Shape optimization for quadratic functionals and states with random right-hand sides

Marc Dambrine, Charles Dapogny, Helmut Harbrecht,

and Benedicte Puig

H. Harbrecht

Department of Mathematics and Computer Science University of Basel (Switzerland)

- Problem statement
- ► Deterministic reformulation
- ► Shape calculus
- ► Low-rank approximation
- Numerical results

Problem statement

Consider an elliptic state equation with random right-hand side, for example, the equations of linear elasticity with random forcing:

$$-\operatorname{div} \left[\operatorname{\mathbf{A}} e(\mathbf{u}(\boldsymbol{\omega})) \right] = \mathbf{f}(\boldsymbol{\omega}) \quad \text{in } D,$$

$$\operatorname{\mathbf{A}} e(\mathbf{u}(\boldsymbol{\omega})) \mathbf{n} = \mathbf{0} \quad \text{on } \Gamma_N^{\text{free}},$$

$$\operatorname{\mathbf{A}} e(\mathbf{u}(\boldsymbol{\omega})) \mathbf{n} = \mathbf{g}(\boldsymbol{\omega}) \quad \text{on } \Gamma_N^{\text{fix}},$$

$$\mathbf{u} = \mathbf{0} \quad \text{on } \Gamma_D.$$

where $e(\mathbf{u}) = (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}})/2$ stands for the linearized strain tensor and \mathbf{A} is given by

$$\mathbf{AB} = 2\mu \mathbf{B} + \lambda tr(\mathbf{B})\mathbf{I}$$
 for all $\mathbf{B} \in \mathbb{R}^{d \times d}$

with the Lamé coefficients λ and μ satisfying $\mu > 0$ and $\lambda + 2\mu/d > 0$.

► Consider a quadratic shape functional, for example, the compliance of shapes:

$$\begin{aligned} \mathcal{C}(D, \mathbf{\omega}) &= \int_D \mathbf{A} e \big(\mathbf{u}(\mathbf{x}, \mathbf{\omega}) \big) : e \big(\mathbf{u}(\mathbf{x}, \mathbf{\omega}) \big) \, \mathrm{d} \mathbf{x} \\ &= \int_D \langle \mathbf{f}(\mathbf{\omega}), \mathbf{u}(\mathbf{\omega}) \rangle \, \mathrm{d} \mathbf{x} + \int_{\Gamma_N^{\mathrm{fix}}} \langle \mathbf{g}(\mathbf{x}, \mathbf{\omega}), \mathbf{u}(\mathbf{x}, \mathbf{\omega}) \rangle \, \mathrm{d} \sigma_{\mathbf{x}}, \end{aligned}$$

► We aim at minimizing the expectation $\mathbb{E}[\mathcal{C}(D, \omega)]$ of the quadratic shape functional.

References.

P.D. Dunning and H.A. Kim. Robust topology optimization. Minimization of expected and variance of compliance. *AIAA Journal*, 51(11):2656–2664, 2013.

S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. Shape optimization under uncertainty. A stochastic programming approach. *SIAM J. Optim.*, 19(4):1610–1632, 2009.

G. Allaire and C. Dapogny.A deterministic approximation method in shape optimization under random uncertainties.*SMAI J. Comput. Math.*, 1:83–143, 2015.

Statistical quantities

► Expectation or mean:

$$\mathbb{E}[v](\mathbf{x}) := \int_{\Omega} v(\mathbf{x}, \boldsymbol{\omega}) \, \mathrm{d}\mathbb{P}(\boldsymbol{\omega})$$

► Correlation:

$$\operatorname{Cor}[v](\mathbf{x},\mathbf{y}) := \int_{\Omega} v(\mathbf{x},\mathbf{\omega}) v(\mathbf{y},\mathbf{\omega}) \, d\mathbb{P}(\mathbf{\omega}) = \mathbb{E}[v(\mathbf{x})v(\mathbf{y})]$$

