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UQ in aerodynamic design

Compute aerodynamic coeffs.
(lift, drag, C,) and optimize
airfoil shape in presence of
operational uncertainties (Mach
number, angle of attack, ...) and
geometrical uncertainties
(manufacturing tolerances, icing,
fatigue, ...)
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Motivating example

Operational uncertainties

Atmospheric fluctuations with respect to location, time (T, p, p, u) over long
flights

Temperature [K] - ground - 1/JAN/2015 o Temperature [K] - ground - 1/JUL/2015

Probabilistic framework: Mach, Reynolds, Angle of Attack, etc. treated as
random variables

F. Nobile (EPFL) MLMC for UQ GAMM AGUQ workshop 2018 5




Motivating example

Geometrical uncertainties

Production: manufacturing, assembly Temporary factors: deflection, icing

Probabilistic Framework: Leading edge radius, thickness, curvature, etC-ﬁ!(l’f

treated as random variables
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Forward Uncertainty propagation

@ Random input parameters: y (with given distribution)

o (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution

@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)
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Forward Uncertainty propagation

@ Random input parameters: y (with given distribution)

o (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution

@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)

Goal: compute p(Q) = E[Q] or other statistical quantities

In practice, u is not accessible. Computational model

Lpyun = Fp — computational output  Qn = Q(up)

computational

model
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Monte Carlo method

o Generate M iid copies y), ... ,y(M ~ y
@ Compute the corresponding outputs Q,S'), i=1,....M
@ Approximate expectation by sample average

M
e = % Z Q,gi) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1
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Monte Carlo method
o Generate M iid copies y(I) ... y(M ~y

@ Compute the corresponding outputs Q,(j), i=1,....M
@ Approximate expectation by sample average

M
e = % Z Q,Si) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1

Mean squared error

Var
MSE(u}f€) = E[(1(@) — uff°)?] = (BQ ~ @) + 1%
discret. error MC arror
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Monte Carlo method

o Generate M iid copies y), ... ,y(M ~ y
@ Compute the corresponding outputs Q,S'), i=1,....M

@ Approximate expectation by sample average
M
1 i . .
e = o Z Q,g) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1

Mean squared error

Var
MSE(u}f€) = E[(1(@) — uff°)?] = (BQ ~ @) + 1%
discret. error MC orror

Complexity analysis (error versus cost)
Assume: o |E[Q — Qy]| = O(h%), Var[Q4] = O(1),
@ cost to compute each Qf,i): Ch=0(h)
Then  MSE=0(tol?) = h=0(tol*), M = O(tol?)

_ —
Total work:  Work(u)¢) = C,M < tol~= tol 2
v
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Can we improve on Monte Carlo? Control variate

Let Z be random variable correlated with Qp, and with known mean.

Idea: Apply MC on Q7 = Qn — a(Z — E[Z]) (notice that E[Qp 7] = E[Q4])

§

Z Q) — az) + aE[Z]
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Motivating example

Can we improve on Monte Carlo? Control variate

Let Z be random variable correlated with Qp, and with known mean.

Idea: Apply MC on Q7 = Qn — a(Z — E[Z]) (notice that E[Qp 7] = E[Q4])

i

Z Q) — az) + aE[Z]

Var[@p,z] = Var[Qn — aZ] = Var[Qn] + a2Var[Z] —2a Cov(Q@p, 2)

For optimal a: Var[Qp, z] = Var[Q4] (1 - %ﬁ}p) < Var[Qp] (always gives
variance reduction)
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Motivating example

Can we improve on Monte Carlo? Control variate

Let Z be random variable correlated with Qp, and with known mean

Idea: Apply MC on Q7 = Qn — a(Z — E[Z]) (notice that E[Qp 7] = E[Q4])

i

Z Q) — az) + aE[Z]

Var[Qn] + a?Var[Z] — 2a Cov(@p, Z)

For optimal a: Var[Qp, z] = Var[Q4] (1 - %ﬁ}p) < Var[Qp] (always gives

variance reduction)

Var[Q@p,z] = Var[Qn — aZ] =

Two ideas for choosing Z
= Q" with numerically optimized «

@ Use a surrogate model Z =
~ multi-fidelity Monte Carlo [Peherstorfer, Willcox, Gunzburger, 2016]

@ Use coarser discretization e.g. Z = Qo (usually with o = 1)
~ two level Monte Carlo [Heinrich 1998, Giles 2008, ...]
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Can we improve on Monte Carlo? Control variate

Problem: E[Z] not known, in general !
~> compute it with independent MC with larger sample size (cheaper problem).
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Motivating example

Can we improve on Monte Carlo? Control variate

Problem: E[Z] not known, in general !
~> compute it with independent MC with larger sample size (cheaper problem).

