random variables are independent, satisfying ¥; ~ A (0, 1).
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Numerical results (5% noise, 10 samples)

Reconstructions for different realizations of the measurement:

P @ &

&) & @

Reconstructionsfora =0, o = 0.5, o« = 0.75, oo = 0.875
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Conclusion

» We have shown that shape optimization of the expectation of a shape quadratic func-
tional and a state with random right-hand sides is a deterministic problem.

» The numerical solution has been addressed without assuming any specific model for the
randomness.

» Numerical results for the optimization of the compliance under random loadings have
been presented.

» Our ideas can be extended to shape functionals containing polynomials of the state.
~= involves higher-order moments

» Our ideas can be extended also to the variance of the shape functional and, hence, also
to a combination of variance end expectation of the shape functional.
~= involves higher-order moments
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Thank you four your attention!
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