GAMM-workshop in UQ, TU Dortmund

Characterization of fluctuations in stochastic homogenization

Mitia Duerinckx, Antoine Gloria, Felix Otto

Max Planck Institut für Mathematik in den Naturwissenschaften, Leipzig

Random medium ...

symmetric coefficient field a = a(x) on *d*-dimensional space $\lambda |\xi|^2 \leq \xi \cdot a(x)\xi \leq |\xi|^2$ for all points x and vectors ξ

 \rightsquigarrow uniformly elliptic operator $-\nabla\cdot a\nabla u$

Ensemble $\langle \cdot \rangle$ of such coefficient fields a

Example of ensemble $\langle \cdot \rangle$: points Poisson distributed with density 1, union of balls of radius $\frac{1}{4}$ around points, a = id on union, $a = \lambda id$ on complement,

Stationarity: a and $a(y + \cdot)$ have same distribution under $\langle \cdot \rangle$

 \dots = elliptic operator with random stationary coefficient field

Plan for talk

1) Error in Representative Volume Element (RVE) Method: Scaling of random and systematic contribution in terms of RVE-size

2) Fluctuations of macroscopic observables: leading-order pathwise characterization RVE method for extraction

Representative Volume Element method to extract effective tensor \bar{a} : Scaling of random and systematic error in RVE size Gloria, Neukamm

Goal: Extract effective behavior \bar{a} from $\langle \cdot \rangle$...

Recall example of ensemble $\langle \cdot \rangle$: points Poisson distributed with density 1, union of balls of radius $\frac{1}{4}$ around points, a = id on union, $a = \lambda id$ on complement,

ensemble $\langle \cdot \rangle$ \rightsquigarrow effective conductivity \overline{a} $\begin{cases}
\text{density of points 1} \\
\text{radius of inclusions } \frac{1}{4} \\
\text{conductivity in pores } \lambda
\end{cases} \quad \Rightarrow \quad \overline{a} = \begin{pmatrix} \overline{a}_{11} & \overline{a}_{12} \\ \overline{a}_{21} & \overline{a}_{22} \end{pmatrix} = \overline{\lambda} \text{ id}$ $3 \text{ numbers} \quad \rightsquigarrow \quad 1 \text{ number}$

... via Representative Volume Element (RVE)

Representative Volume Element method

Introduce artificial period L

Periodized ensemble $\langle \cdot \rangle_L$ points Poisson distributed with density 1, on *d*-dimensional torus $[0, L)^d$ union of balls of radius $\frac{1}{4}$ around points, a = id on union, $a = \lambda id$ on complement,

Given coordinate direction $i = 1, \dots, d$ seek *L*-periodic φ_i with

$$-\nabla \cdot a(e_i + \nabla \varphi_i) = 0$$
 on $[0, L)^d$.

Spatial average $\int_{[0,L)^d} a(e_i + \nabla \varphi_i)$ of flux $a(e_i + \nabla \varphi_i)$ as approximation to $\overline{a}e_i$ for $L \gg 1$;

 φ_i is approximate corrector, e_i unit vector in *i*-th coordinate direction

Solving d elliptic equations $-\nabla \cdot a(e_i + \nabla \varphi_i) = 0$...

direction e_1 potential $x_1 + \varphi_1$ flux $a(e_1 + \nabla \varphi_1)$

direction e_2 potential $x_2 + \varphi_2$

flux $a(e_2 + \nabla \varphi_1)$ simulations by R. Kriemann (MPI)

average flux $f a(e_1 + \nabla \varphi_1)$ $= \begin{pmatrix} 0.49641 \\ -0.02137 \end{pmatrix}$ $\approx \overline{a}e_1$

average flux $f a(e_2 + \nabla \varphi_2)$ $= \begin{pmatrix} -0.02137 \\ 0.53240 \end{pmatrix}$ $\approx \overline{a}e_2$

... gives approximation \bar{a}_L

Random error: approx. \bar{a}_L depends on realization

realization 1 potential, current

realization 2 potential, current

realization 3 potential, current

 $\bar{a}_L = \begin{pmatrix} 0.45101 & 0.01104 \\ 0.01104 & 0.45682 \end{pmatrix}$

 $\overline{a}_L = \left(\begin{array}{c} 0.56213 & 0.00857 \\ 0.00857 & 0.60043 \end{array} \right)$

... and thus fluctuates is random

Fluctuations of \bar{a}_L decrease with increasing L

... scaling of variance $var(\bar{a}_L)$ in L?