From two-level to multilevel:

== Z ) + E[Q24]
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Motivating example

Can we improve on Monte Carlo? Control variate

Problem: E[Z] not known, in general !
~> compute it with independent MC with larger sample size (cheaper problem).

From two-level to multilevel:

1 < i i
ugY = Zj(o‘ )~ Q) + E[Qun]
M
MZ ZQzl 7, Mz > M
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Motivating example

Can we improve on Monte Carlo? Control variate

Problem: E[Z] not known, in general !
~> compute it with independent MC with larger sample size (cheaper problem).

From two-level to multilevel:

QY — Q) + E[Qun]

N
.Mz

Il
—

v _
Ky =

2
S

Il
A

(Q(I) Z Qzl 2), My, > M

2
S

[
—

(i) (1,2) (1,2) (i,n)
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i=1
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Multilevel Monte Carlo for expectations

Outline

© Multilevel Monte Carlo for expectations
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Multilevel Monte Carlo

@ Sequence of refined discretizations

ho>h1>...> h

e e 0 0 0 o

. . @ Sequence of sample sizes

My > My >--- > M,
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Multilevel Monte Carlo

@ Sequence of refined discretizations

ho>h1>...> h

@ Sequence of sample sizes

t=0 t=1L Mo > My >---> M,

Denoting Q[ th, the MLMC estimator is
MLMC __ (i,0) (i,1) (: 1) 1 (i,L)
@ @ 4= Q - Q.
Hr /\/l Z M Z( ) M, < Z( )

@ W
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Multilevel Monte Carlo

@ Sequence of refined discretizations

ho>h1>...> h

e e 0 0 0 o

. . @ Sequence of sample sizes

/=0 (=1L

My > My >---> M,
Denoting Q; = Qp,, the MLMC estimator is

L M,
1 i i
Pt =34 2@ Q). Q=0
=0 i=1

& mm
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Multilevel Monte Carlo

@ Sequence of refined discretizations

ho>h1>...> h

e e 0 0 0 o

. . @ Sequence of sample sizes

t=0 t=1L My > My >--- > M,

Denoting Q; = Qp,, the MLMC estimator is
L M,
1 i i
,UILVILMC = Z M Z(ng ) Qé,l))y QRQ-1=0
—o i
Mean squared error

L
MSE(u") = (E[Q - Q) +ZW[Q“T:QM

discret. error level L /=0

statistical error

@ mm
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Multilevel Monte Carlo for expectations

Multilevel Monte Carlo

o Vp = Var[Q, — Qy—1] (variance of difFerences)
e C; = cost of computing each AQ, (i.6) — Qel £ Q(' 4

Optimal sample sizes M;: [Giles 2008] minimize W = Ez:o C/M, s.t. MSE ~ tol?

M, = [to/—2\/% (Zizo Wﬂ
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Multilevel Monte Carlo for expectations

Multilevel Monte Carlo

o Vp = Var[Q, — Qy—1] (variance of difFerences)
o C; = cost of computing each AQ{"") = Q{"Y) — Q{9

Optimal sample sizes M;: [Giles 2008] minimize W = Ee:o C/M, s.t. MSE ~ tol?

M, = [to/—2\/% (Zizo Wﬂ

Complexity analysis for hy = hgs¢: [Giles 2008, Cliffe-Giles Scheichl-Teckentrup 2011]

Assume
o [E[Q — Q| = O(hY),
o Vp=Var[Q, — Q1] = O(h?), (8 = 2a for smooth problems/noise)
e G,=0(h,"), 2a > min{3,~}

Then, choosing L = O(tol=) and M, as above gives MSE(uMMC) < tol? and

tol =2, B>
Work(jM-MC) Z CeMy < { tol2(log tol)?, B =1
to/_2_¥, B <~
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.

