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Problem statement
I Consider an elliptic state equation with random right-hand side, for example, the equa-

tions of linear elasticity with random forcing:

�div

⇥
Ae

�
u(w)

�⇤
= f(w) in D,

Ae
�
u(w)

�
n = 0 on G

free

N ,

Ae
�
u(w)

�
n = g(w) on G

fix

N ,

u = 0 on GD.

where e(u) = (—u+—u

T)/2 stands for the linearized strain tensor and A is given by

AB = 2µB+ltr(B)I for all B 2 Rd⇥d

with the Lamé coefficients l and µ satisfying µ > 0 and l+2µ/d > 0.

I Consider a quadratic shape functional, for example, the compliance of shapes:

C (D,w) =
Z

D
Ae

�
u(x,w)

�
: e
�
u(x,w)

�
dx

=
Z

D
hf(w),u(w)idx+

Z

G

fix

N

hg(x,w),u(x,w)ids

x

,

I We aim at minimizing the expectation E[C (D,w)] of the quadratic shape functional.
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Statistical quantities
I Expectation or mean:

E[v](x) :=
Z

W

v(x,w)dP(w)

I Correlation:

Cor[v](x,y) :=
Z

W

v(x,w)v(y,w)dP(w) = E[v(x)v(y)]

I Covariance:

Cov[v](x,y) :=
Z

W

�
v(x,w)�E[v](x)

��
v(y,w)�E[v](y)

�
dP(w)

= Cor[v](x,y)�E[v](x)E[v](y)

I Variance:

Var[v](x) :=
Z

W

�
v(x,w)�E[v](x)

�
2

dP(w)

= Cor[v](x,y)
��
x=y

�E[v]2(x) = Cov[v](x,y)
��
x=y

I k-th moment:

M [v](x
1

,x
2

, . . . ,xk) :=
Z

W

v(x
1

,w)v(x
2

,w) · · ·v(xk,w)dP(w)
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PDEs with random right-hand side
Random boundary value problem:

�div

⇥
a—u(w)

⇤
= f (w) in D, u(w) = 0 on ∂D

�! the random solution depends linearly on the random input parameter

Theorem (Schwab/Todor [2003]): It holds

�div

⇥
a—E[u]

⇤
= E[ f ] in D, E[u] = E[g] on ∂D

and
(div⌦div)

⇥
(a⌦a)(—⌦—)Cor[u]

⇤
= Cor[ f ] in D⇥D,

Cor[u] = 0 on ∂(D⇥D).

Numerical solution of the correlation equation:
I sparse grid approximation by the combination technique

H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th moment analysis of elliptic
problems with random diffusion. J. Comput. Phys., 252:128–141, 2013.

I low-rank approximation by the pivoted Cholesky decomposition
H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition.
Appl. Numer. Math., 62:428–440, 2012.

I adaptive low-rank approximation by means of H -matrices
J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and H -matrix approximation for rough random fields.
Numer. Math., 135(4):1045–1071, 2017.
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Deterministic reformulation of the shape functional
Theorem. The expectation of the quadratic shape functional can be rewritten by

E[C (D,w)] =
Z

D

�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

dx,

where

(Ae
x

: e
y

) :

⇥
H1

GD
(D)

⇤d ⌦
⇥
H1

GD
(D)

⇤d ! L2(D)⌦L2(D)

is the linear operator induced from the bilinear mapping

uv

T 7! Ae(u) : e(v).

Proof. The assertion follows from

E[C (D,w)] =
Z

W

Z

D
Ae

�
u(x,w)

�
: e
�
u(x,w)

�
dx

=
Z

D


(Ae

x

: e
y

)
Z

W

u(x,w)u(y,w)T
dP(w)

�����
x=y

dx

=
Z

D

�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

dx. ⇤
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How to compute the correlation?

Theorem. The two-point correlation function Cor[u] 2 [H1

GD
(D)]d ⌦ [H1

GD
(D)]d is

the unique solution to the following tensor-product boundary value problem:

(div

x

⌦div

y

)
⇥
(Ae

x

⌦Ae
y

)Cor[u]
⇤
= Cor[f] in D⇥D,

(div

x

⌦I

y

)(Ae
x

⌦Ae
y

)Cor[u](I
x

⌦n

y

) = 0 on D⇥G

fix[ free

N ,

(I
x

⌦div

y

)(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦ I

y

) = 0 on G

fix[ free

N ⇥D,

(div

x

⌦I

y

)(Ae
x

⌦ I

y

)Cor[u] = 0 on D⇥GD,

(I
x

⌦div

y

)(I
x

⌦Ae
y

)Cor[u] = 0 on GD⇥D,

(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦n

y

) = 0 on
�
G

fix[ free

N ⇥G

fix[ free

N
�

\ (Gfix

N ⇥G

fix

N ),

(Ae
x

⌦Ae
y

)Cor[u](n
x

⌦n

y

) = Cor[g] on G

fix

N ⇥G

fix

N ,

(Ae
x

⌦ I

y

)Cor[u](n
x

⌦ I

y

) = 0 on G

fix[ free

N ⇥GD,

(I
x

⌦Ae
y

)Cor[u](I
x

⌦n

y

) = 0 on GD⇥G

fix[ free

N ,

Cor[u] = 0 on GD⇥GD.

Proof. The assertion follows by tensorizing the state equation and the exploiting the linear-
ity when taking the expectation. ⇤
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Computing the shape gradient

Domain perturbation.

D
V

= (I +V)(D), V 2W 1,•(Rd,Rd), kVkW 1,•(Rd,Rd) 
1

2

.

D
 V

D

Definition (Shape derivative). A functional J(D) of the domain is shape differen-
tiable at D if the underlying mapping V 7! J(D

V

) which maps W 1,•(Rd,Rd) into R
is Fréchet-differentiable at V = 0. The related Fréchet derivative V 7! J0(D)[V] at
D satisfies the following asymptotic expansion in the vicinity of V = 0:

J(D
V

) = J(D)+ J0(D)[V]+o(V), where
ko(V)k

kVkW 1,•(Rd,Rd)

V!0�! 0.

Theorem. The functional E[J(D,w)] is shape differentiable at any shape D 2 Uad
and its derivative reads

d

dV

E[C (D,w)] =
Z

G

free

N

hV,ni
�
(Ae

x

: e
y

)Cor[u]
�
(x,y)

��
x=y

ds

x

.
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A further example

Problem. Minimize the L2-tracking type functional

J(D,w) =
1

2

Z

B
|u(x,w)�u

0

(x)|2 dx,

where the state u(w) is given by

�Du(w) = f (w) in D, u(w) = 0 in ∂D.

Reformulation. The expectation of the functional J(D,w) can be rewritten as

E[J(D,w)] =
1

2

Z

B

⇣
Cor[u](x,x)�2u

0

(x)E[u](x)+u2

0

(x)
⌘

dx,

where

�DE[u] = E[ f ] in D, E[u] = 0 on ∂D,

and

(D
x

⌦D

y

)Cor[u] = Cor[ f ] in D⇥D,

Cor[u] = 0 in ∂(D⇥D).
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A further example
Shape gradient. The gradient is given by

d

dV

J(D,w) = �
Z

∂D
hV,ni∂p

∂n

(w)
∂u
∂n

(w)ds

x

,

where the adjoint state p(w) 2 H1

0

(D) satisfies the boundary value problem

�Dp(w) = �cB
�
u(w)�u

0

�
in D, p(w) = 0 on ∂D.

Reformulation. The shape gradient of the expected shape functional is given by

d

dV

E[J(D,w)] = �
Z

∂D
hV,ni

✓
∂

∂n

⌦ ∂

∂n

◆
Cor[p,u](x,y)

�����
x=y

ds

x

.

Here, the correlation function Cor[p,u] 2 H1

0

(D)⌦H1

0

(D) can be calculated by solving the
boundary value problem

�(D
x

⌦ I

y

)Cor[p,u] = �(cB⌦ I

y

)
�

Cor[u]�u
0

⌦E[u]
�

in D⇥D,

Cor[p,u] = 0 on ∂(D⇥D).
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Low-rank approximation
I Approximation of the input correlation. Assume low-rank approximations

Cor[f] ⇡
Â

i
fif

T
i , Cor[g] ⇡

Â

j
g jg

T
j .

Such expansions can efficiently be computed by e.g. a pivoted Cholesky decomposition.
I Approximation of the shape functional. The shape functional is simply given by

E[C (D,w)] =
Z

D
Â

i, j
Ae(ui, j) : e(ui, j)dx,

where
�div

⇥
Ae(ui, j)

⇤
= fi in D,

Ae(ui, j)n = 0 on G

free

N ,

Ae(ui, j)n = g j on G

fix

N ,

ui, j = 0 on GD.