► Covariance:

$$Cov[v](\mathbf{x}, \mathbf{y}) := \int_{\Omega} (v(\mathbf{x}, \boldsymbol{\omega}) - \mathbb{E}[v](\mathbf{x})) (v(\mathbf{y}, \boldsymbol{\omega}) - \mathbb{E}[v](\mathbf{y})) d\mathbb{P}(\boldsymbol{\omega})$$
$$= Cor[v](\mathbf{x}, \mathbf{y}) - \mathbb{E}[v](\mathbf{x})\mathbb{E}[v](\mathbf{y})$$

► Variance:

$$\begin{aligned} \operatorname{Var}[v](\mathbf{x}) &:= \int_{\Omega} \left(v(\mathbf{x}, \boldsymbol{\omega}) - \mathbb{E}[v](\mathbf{x}) \right)^2 d\mathbb{P}(\boldsymbol{\omega}) \\ &= \operatorname{Cor}[v](\mathbf{x}, \mathbf{y}) \big|_{\mathbf{x} = \mathbf{y}} - \mathbb{E}[v]^2(\mathbf{x}) = \operatorname{Cov}[v](\mathbf{x}, \mathbf{y}) \big|_{\mathbf{x} = \mathbf{y}} \end{aligned}$$

 \blacktriangleright *k*-th moment:

$$\mathcal{M}[v](\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k) := \int_{\Omega} v(\mathbf{x}_1,\boldsymbol{\omega}) v(\mathbf{x}_2,\boldsymbol{\omega}) \cdots v(\mathbf{x}_k,\boldsymbol{\omega}) \, \mathrm{d}\mathbb{P}(\boldsymbol{\omega})$$

PDEs with random right-hand side

Random boundary value problem:

$$-\operatorname{div}\left[\alpha \nabla u(\omega)\right] = f(\omega) \text{ in } D, \quad u(\omega) = 0 \text{ on } \partial D$$

 \longrightarrow the random solution depends linearly on the random input parameter

Theorem (Schwab/Todor [2003]): It holds $-\operatorname{div} \left[\alpha \nabla \mathbb{E}[u] \right] = \mathbb{E}[f] \text{ in } D, \quad \mathbb{E}[u] = \mathbb{E}[g] \text{ on } \partial D$ and $(\operatorname{div} \otimes \operatorname{div}) \left[(\alpha \otimes \alpha) (\nabla \otimes \nabla) \operatorname{Cor}[u] \right] = \operatorname{Cor}[f] \quad \text{in } D \times D,$ $\operatorname{Cor}[u] = 0 \qquad \text{on } \partial(D \times D).$

Numerical solution of the correlation equation:

sparse grid approximation by the combination technique

H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based *k*-th moment analysis of elliptic problems with random diffusion. *J. Comput. Phys.*, 252:128–141, 2013.

Iow-rank approximation by the pivoted Cholesky decomposition

H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition. *Appl. Numer. Math.*, 62:428–440, 2012.

• adaptive low-rank approximation by means of \mathcal{H} -matrices

J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and \mathcal{H} -matrix approximation for rough random fields. *Numer. Math.*, 135(4):1045–1071, 2017.

Deterministic reformulation of the shape functional

Theorem. The expectation of the quadratic shape functional can be rewritten by

$$\mathbb{E}[\mathcal{C}(D,\omega)] = \int_D \left((\mathbf{A}e_{\mathbf{x}} : e_{\mathbf{y}}) \operatorname{Cor}[\mathbf{u}] \right)(\mathbf{x},\mathbf{y}) \big|_{\mathbf{x}=\mathbf{y}} \, \mathrm{d}\mathbf{x},$$

where

$$(\mathbf{A}e_{\mathbf{X}}:e_{\mathbf{Y}}):\left[H^{1}_{\Gamma_{D}}(D)\right]^{d}\otimes\left[H^{1}_{\Gamma_{D}}(D)\right]^{d}\rightarrow L^{2}(D)\otimes L^{2}(D)$$

is the linear operator induced from the bilinear mapping

 $\mathbf{uv}^{\mathsf{T}} \mapsto \mathbf{A}e(\mathbf{u}) : e(\mathbf{v}).$

Proof. The assertion follows from

$$\mathbb{E}[\mathcal{C}(D, \omega)] = \int_{\Omega} \int_{D} \mathbf{A}e(\mathbf{u}(\mathbf{x}, \omega)) : e(\mathbf{u}(\mathbf{x}, \omega)) d\mathbf{x}$$