For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).

To achieve improved complexity, one needs to
@ estimate error decay |[E[Q — Q/]|: ~> needed to determine optimal L
o estimate variance decay V;:  ~  needed to determine optimal {M,}5_,

‘‘‘‘‘‘
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).
To achieve improved complexity, one needs to
@ estimate error decay |[E[Q — Q/]|: ~> needed to determine optimal L

o estimate variance decay V;:  ~  needed to determine optimal {M,}5_,

IE[Q — Q]| can be estimated as |u¢ — uMC | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs

‘‘‘‘‘‘
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Multilevel Monte Carlo for expectations

Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.

For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).

To achieve improved complexity, one needs to
@ estimate error decay [E[Q — Q¢]|: ~» needed to determine optimal L
@ estimate variance decay Vy: ~~ needed to determine optimal {Mg}’gzo

IE[Q — Q]| can be estimated as |u¢ — uMC | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs

Problem: on the finest levels we should run only very few simulations.
Cost for estimation of V| might dominate the overall cost of the MLMC algorithm.
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Multilevel Monte Carlo for expectations

Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).

To achieve improved complexity, one needs to
@ estimate error decay [E[Q — Q¢]|: ~» needed to determine optimal L

@ estimate variance decay Vy: ~» needed to determine optimal {Mg}’gzo

IE[Q — Q]| can be estimated as |u¢ — uMC | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs

Problem: on the finest levels we should run only very few simulations.
Cost for estimation of V| might dominate the overall cost of the MLMC algorithm.

Idea: use adaptive algorithms: extrapolate information from previous levels and
correct it when samples become available.

& miim
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Continuation Multilevel Monte Carlo
[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances to/(®) > to/) > ... > tol.
Use collected samples on all levels to improve the estimate of V; and |E[Q — Q¢]|.

@ mm
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Multilevel Monte Carlo for expectations

Continuation Multilevel Monte Carlo

[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances to/(®) > to/) > ... > tol.
Use collected samples on all levels to improve the estimate of V; and |E[Q — Q]|

Estimator V; of V, = Var[AQ,] at iteration j: MAP Bayesian estimator
@ we make the ansatz AQy ~ N(ue, Vi)

@ based on acquired samples at previous iteration, we fit models (least squares)
° ’uznodel — Cah?

° Vemodel =cs h?
@ We take a Normal-Gamma prior for (i, V¢), with mode in (po%!, v model)
@ Then V; is the MAP Bayesian estimator based on the Normal-Gamma prior
and the actual samples acquired at iteration j
Effectively, we have

M, =0 V, = V["Ode’ (prior model)
My — oo V, ~ VM (sample variance)

A 2 W
V, is then used to determine the sample sizes M, for the next iteration. 0 #

F. Nobile (EPFL) MLMC for UQ
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Multilevel Monte Carlo for expectations

Computation of pressure coefficient for NACA 0012 /
NASA SC(2)-0012 airfoils

[ [ Name ]| Nominal value [ Uncertainty |
Too T, = 288.15 [K] , TN(Th,2%,110%, 90%)
. Poo pn = 101325 [N/m TN (pn, 2%, 110%, 90%

Operational a an = 1.2[50/ ! TN((an, 1%, 110%,90%))
M M, =0.8 TN (Mp,2%,110%,90%)
R, 0.01458398 TN(Rp,,2.5%,110%, 90%)
Rs 0.01458398 TN(Rs,,2.5%,110%, 90%)

Geometrical Xp 0.30049047 TN (Xp,,2.5%,110%, 90%)
Xs 0.30049047 TN (Xs,,2.5%,110%, 90%)
Yp —0.05994286 TN(Yp,,2.5%,110%, 90%)
Ys 0.05994286 TN(Ys,,2.5%,110%, 90%)
Cp 0.44213792 TN (Cp,,2.5%,110%, 90%)
Cs —0.44213792 TN(Cs,,2.5%,110%,90%)
0p 8.3763395 TN (0p,,2.5%,110%, 90%)
s —8.3763395 TN(0s,,2.5%,110%, 90%)