Systematic error, decreases with increasing L

Also expectation $\langle \bar{a}_L \rangle_L$ depends on Lsince from $\langle \cdot \rangle$ to $\langle \cdot \rangle_L$ statistics are altered by artificial long-range correlations

Scaling of both errors in L ...

Pick *a* according to $\langle \cdot \rangle_L$, solve for φ (period *L*), compute spatial average $\bar{a}_L e_i := \int_{[0,L)^d} a(e_i + \nabla \varphi_i)$

Take random variable \bar{a}_L as approximation to \bar{a}

$$\langle \operatorname{error}^2 \rangle_L = \operatorname{random}^2 + \operatorname{systematic}^2$$
:
 $\langle |\overline{a}_L - \overline{a}|^2 \rangle_L = \operatorname{var}_{\langle \cdot \rangle_L} [\overline{a}_L] + |\langle \overline{a}_L \rangle_L - \overline{a}|^2$

Qualitative theory yields:

 $\lim_{L\uparrow\infty} \operatorname{var}_{\langle\cdot\rangle_L}[\bar{a}_L] = 0, \quad \lim_{L\uparrow\infty} \langle \bar{a}_L \rangle_L = \bar{a}$

... why rate is of interest?

Number of samples N vs. artificial period L

Take **N** samples, i. e. independent picks $a^{(1)}, \dots, a^{(N)}$ from $\langle \cdot \rangle_L$. Compute empirical mean $\frac{1}{N} \sum_{n=1}^{N} f_{[0,L)d} a^{(n)} (e_i + \nabla \varphi_i^{(n)})$

 $\langle \text{total error}^2 \rangle_L = \frac{1}{N} \text{random error}^2 + \text{systematic error}^2$

L ↑ reduces systematic error and random error

N ↑ reduces only effect of random error

An optimal result

Let $\langle \cdot \rangle_L$ be ensemble of *a*'s with period *L*, with $\langle \cdot \rangle_L$ suitably coupled to $\langle \cdot \rangle$

For *a* with period *L* solve $\nabla \cdot a(e_i + \nabla \varphi_i) = 0$ for φ_i of period *L*. Set $\bar{a}_L e_i = \int_{[0,L)^d} a(e_i + \nabla \varphi_i)$.

Theorem [Gloria&O.'13, G.&Neukamm&O. Inventiones'15]

Random error² = $\operatorname{var}_{\langle \cdot \rangle_L} [\bar{a}_L] \leq C(d,\lambda) L^{-d}$ Systematic error² = $|\langle \bar{a}_L \rangle_L - \bar{a}|^2 \leq C(d,\lambda) L^{-2d} \ln^d L$

Gloria&Nolen '14: (random) error approximately Gaussian Fischer '17: variance reduction

State of art in quantitative stochastic homogenization ...

Yurinskii '86 : suboptimal rates in L for mixing $\langle \cdot \rangle$

Naddaf & Spencer '98, & Conlon '00: optimal rates for small contrast $1 - \lambda \ll 1$, for $\langle \cdot \rangle$ with spectral gap

Gloria & O. '11, & Neukamm '13, & Marahrens '13: optimal rates for all $\lambda > 0$ for $\langle \cdot \rangle$ with spectral gap, Logarithmic Sobolev (concentration of measure)

Armstrong & Smart '14, & Mourrat '14, & Kuusi '15, Gloria & O. '15

optimal stochastic integrability for finite range $\langle \cdot \rangle$

Gaussianity of error: Biskup & Salvi & Wolf '14, Rossignol '14, Nolen '14

... of linear equations in divergence form

Homogenization error on macroscopic observables Characterization of leading-order variances via a pathwise characterization of leading-order fluctuations Duerinckx, Gloria

Macroscopic r. h. s. and observable ...