=
$$\int_{D} \left[(\mathbf{A}e_{\mathbf{x}} : e_{\mathbf{y}}) \int_{\Omega} \mathbf{u}(\mathbf{x}, \omega) \mathbf{u}(\mathbf{y}, \omega)^{\mathsf{T}} d\mathbb{P}(\omega) \right] \Big|_{\mathbf{x}=\mathbf{y}} d\mathbf{x}$$

=
$$\int_{D} \left((\mathbf{A}e_{\mathbf{x}} : e_{\mathbf{y}}) \operatorname{Cor}[\mathbf{u}] \right) (\mathbf{x}, \mathbf{y}) \Big|_{\mathbf{x}=\mathbf{y}} d\mathbf{x}.$$

How to compute the correlation?

Proof. The assertion follows by tensorizing the state equation and the exploiting the linearity when taking the expectation. \Box

Helmut Harbrecht

Computing the shape gradient

Domain perturbation. $D_{\mathbf{V}} = (I + \mathbf{V})(D), \quad \mathbf{V} \in W^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d), \quad \|\mathbf{V}\|_{W^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d)} \leq \frac{1}{2}.$

Definition (Shape derivative). A functional J(D) of the domain is shape differentiable at D if the underlying mapping $\mathbf{V} \mapsto J(D_{\mathbf{V}})$ which maps $W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d)$ into \mathbb{R} is Fréchet-differentiable at $\mathbf{V} = \mathbf{0}$. The related Fréchet derivative $\mathbf{V} \mapsto J'(D)[\mathbf{V}]$ at D satisfies the following asymptotic expansion in the vicinity of $\mathbf{V} = \mathbf{0}$:

$$J(D_{\mathbf{V}}) = J(D) + J'(D)[\mathbf{V}] + o(\mathbf{V}), \text{ where } \frac{\|o(\mathbf{V})\|}{\|\mathbf{V}\|_{W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d)}} \xrightarrow{\mathbf{V} \to \mathbf{0}} 0.$$

Theorem. The functional $\mathbb{E}[J(D, \omega)]$ is shape differentiable at any shape $D \in \mathcal{U}_{ad}$ and its derivative reads

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{V}}\mathbb{E}[\mathcal{C}(D,\omega)] = \int_{\Gamma_N^{\mathrm{free}}} \langle \mathbf{V}, \mathbf{n} \rangle \big((\mathbf{A}e_{\mathbf{x}} : e_{\mathbf{y}}) \operatorname{Cor}[\mathbf{u}] \big)(\mathbf{x}, \mathbf{y}) \big|_{\mathbf{x}=\mathbf{y}} \mathrm{d}\sigma_{\mathbf{x}}.$$

A further example

Problem. Minimize the L^2 -tracking type functional

$$J(D, \boldsymbol{\omega}) = \frac{1}{2} \int_{B} |u(\mathbf{x}, \boldsymbol{\omega}) - u_0(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x},$$

where the state $\mathit{u}(\omega)$ is given by

$$-\Delta u(\omega) = f(\omega)$$
 in D , $u(\omega) = 0$ in ∂D .