(e |
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Multilevel Monte Carlo for expectations

Computation of pressure coefficient for NACA 0012 /

NASA SC(2)-0012 airfoils

LEVEL | Airfoil nodes | Cells  Avg. Real C Time [s] (CPU)
10 41 6943 124 (32)
n 81 11115 209 (38)
12 161 19385 269 (44
I3 321 36251 711 (50)
s 641 T 23115 (56)
13 1281 143005 4220 164

— 4{Cy(x)] NASA SC2)-0012
]| — #Cye) NACA 0012

(€}/)] NASA SC(2)-0012
£ NACA 0012

G

G

Inviscid model (Euler); SU2 solver (Stanford) [Pisaroni-Leyland-N., AIAA Aviation, 2t

F. Nobile (EPFL
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Multilevel Monte Carlo for expectations

MLMC vs MC for aerodynamic inviscid problems

101 ity of MC and MLMC 10 Levels and Samples per Level for £, = 0.01
100 MC (OPER)
MLMC (OPER) 3090 9731
10° MC (OPER+GEOM)
MLMC (OPER+GEOM) 1036
109 . 10°we- 104
Deterministic
107] 286
6 261
10 \ 141
15 \ \ /: 107 18 o
108 51 30
\\ 2
10° =
. \ o e 10! 1 10
Ny
. \0\\=
10 ~4
ot 1077 1072 10! 10
€ level
F. Nobile (EPFL) MC for UQ

@ |

GAMM AGUQ workshop 2018 18



Robustness of C-MLMC estimator

10°, o.
B C-MLMC (ky Ky = 0.001) ®  C-MLMC (k. ky = 0.001)
B C-MLMC (ky ke = 0.1) ®  C-MLMC (ky . ky = 0.1)
B C-MLMC (k1 ok = 10.0) ®  C-MLMC (ki ky = 10)
10 B C-MLMC (b, kx — 1000.0) ®  CMLMC (ki Jy — 1000)
---- Ref Solution (15 MC samples)
- 0.855! & =0.001
104 “
H b8 .8
Z 10° H w0, ° . L ]
il
# 0.845
i
= |
100 0 1 2 3 7 5 3 7 084
level

Variability over 10 repetitions of the C-MLMC algorithm
for different parameters in the Normal-Gamma prior.
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© MLMC for moments and distributions
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? [Bierig-Chernov 2015-2016] use biased
central moments estimators.
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? [Bierig-Chernov 2015-2016] use biased
central moments estimators.

Alternatively, use h-statistics [Pisaroni-Krumscheid-N. 2017]. Given iid sample

Qu={QW,..., "M},

hp(Qu) : unbiased estimator of Lp(Q) with minimal variance
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? [Bierig-Chernov 2015-2016] use biased
central moments estimators.

Alternatively, use h-statistics [Pisaroni-Krumscheid-N. 2017]. Given iid sample

Qu={QW,..., "M},

hp(Qu) : unbiased estimator of Lp(Q) with minimal variance

L

Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
(=0

with (ég’/\//e, @’fl,Me) generated with the same noise (highly correlated)
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])"]
How to apply and tune MLMC in this case? [Bierig-Chernov 2015-2016] use biased

central moments estimators.

Alternatively, use h-statistics [Pisaroni-Krumscheid-N. 2017]. Given iid sample

Qu ={QW,..., Q"3
hp(Qu) : unbiased estimator of Lp(Q) with minimal variance

L
Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
(=0
with (ég’/\//e, @’fl,Me) generated with the same noise (highly correlated)

L

V,
Mean squared error: MSE(AY™MCY = (1,(Q) — 11p(QL))* + E I\fip
[

=0

where Vg7p = MgVar[hp(ég7M2) — hp(ég_lyMé )]
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])"]
How to apply and tune MLMC in this case? [Bierig-Chernov 2015-2016] use biased

central moments estimators.