solution u of $\nabla \cdot a \nabla u = \nabla \cdot f$, where r. h. s. $f(x) = \hat{f}(\frac{x}{L})$ deterministic macroscopic observable $\int g \cdot \nabla u$, where $g(x) = L^{-d} \hat{g}(\frac{x}{L})$ deterministic

Marahrens & O.'13: $\operatorname{var}(\int g \cdot \nabla u) = O(\frac{1}{L^d})$

Goal: Characterize limiting variance $\lim_{L\uparrow\infty} L^d \operatorname{var}(\int g \cdot \nabla u)$

Naive approach via two-scale expansion

Goal: Characterize limiting variance $\lim_{L\uparrow\infty} L^d \operatorname{var}(\int g \cdot \nabla u)$ Corrector φ_i corrects affine x_i such that $-\nabla \cdot a(e_i + \nabla \varphi_i) = 0$

for coordinate direction $i = 1, \dots, d$

Solution \overline{u} of homogenized equation $\nabla \cdot (\overline{a} \nabla \overline{u} + f) = 0$

Compare u to "two-scale expansion" $(1 + \varphi_i \partial_i) \overline{u}$ Einstein's summation rule

Naively expect $\operatorname{var}(\int g \cdot \nabla u) = \operatorname{var}(\int \nabla \cdot g u) \approx \operatorname{var}(\int \nabla \cdot g (1 + \varphi_i \partial_i) \overline{u})$ Hence study asymptotic covariance $\langle \varphi_i(x - y) \varphi_j(0) \rangle$

The subtle role of the two-scale expansion

Mourrat&O.'14: $\lim_{L\uparrow\infty} L^{d-2} \langle \varphi_i(L(\hat{x}-\hat{y}))\varphi_j(0) \rangle$ exists, but \neq a Green function $\bar{G}(\hat{x}-\hat{y})$ (Gaussian free field) Helffer-Sjöstrand, annealed Green's function bounds \rightsquigarrow 4-tensor \bar{Q}

Gu&Mourrat'15:
$$\lim_{L\uparrow\infty} L^d \operatorname{var}(\int g \cdot \nabla u)$$
 exists,
but $\neq \lim_{L\uparrow\infty} L^d \operatorname{var}(\int \nabla \cdot g (1 + \varphi_i \partial_i) \overline{u})$
Helffer-Sjöstrand \rightsquigarrow same 4-tensor \overline{Q} , Gaussianity, heuristics
i. e. two-scale expansion cannot be applied naively

Duerinckx&Gloria&O.'16: Two-scale expansion $\nabla u \approx \partial_i \bar{u}(e_i + \nabla \varphi_i)$ ok on level of "commutator" $\underline{a} \nabla u - \bar{a} \nabla u \approx \partial_i \bar{u} (\underline{a(e_i + \nabla \varphi_i) - \bar{a}(e_i + \nabla \varphi_i)})$ flux field $=: \equiv_i$

Leading-order fluctuation of macro observables ... $\Xi e_i = a(e_i + \nabla \varphi_i) - \overline{a}(e_i + \nabla \varphi_i)$ stationary tensor field I) $a\nabla u - \bar{a}\nabla u \approx \equiv \nabla \bar{u}$ holds in quantitative sense of L^{d} var $(\int g \cdot (a \nabla u - \overline{a} \nabla u - \Xi \nabla \overline{u})) = O(L^{-2})$, which implies L^{d} var $\left(\int g \cdot \nabla u - \int \nabla \overline{v} \cdot \Xi \nabla \overline{u}\right) = O(L^{-2}),$ where \overline{v} solves dual equation $\nabla \cdot (\overline{a}^* \nabla \overline{v} + g) = 0$ II) \equiv is local, ie $\equiv (a, x)$ depends little on a(y) for $|y - x| \gg 1$, $\Xi \approx$ tensorial white noise on large scales thus more precisely, $L^d | var(\int g \cdot \Xi f) - \int f \otimes g : \overline{Q} f \otimes g | = O(L^{-2})$ for four-tensor \overline{Q} from Mourrat&O. I)&II) $L^d |var(\int g \cdot \nabla u) - \int \nabla \overline{v} \otimes \nabla \overline{u} : \overline{Q} \nabla \overline{v} \otimes \nabla \overline{u} | = O(L^{-2})$... characterized via homogenization commutator

How to extract \bar{Q} from $\langle \cdot \rangle$?