Reformulation. The expectation of the functional $J(D, \omega)$ can be rewritten as

$$\mathbb{E}[J(D,\omega)] = \frac{1}{2} \int_B \left(\operatorname{Cor}[u](\mathbf{x},\mathbf{x}) - 2u_0(\mathbf{x})\mathbb{E}[u](\mathbf{x}) + u_0^2(\mathbf{x}) \right) d\mathbf{x},$$

where

$$-\Delta \mathbb{E}[u] = \mathbb{E}[f] \text{ in } D, \quad \mathbb{E}[u] = 0 \text{ on } \partial D,$$

and

$$\Delta_{\mathbf{X}} \otimes \Delta_{\mathbf{Y}}) \operatorname{Cor}[u] = \operatorname{Cor}[f] \text{ in } D \times D,$$

$$\operatorname{Cor}[u] = 0 \qquad \text{ in } \partial(D \times D).$$

A further example

Shape gradient. The gradient is given by

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{V}}J(D,\boldsymbol{\omega}) = -\int_{\partial D} \langle \mathbf{V}, \mathbf{n} \rangle \frac{\partial p}{\partial \mathbf{n}}(\boldsymbol{\omega}) \frac{\partial u}{\partial \mathbf{n}}(\boldsymbol{\omega}) \,\mathrm{d}\boldsymbol{\sigma}_{\mathbf{X}},$$

where the adjoint state $p(\omega) \in H^1_0(D)$ satisfies the boundary value problem

$$-\Delta p(\omega) = -\chi_B(u(\omega) - u_0)$$
 in D , $p(\omega) = 0$ on ∂D .

Reformulation. The shape gradient of the expected shape functional is given by

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{V}}\mathbb{E}[J(D,\boldsymbol{\omega})] = -\int_{\partial D} \langle \mathbf{V},\mathbf{n}\rangle \left[\left(\frac{\partial}{\partial \mathbf{n}} \otimes \frac{\partial}{\partial \mathbf{n}} \right) \operatorname{Cor}[p,u](\mathbf{x},\mathbf{y}) \right] \bigg|_{\mathbf{x}=\mathbf{y}} \mathrm{d}\boldsymbol{\sigma}_{\mathbf{x}}.$$

Here, the correlation function $Cor[p, u] \in H_0^1(D) \otimes H_0^1(D)$ can be calculated by solving the boundary value problem

$$-(\Delta_{\mathbf{X}} \otimes \mathbf{I}_{\mathbf{y}})\operatorname{Cor}[p, u] = -(\chi_{B} \otimes \mathbf{I}_{\mathbf{y}})(\operatorname{Cor}[u] - u_{0} \otimes \mathbb{E}[u]) \text{ in } D \times D,$$

$$\operatorname{Cor}[p, u] = 0 \qquad \qquad \text{on } \partial(D \times D).$$

Low-rank approximation

Approximation of the input correlation. Assume low-rank approximations

$$\operatorname{Cor}[\mathbf{f}] \approx \sum_{i} \mathbf{f}_{i} \mathbf{f}_{i}^{\mathsf{T}}, \quad \operatorname{Cor}[\mathbf{g}] \approx \sum_{j} \mathbf{g}_{j} \mathbf{g}_{j}^{\mathsf{T}}.$$

Such expansions can efficiently be computed by e.g. a pivoted Cholesky decomposition.

► Approximation of the shape functional. The shape functional is simply given by

$$\mathbb{E}[\mathcal{C}(D, \omega)] = \int_D \sum_{i,j} \mathbf{A} e(\mathbf{u}_{i,j}) : e(\mathbf{u}_{i,j}) \, \mathrm{d}\mathbf{x},$$

where

$$-\operatorname{div} \left[\mathbf{A} e(\mathbf{u}_{i,j}) \right] = \mathbf{f}_i \quad \text{in } D,$$
$$\mathbf{A} e(\mathbf{u}_{i,j}) \mathbf{n} = \mathbf{0} \quad \text{on } \Gamma_N^{\text{free}},$$
$$\mathbf{A} e(\mathbf{u}_{i,j}) \mathbf{n} = \mathbf{g}_j \quad \text{on } \Gamma_N^{\text{fix}},$$
$$\mathbf{u}_{i,j} = \mathbf{0} \quad \text{on } \Gamma_D.$$