Alternatively, use h-statistics [Pisaroni-Krumscheid-N. 2017]. Given iid sample

Qu ={QW,..., Q"3
hp(Qu) : unbiased estimator of Lp(Q) with minimal variance

L
Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
(=0
with (ég’/\//e, @,1,,\/,[) generated with the same noise (highly correlated)

L

V,
Mean squared error: MSE(AY™MCY = (1,(Q) — 11p(QL))* + Z I\fip
=0 "t

where Vi, = MVar[h,(Qe,m,) — hp(Qe—1,m,)].

Same “formal” structure as for expectation, but now we need to estimate 0.

lp(Q) — 11p(Qr)| and Vi, to tune the MLMC algorithm ’
GAMM AGUQ workshop 2018 21




MLMC for moments and distributions

Beyond expectations: computation of central moments

Complexity result for hy = hgs—*

Assume f12,(Qr) < oo for all £ and there exist a, 8,7 > 0, 2a > min{3,~} s.t.
o [pp(Q) — 1p(Qr)l = O(h7),
o Vi, = O(h),
o G = Cost(Q, Q%)) = o(h),

Then, taking L = O(tol=) and M, = [tol‘zw/v%; (Z,L(:O v/ Ci Vk)p)-‘ leads to

tol =2, B>
MSE(hy™M) Sto?  and  W(h"M) < { tol 72| |Sggt0/)|27 B=~
tol =25, B<n~

F. Nobile (EPFL) MLMC for UQ GAMM AGUQ workshop 2018
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Beyond expectations: computation of central moments

Technical difficulty: how to estimate the variances V; ,
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Technical difficulty: how to estimate the variances V; ,

Define XZ_MZ = Qem, + Qe—1m, Xoy, = Qem, — Qe—1,m,

Ahy = hy(Qrm,) — hp(Qr—1.0m,) can be expressed as a power sum

Dehp =) Sa,b()_(l-t_Mlv)_(ejMe)? Sap(X,Y) = D o (xWy(y e
a+b<p i
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Technical difficulty: how to estimate the variances V; ,

Define XZ_MZ = Qem, + Qe—1m, Xoy, = Qem, — Qe—1,m,

Ahy = hy(Qrm,) — hp(Qr—1.0m,) can be expressed as a power sum

Aéhp = Z Sa,b(xz_Ml?)_('ZTMe)? Sa,b()_(a \7) = Z(X(’))a(y(l))b
a+b<p i

Unbiased estimators V; , of V; , can be computed in closed form starting from
the power terms S, p(X;'y,,» X; ) [Pisaroni-Krumscheid-N. 2017].
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Beyond expectations: char. function, CDF, and more

Some derived quantities can be written as parametric expectations

Example 1: Characteristic function of Q@

®(0) =E[¢(0,Q), (6, Q) =€"?
~~ we can compute ®(6;) by MLMC on a set of points 6;.
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Beyond expectations: char. function, CDF, and more

Some derived quantities can be written as parametric expectations
Example 1: Characteristic function of @

®(0) =E[6(0,Q)l,  ¢(6, Q) =e"?
~> we can compute ®(6;) by MLMC on a set of points 6.
Example 2: CDF of Q

F(e) = E[¢(07 Q)]v ()25(9, Q) = I{QSG}
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Beyond expectations: char. function, CDF, and more

Some derived quantities can be written as parametric expectations
Example 1: Characteristic function of @

®(0) =E[6(0,Q)l,  ¢(6, Q) =e"?
~> we can compute ®(6;) by MLMC on a set of points 6.
Example 2: CDF of Q

F(H) = E[¢(07 Q)]v ()25(9, Q) = I{QSG}

Problem: ¢(6, Q) is not smooth | When applying MLMC, the variance of the

differences, V; = Var[¢(0, Q;) — ¢(6, Q¢—1)] will decay slowly. No much gain in
MLMC.
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MLMC for moments and distributions

Beyond expectations: char. function, CDF, and more

Some derived quantities can be written as parametric expectations

Example 1: Characteristic function of @

®(0) =E[6(0, Q), (0, Q) = €”?
~> we can compute ®(6;) by MLMC on a set of points 6.
Example 2: CDF of Q

F(0) =E[¢(0,Q)], (0, Q) = Lig<ay

Problem: ¢(6, Q) is not smooth | When applying MLMC, the variance of the
differences, V; = Var[¢(0, Q;) — ¢(6, Q¢—1)] will decay slowly. No much gain in
MLMC.