Homogenization commutator $\equiv e_i = a(e_i + \nabla \varphi_i) - \bar{a}(e_i + \nabla \varphi_i)$

$$L^{d} \operatorname{var} \left(\int g \cdot \nabla u - \int \nabla \overline{v} \cdot \Xi \nabla \overline{u} \right) = O(L^{-2}), \quad \nabla \cdot (\overline{a}^{*} \nabla \overline{v} + g) = 0$$
$$L^{d} \left| \operatorname{var} \left(\int g \cdot \Xi f \right) - \int f \otimes g : \overline{Q} f \otimes g \right| = O(L^{-2})$$

Duerinckx&Gloria&O.'17: $|L^{d} \operatorname{var}_{\langle \cdot \rangle_{L}}(\bar{a}_{L}) - \bar{Q}| \leq C(d, \lambda) L^{-d} \ln^{d} L ,$

recall: $\langle \cdot \rangle_L$ ensemble of *a*'s with period *L*, solve $\nabla \cdot a(e_i + \nabla \varphi_i) = 0$ for φ_i of period *L*, Set $\bar{a}_L e_i = \oint_{[0,L)^d} a(e_i + \nabla \varphi_i)$.

In practise: Extract \bar{Q} from RVE ...

Recall periodized ensemble $\langle \cdot \rangle_L$ $\bar{a}_L e_i = \int_{[0,L)^d} a(e_i + \nabla \varphi_i)$ Previous result: $|\langle \bar{a}_L \rangle_L - \bar{a}|^2 \lesssim L^{-2d} \ln^d L$ Duerinckx&Gloria&O.'17: $|L^d \operatorname{var}_{\langle \cdot \rangle_L}(\bar{a}_L) - \bar{Q}|^2 \lesssim L^{-d} \ln^d L$ Hence get \bar{a} and \bar{Q} by same procedure: $N \sim L^{\frac{d}{2}}$ independent samples $\{a^{(n)}\}_{n=1,\dots,N}$ from $\langle \cdot \rangle_L$

$$ig\langle ig| rac{1}{N} \sum_{n=1}^{N} ar{a}_{L}^{(n)} - ar{a} ig|^{2} ig
angle_{L} \lesssim L^{-2d} \ln^{d} L, \ ig\langle ig| rac{L^{d}}{N-1} \sum_{m=1}^{N} ig(ar{a}_{L}^{(m)} - rac{1}{N} \sum_{n=1}^{N} ar{a}_{L}^{(n)} ig)^{\otimes 2} - ar{Q} ig|^{2} ig
angle_{L} \lesssim L^{-d} \ln^{d} L$$

... at no further cost than \bar{a}

Back to numerical example

$$N \sim L^{\frac{d}{2}} \text{ independent samples } \{a^{(n)}\}_{n=1,\cdots,N} \text{ from } \langle \cdot \rangle_L,$$
$$\Big\langle \Big| \frac{L^d}{N-1} \sum_{m=1}^N (\bar{a}_L^{(m)} - \frac{1}{N} \sum_{n=1}^N \bar{a}_L^{(n)})^{\otimes 2} - \bar{Q} \Big|^2 \Big\rangle_L \lesssim L^{-d} \ln^d L$$

L=20, N=500

$$\bar{Q} = 10^{-2} \times \begin{pmatrix} 1.00 & 0.00 & 0.00 & 0.23 \\ 0.00 & 0.56 & 0.23 & 0.00 \\ 0.00 & 0.23 & 0.56 & 0.00 \\ 0.23 & 0.00 & 0.00 & 1.01 \end{pmatrix}$$

Higher order comes naturally, i. e. 2nd order

2nd-order two-scale expansion: $u \approx (1+\phi_i\partial_i+\phi'_{ij}\partial_{ij})\bar{u}'$, where $\bar{u}' := \bar{u} + \tilde{u}'$ with $\nabla \cdot (a\nabla \tilde{u}' + \bar{a}'_i\nabla \partial_i \bar{u}) = 0$ and tensor \bar{a}'_i is 2nd-order homogenized coefficient.