► Approximation of the shape gradient. The shape gradient is given by

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{V}}\mathbb{E}[J(D,\omega)] = \int_{\Gamma_N^{\mathrm{free}}} \langle \mathbf{V}, \mathbf{n} \rangle \sum_{i,j} \mathbf{A}e(\mathbf{u}_{i,j}) : e(\mathbf{u}_{i,j}) \,\mathrm{d}\sigma_{\mathbf{X}}.$$

Alternative approach. A direct discretization of Cor[u] in a sparse grid space is possible as well. ► Level-set approach to represent the domain under consideration. Represent the shape $D \subset \mathbb{R}^d$ as the negative subdomain of a level set function

$$\phi: \mathbb{R}^d \to \mathbb{R} \text{ such that } \begin{cases} \phi(\mathbf{x}) < 0 & \text{if } \mathbf{x} \in D, \\ \phi(\mathbf{x}) = 0 & \text{if } \mathbf{x} \in \partial D, \\ \phi(\mathbf{x}) > 0 & \text{if } \mathbf{x} \in \mathbb{R}^d \setminus \overline{D}. \end{cases}$$

► Motion of the domain. The motion of the domain D(t), induced by a velocity field $V(t, \mathbf{x})$ with normal amplitude, translates in terms of an associated level set function $\phi(t, \cdot)$ as a Hamilton-Jacobi equation:

$$\frac{\partial \phi}{\partial t} + \langle \mathbf{V}, | \nabla \phi | \rangle = 0, \quad t \in (0,T), \ \mathbf{x} \in \mathbb{R}^d.$$

- In the present situation, V stems from the analytical formula for the shape derivative of the objective under consideration.
- ► Ersatz material approach for computing the elastic displacement u. The boundary value problem problem is transferred to a problem on a box D_0 by filling the void part $D_0 \setminus \overline{D}$ with a very soft material, whose Hooke's law is $\varepsilon \mathbf{A}$ with $\varepsilon \ll 1$.
- Low-rank approximation. We use the pivoted Cholesky decomposition to compute the low-rank approximation.

First example

Problem. A bridge is clamped on its lower part two sets of loads $\mathbf{g}_a = (1, -1)$ and $\mathbf{g}_b = (-1, 1)$ are applied on its top, i.e.,

 $\mathbf{g}(\mathbf{x}, \boldsymbol{\omega}) = \xi_1(\boldsymbol{\omega})\mathbf{g}_a(\mathbf{x}) + \xi_2(\boldsymbol{\omega})\mathbf{g}_b(\mathbf{x}).$

The choice $\mathbb{E}[\xi_i] = 0$, $Var[\xi_i] = 1$, $Cor[\xi_1, \xi_2] = \alpha$ implies

 $\operatorname{Cor}[\mathbf{g}] = \mathbf{g}_a \mathbf{g}_a^{\mathsf{T}} + \mathbf{g}_b \mathbf{g}_b^{\mathsf{T}} + \alpha \left(\mathbf{g}_a \mathbf{g}_b^{\mathsf{T}} + \mathbf{g}_b \mathbf{g}_a^{\mathsf{T}} \right).$

Convergence histories for the mean value and the volume:

Helmut Harbrecht

250

First example

Helmut Harbrecht

Second example

Sketch: **Problem.** A bridge is clamped on its lower part two sets of loads $g^{l} =$ (g_1^i, g_2^i) , i = 1, 2, 3, are applied on its top such that Γ_N $\operatorname{Cor}[g_1^i](\mathbf{x}, \mathbf{y}) = 10^5 h_i^+ \left(\frac{x_1 + y_1}{2}\right) e^{-10|x_1 - y_1|},$ $\operatorname{Cor}[g_2^i](\mathbf{x}, \mathbf{y}) = 10^6 k_i^+ \left(\frac{x_1 + y_1}{2}\right) e^{-10|x_1 - y_1|},$ $\mathbf{2}$ where $h_1(t) = 1 - 4\left(t - \frac{1}{2}\right)^2, \quad k_1(t) = \begin{cases} (4t - 1)^2, & \text{if } t \le \frac{1}{2}, \\ (4t - 3)^2, & \text{else}, \end{cases}$ Γ_{D} $h_2(t) = 2t(1-t) + \frac{1}{2}, \qquad k_2(t) = \begin{cases} (4t-1)(6t-2), & \text{if } t \le \frac{1}{2}, \\ (4t-3)(6t-4), & \text{else}, \end{cases}$ Initial guess: $k_3(t) = \begin{cases} (4t-1)(6t-1), & \text{if } t \le \frac{1}{2}, \\ (4t-3)(6t-5), & \text{else.} \end{cases}$ $h_{3}(t) = 1,$ h1 _____ h2 ____