Remedies:
@ [Giles-Nagapetyan-Ritter 2015] smoothing: F.(0) = E[¢.(0, Q)]. Technical difficulty:
€ should depend on the required tolerance  ~~  difficult tuning of MLMC
@ [Bierig-Chernov 2016] approximate F or pdf based on moments (see Alexey's talk)
@ [Krumscheid-N. 2017] anti-derivative approach: F(6) = ®’(6) with @ m
®(0) = E[o(0, Q)] and (0, -) Lipschitz continuous.
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MLMC for moments and distributions

Anti-derivative approach to CDF computation
For any 7 € (0, 1) define

&, (0) = E[6:(60,Q),  ¢:(6,Q) =0+ 1%(@ —o),

Then
FO)=(1-7)0.(0)+7
and MLMC can be effectively used to approximate ®..() and its derivatives.
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MLMC for moments and distributions

Anti-derivative approach to CDF computation
For any 7 € (0, 1) define

(O = B0 (0, QL 6:(0,Q) =0+ (@6

Then
FO)=(1-7)0.(0)+7
and MLMC can be effectively used to approximate ®..() and its derivatives.

Moreover, from the approximation of ¢, and its derivatives we can get for free
o pdf: p(#) = F'(6) = (1 - 7)/(6)
e 7-quantile: g, =inf{f : F(0) > 7} = argminycp ¢,(0)
@ Conditional Value at Risk

1 i .
CVaR, = ﬁ/ xdF(x) = min b.(0)

- €
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Computing parametric expectations by MLMC

Goal: given ¢(0, Q), approximate ®(6) = E[¢(0, Q)] and its derivatives uniformly
in ©.

12
1L
08 |
0.6
04} /)
02 ff b —
i -
0 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
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Computing parametric expectations by MLMC

Goal: given ¢(0, Q), approximate ®(6) = E[¢(0, Q)] and its derivatives uniformly
in ©.

Interpolation approach:
1.2

| - e introduce a grid £ = {&,...,¢,} CO

Al i | e compute ®MMC(¢;), j=1,...,n by MLMC
(same sample of Q, for every ;)

0.6

Yy @ Interpolate values

’ ¢MLMC( ) {¢MLMC(€J)

0.2 f b — A

j Jr— ~
e R T b = Z,(6}"(8))

e.g. by spline or polynomial interpolation
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Computing parametric expectations by MLMC

Goal: given ¢(0, Q), approximate ®(6) = E[¢(0, Q)] and its derivatives uniformly
in ©.

Interpolation approach:
e introduce a grid £ = {&,...,&,} C©

e . 77 e compute ®MMC(¢) i =1 ... nby MLMC
(same sample of Q, for every ;)

12

0.8 b

0.6
@ Interpolate values

¢MLMC( ) {¢MLMC(€J)

04} /)

02 b — A
L S &, = T,(®}MC(€))

e.g. by spline or polynomial interpolation

Assumptions on Z, (valid for spline interpolation)
o ||f — Zo(F(E))li=(o) < cnktl, if f € CK1(B)
© [ ZnX][1=(e) < 2l X[lee, VX €RT
o Cost(Z,(X)) < c3n
YT




MLMC for moments and distributions

Error splitting

Define the mean squared error: MSE(®,) = E[||¢ — CTDL||2N(9)]
Notation: for X € R" define Var[x] = E[||x — E[X]||2«]
Useful result: for X1, ... %K) € R” independent,

K k
Var[z <] < clog(n) Z Var[x1]
i=1 i=1
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MLMC for moments and distributions

Error splitting

Define the mean squared error: MSE(®,) = E[||¢ — CTDL||2M(@)]
Notation: for X € R" define Var[x] = E[||x — E[X]||2«]
Useful result: for X1, ... (k) € R" independent,

K k
Var[z <] < cIog(n)ZVar[?(")]
i=1 i=1

Error splitting
MSE($1) <30 — Z,®|3, + 3(|Za® — Z, 00 |5 + 3E[|Z,0r — Lo M2 ]

L
B . R V.
S0 = Z,0(E) 2+ [[9() — D)2 +log(n) > 7/\//2
/=0 i

interp. error discret. error

——

statistical error

with V; = Var[p(€, Qo) — &(E, Qe—1)]. All terms can be estimated in practice.
Optimization of MLMC based on estimators V. 0.