I Approximation of the shape gradient. The shape gradient is given by

d

dV

E[J(D,w)] =
Z

G

free

N

hV,ni
Â

i, j
Ae(ui, j) : e(ui, j)ds

x

.

I Alternative approach. A direct discretization of Cor[u] in a sparse grid space is possible
as well.
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Implementation

I Level-set approach to represent the domain under consideration. Represent the
shape D ⇢ Rd as the negative subdomain of a level set function

f : Rd ! R such that

8
<

:

f(x) < 0 if x 2 D,
f(x) = 0 if x 2 ∂D,
f(x) > 0 if x 2 Rd \D.

I Motion of the domain. The motion of the domain D(t), induced by a velocity field
V(t,x) with normal amplitude, translates in terms of an associated level set function
f(t, ·) as a Hamilton-Jacobi equation:

∂f

∂t
+ hV, |—f|i = 0, t 2 (0,T ), x 2 Rd.

I In the present situation, V stems from the analytical formula for the shape derivative of
the objective under consideration.

I Ersatz material approach for computing the elastic displacement u. The boundary
value problem problem is transferred to a problem on a box D

0

by filling the void part
D

0

\D with a very soft material, whose Hooke’s law is eA with e ⌧ 1.
I Low-rank approximation. We use the pivoted Cholesky decomposition to compute the

low-rank approximation.
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First example

Problem. A bridge is clamped on its lower part two sets of
loads ga = (1,�1) and gb = (�1,1) are applied on its top, i.e.,

g(x,w) = x

1

(w)ga(x)+x

2

(w)gb(x).

The choice E[xi] = 0, Var[xi] = 1, Cor[x
1

,x
2

] = a implies

Cor[g] = gag

T
a +gbg

T
b +a

⇣
gag

T
b +gbg

T
a

⌘
.

Sketch:

�N

�D

1

1

ga
gb

Convergence histories for the mean value and the volume:
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First example
a = �1 a = �0.7 a = 0

a = 0.5 a = 0.8 a = 1
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Second example

Problem. A bridge is clamped on its lower part two sets of loads g

i =

(gi
1

,gi
2

), i = 1,2,3, are applied on its top such that

Cor[gi
1

](x,y) = 10

5h+
i

✓
x

1

+ y
1

2

◆
e�10|x

1

�y
1

|,

Cor[gi
2

](x,y) = 10

6k+
i

✓
x

1

+ y
1

2

◆
e�10|x

1

�y
1

|,

where

h
1

(t) = 1�4

✓
t � 1

2

◆
2

, k
1

(t) =

(
(4t �1)2, if t  1

2

,

(4t �3)2, else,

h
2

(t) = 2t(1� t)+
1

2

, k
2

(t) =

(
(4t �1)(6t �2), if t  1

2

,

(4t �3)(6t �4), else,

h
3

(t) = 1, k
3

(t) =

(�
4t �1)(6t �1), if t  1

2

,�
4t �3)(6t �5), else.
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Sketch:

�N

�D
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Initial guess:
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Second example

surface load g

1(w) surface load g

2(w) surface load g

3(w)
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About measurement noise in EIT

Problem. Minimize

F(D) = (1�a)E
⇥
J(D,w)

⇤
+a

q
Var

⇥
J(D,w)

⇤
! inf,

where the random shape functional reads as

J(D,w) =
Z

D

��
—

�
v(w)�w

���2

dx ! inf

and the states read as

Dv(w) = 0 Dw = 0 in D,

v(w) = 0 w = 0 on G,
∂v
∂n

(w) = g(w) w = f on S.

We assume that the Neumann data g are given as a Gaussian random field

g(x,w) = g
0

(x)+
M

Â

i=1

gi(x)Yi(w),

where the random variables are independent, satisfying Yi ⇠ N (0,1).
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Numerical results (5% noise, 10 samples)

Reconstructions for different realizations of the measurement:

Reconstructions for a = 0, a = 0.5, a = 0.75, a = 0.875
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Conclusion
I We have shown that shape optimization of the expectation of a shape quadratic func-

tional and a state with random right-hand sides is a deterministic problem.
I The numerical solution has been addressed without assuming any specific model for the

randomness.
I Numerical results for the optimization of the compliance under random loadings have

been presented.
I Our ideas can be extended to shape functionals containing polynomials of the state.
 involves higher-order moments

I Our ideas can be extended also to the variance of the shape functional and, hence, also
to a combination of variance end expectation of the shape functional.
 involves higher-order moments
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Thank you four your attention!
Helmut Harbrecht

21