Helmut Harbrecht

Second example

About measurement noise in EIT

Problem. Minimize $F(D) = (1 - \alpha) \mathbb{E} [J(D, \omega)] + \alpha \sqrt{\operatorname{Var} [J(D, \omega)]} \to \operatorname{inf},$ where the random shape functional reads as $J(D, \boldsymbol{\omega}) = \int_{D} \left\| \nabla \left(v(\boldsymbol{\omega}) - w \right) \right\|^2 d\mathbf{x} \to \inf$ and the states read as $\begin{aligned} \Delta v(\boldsymbol{\omega}) &= 0 & \Delta w = 0 & \text{in } D, \\ v(\boldsymbol{\omega}) &= 0 & w = 0 & \text{on } \Gamma, \\ \frac{\partial v}{\partial \mathbf{n}}(\boldsymbol{\omega}) &= g(\boldsymbol{\omega}) & w = f & \text{on } \Sigma. \end{aligned}$

We assume that the Neumann data g are given as a Gaussian random field

$$g(\mathbf{x}, \boldsymbol{\omega}) = g_0(\mathbf{x}) + \sum_{i=1}^M g_i(\mathbf{x}) Y_i(\boldsymbol{\omega}),$$

where the random variables are independent, satisfying $Y_i \sim \mathcal{N}(0, 1)$.

Numerical results (5% noise, 10 samples)

Reconstructions for different realizations of the measurement:

Reconstructions for $\alpha = 0$, $\alpha = 0.5$, $\alpha = 0.75$, $\alpha = 0.875$

Conclusion

- ► We have shown that shape optimization of the expectation of a shape quadratic functional and a state with random right-hand sides is a deterministic problem.
- The numerical solution has been addressed without assuming any specific model for the randomness.
- Numerical results for the optimization of the compliance under random loadings have been presented.
- Our ideas can be extended to shape functionals containing polynomials of the state.
 ~> involves higher-order moments
- Our ideas can be extended also to the variance of the shape functional and, hence, also to a combination of variance end expectation of the shape functional. ~ involves higher-order moments

References.

M. Dambrine, C. Dapogny, and H. Harbrecht. Shape optimization for quadratic functionals and states with random right-hand sides. *SIAM J. Control Optim.*, 53(5):3081–3103, 2015.

M. Dambrine, H. Harbrecht, and B. Puig. Incorporating knowledge on the measurement noise in electrical impedance tomography. *ESAIM Control Optim. Calc. Var.*, to appear.

Conclusion

- ► We have shown that shape optimization of the expectation of a shape quadratic functional and a state with random right-hand sides is a deterministic problem.
- The numerical solution has been addressed without assuming any specific model for the randomness.
- Numerical results for the optimization of the compliance under random loadings have been presented.
- Our ideas can be extended to shape functionals containing polynomials of the state.
 ~> involves higher-order moments
- Our ideas can be extended also to the variance of the shape functional and, hence, also to a combination of variance end expectation of the shape functional. ~ involves higher-order moments

References.

	11
A.	
21	
S.,	e**

M. Dambrine, C. Dapogny, and H. Harbrecht.
Shape optimization for quadratic functionals and states with random right-hand sides. *SIAM J. Control Optim.*, 53(5):3081–3103, 2015.

M. Dambrine, H. Harbrecht, and B. Puig. Incorporating knowledge on the measurement noise in electrical impedance tomography. *ESAIM Control Optim. Calc. Var.*, to appear.

Thank you four your attention!