[Pisaroni-Krumscheid-N. in preparation]
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Complexity analysis

Complexity result for hy = hgs—* [Krumscheid-N. 2017]
Assume
o [|®—dyf[io@) < crh®,
@ B(l9(, Q) = 6, Qe-1)lfi(e)) < cah”,
@ cost to simulate one realization of ¢(6, Q;) < czhy™”
If & € C*+1(©), there exists an estimator &, s.t. MSE(®,) = O(tol?) and

tol =2, if 6>7,
W(d,) < tol~(2+51) | log(tol)| + | log(tol)| { tol2|log(tol)2, if B =1,
o/~ (+50) g <y,
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Complexity analysis

Complexity result for hy = hygs ™ [Krumscheid-N. 2017]
Assume
o [|®— [ ixe) < ahe®,
o E(ll6(- Q) — 6 Q1) 3x () ) < c2he”.
@ cost to simulate one realization of ¢(6, Q;) < csh,™ .
If & € C*+1(©), there exists an estimator &, s.t. MSE(®,) = O(tol?) and

tol =2, if 6>7,
W(d,) < tol~(2+51) | log(tol)| + | log(tol)| { tol2|log(tol)2, if B =1,
o/~ (+50) g <y,

v

The first term accounts for the cost of computing the spline interpolation. This is
often negligible for heavy computational models. It can be removed by taking
n = ny (different spline interpolant on each level).

Neglecting the first term, the complexity is essentially the same as for
simple expectations, up to an extra log factor.
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MLMC for moments and distributions

Complexity result for derivatives [Krumscheid-N. 2017]

If & c C2k+2(@) and m < 2k + 1, there exists an estimator ®; s.t.
E[Hdam d@mq)LH ] = (tO/Z) and

tol 2mizm , if 8>,
W(d,) < |log(tol)| { tol~2#2=m | log(tol)2, if B =1,
to/_(2+%)2k2+k2+—2m , if <y,

(neglecting the cost of interpolation)

This result applies to the approximation of CDF, quantiles and CVaR with m =1
and PDF with m = 2.

& miim
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An example: the characteristic function

@ An SDE model to describe a European call option, where the asset follows
dS=rSdt+oSdW, 50)=5,

e Quantity of interest is the discounted “payoff”: Q :=e~"" max(S(T) - K,0)
@ Approximate characteristic function of Q:

®(0) = E(cos(6Q)) +iE(sin(0Q)) = ®1(0) +1P2(0) ,

F. Nobile (EPFL) MLMC for UQ GAMM AGUQ workshop 2018 30



An example: the characteristic function

@ An SDE model to describe a European call option, where the asset follows
dS=rSdt+oSdW, 50)=5,

e Quantity of interest is the discounted “payoff”: Q :=e~"" max(S(T) - K,0)
@ Approximate characteristic function of Q:

®(0) = E(cos(6Q)) +iE(sin(0Q)) = ®1(0) +1P2(0) ,
o Milstein scheme with hy =2*T; @ = [-1,1, r=%, 0=1, T =1,

20"
K =10=5Sp.
1010
1 k=0
08 10° H k=1
8 1 k=2
8
. 100 =3
0.6 - 107 [l k=5 -
k=17
0.4 b 106
0oL 10°
104
ol
10%
—0.2 [ 102 |
—0.4 L L n 101 &
-1 —0.5 0 0.5 1 10° 107! 102 10
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MLMC for moments and distributions

NASA Common Research Model

NASA CRM: aircraft configuration equipped with a contemporary supercritical
transonic wing and a fuselage that is representative of a wide-body commercial

transport aircraft.

[ Qty ] Reference [ Uncertainty |
M 0.85 B(2,2,0.05, Moy — 0.025)
Rec 5-10° -

Trer 310.928 [K] B(2,2,30, Trer — 15)

[ C. [ 03,0.4,0.5,0.55 |

LEVEL Cells y+ CTime on 280 CPUs
L0 23-10° | 1—-2 400 [s] (0.11 [h])
L1 5.0-10° | 1 -2 825 [s] (0.23 [h])
L2 9.8-10° [ 1—-2 1250 [s] (0.35 [h])
L3 21.3-10° [ 1 -2 3200 [s] (0.89 [h])

Spalart-Allmaras turbulence model, hybrid unstructured grids.

F. Nobile (EPFL)

MLMC for UQ
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NASA Common Research Model

@ .
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NASA Common Research Model

Skin_friction Skin_friction
0.01 0.01
0.0091 0.0091
0.0082 0.0082
0.0073 0.0073
0.0064 0.0064
0.0055 0.0055
0.0046 0.0046
0.0037 0.0037
0.0028 0.0028
0.0019 0.0019
0.001 0.001
0.0001 0.0001

@ |



NASA Common Research Model

1 1
— (C.=055
038 058 O =05
— CL=04
0.6 0.6 L
— (=03
0.4 0.4
0.2 0.2
0, 0. -
0.015 0.020 le]gﬁ 0.030 0.035 —0.125 —0.120 —0.115 —0.110 —0.105 —0.100
D
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.1 0.
0.0088 0.0090 0.0092 valJOJ 0.0096 0.0098 0.0100 0.008 0.010 0.012 0.014 0. Ulf U 018 0.020 0.022 0.024 0.026
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Outline

@ Risk averse optimization with MLMC

@ .

F. Nobile (EPFL) MLMC for UQ



Risk averse optimization with MLMC

Risk averse optimization

' ScoLE PoLyTECHNIUE
SEDERALE DELALRANNE
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Risk averse optimization

R: risk measure

Examples
e R(Q) =E[Q] (mean-based risk)
° R(Q) =E[Q] + astd[Q]
° R(Q) = qa[Q] (a-quantile)
° R(Q) = CVaR,[Q]

0 ScoLE PoLyTECHNIUE
SEDERALE DELALRANNE
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Combining MLMC with CMA-ES

Optimization done by Covariance Matrix Adaptation Evolutionary Algorithm
(CMA-ES)

Generation 1 Generation 2 Generation 3
Generation 4 Generation 5 Generation 6

For each individual at each generation, risk measure computed by MLMC. 6!%%
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Risk averse optimization with MLMC

Airfoil optimization under operating uncertainties

{;nei)rg R[Cp(x)]
s.t CL(X) = CL*’

thickness constraint

R0 [Co(x)] pep(x) + ocp(x)
Ruony CD(X) Hcp (X) +toc (X) + pep (X) "V (X)
Ryaro [Co(x) VaRg% (x)
R cvare [Co(X)] CVaRg?J (x)
\ | Quantity | Reference (r) | Uncertainty
C, 0.5 —
Operating Moo 0.75 B(2,2,0.1, Mo, — 0.05)
parameters Rec 6.5- 106 -
Poo [Pa] 101325 -
Too [K] 288.5 -

F. Nobile (EPFL) MLMC for UQ
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Risk averse optimization with MLMC

Qualitative comparison
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Model: steady state Euler + boundary layer equation (MSES software)




Deterministic versus Robust optimization
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Multi-objective optimization under operating uncertainties

P—wain {pey(x) +ocy(x), —pe,(x)+oc,(x)} (Pareto front)

Uncertainties in Mach number and Angle of Attack.

D inistic Optimized Airfoils 11

*  Deterministic Pareto
* RAE-2822
@ Robust Pareto

0.01 0.02 0.03 0.04 0.05
Cp

Robust Optimized Airfoils

[
——
[——
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© Conclusions
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Conclusions and outlook

@ Multilevel Monte Carlo is a very powerful technique that can dramatically
reduce the computational cost of a UQ analysis compared to plain MC.

@ The tuning of MLMC requires adaptive algorithms and reliable error and
variances estimators.

@ We have presented a way to compute higher order moments as well as cdf,
quantiles, CVaR with MLMC and properly tune the method.

@ The methodology has been successfully applied to forward UQ propagation
and robust optimization under uncertainty in compressible aerodynamics.

0 Seoks
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Conclusions

Thank you for your attention!
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