k-the component of 2nd-order commutator: $\Xi'_{k}[u] := e_{k} \cdot (a - \bar{a}) \nabla u + \bar{a}_{k}^{*'} e_{l} \cdot \nabla \partial_{l} u,$ characterized by $\Xi_{k}[u] = \nabla^{2}$: something for *a*-harmonic *u*

Inject: $\equiv 0'[\bar{u}](x) := \equiv [(1+\phi_i\partial_i+\phi'_{ij}\partial_{ij})T'_x\bar{u}'](x),$ where $T'_x\bar{u}'$ is 2nd-order *Taylor polynomial* of \bar{u}' at x

A relative error of $O(L^{-\frac{d}{2}})$

Recipe: Inject two-scale expansion $(1+\phi_i\partial_i+\phi'_{ij}\partial_{ij})\bar{u}'$ into commutator $\Xi'_k[u] := e_k \cdot (a-\bar{a})\nabla u + \bar{a}_k^{*'}e_l \cdot \nabla \partial_l u$, in sense of $\Xi^{0'}[\bar{u}](x) := \Xi'[(1+\phi_i\partial_i+\phi'_{ij}\partial_{ij})T'_x\bar{u}'](x)$

Duerinckx&O.'18
$$(d = 3)$$
:
 $L^{d} \operatorname{var}(\int g \cdot \nabla u - \int \nabla \overline{v}' \cdot \Xi'[u])$
 $+ L^{d} \operatorname{var}(\int g \cdot \Xi'[u] - \int g \cdot \Xi^{0'}[\overline{u}]) \leq C(d, \lambda) L^{-d}$
where $\overline{v}' = \overline{v} + \widetilde{v}'$ with $\nabla \cdot (\overline{a}^* \nabla \widetilde{v}' + a_k^* \nabla \partial_k \overline{v}) = 0$

Relies on stochastic estimates of ϕ'_{ii} (Gu, Bella&Fehrman&Fischer&O)

Helpful tool: Flux correctors ...

1st-order:
$$ae_i = \bar{a}e_i - a\nabla\phi_i + \nabla\sigma_i$$
, σ_i skew,
2nd-order: $(\phi_i a - \sigma_i)e_j = \bar{a}'_i e_j - a\nabla\phi'_{ij} + \nabla \cdot \sigma'_{ij}$

2nd-order two-scale expansion; for \bar{a} -harmonic \bar{u} : $\nabla \cdot a \nabla (1 + \phi_i \partial_i + \phi'_{ij} \partial_{ij}) \bar{u}' = \nabla \cdot ((\phi'_{ij} a - \sigma'_{ij}) \nabla \partial_{ij} \bar{u}' + \bar{a}'_i \nabla \partial_i \tilde{u}'),$

2nd-order commutator; for a^* -harmonic u: $e_k \cdot (a - \bar{a}) \nabla u + a_k^{*'} e_l \cdot \nabla \partial_l u = \partial_l \nabla \cdot \left((\phi_{kl}^{*'} a + \sigma_{kl}^{*'}) \nabla u \right)$

stochastic estimates: σ_i, σ'_{ij} like ϕ_i, ϕ_{ij} (Gloria&Neukamm&O.'13)

... bring residue in divergence-form

Helpful tool: Malliavin calculus and spectral gap

Spectral gap: $\operatorname{var}(F) \leq \langle \int |\frac{\partial F}{\partial a}|^2 dx \rangle$ random variable F = functional of a, Malliavin-derivative = functional derivative

For 1st-order
$$F := \int g \cdot (a - \overline{a}) (\nabla u - \partial_i \overline{u} (e_i + \nabla \phi_i))$$

Crucial formula:
$$\delta a$$
 infinitesimal perturbation of a

$$\delta \Big(e_j \cdot (a - \bar{a}) \Big(\nabla u - \partial_i \bar{u} (e_i + \nabla \phi_i) \Big) \Big)$$

$$= \underbrace{(e_j + \nabla \phi_j^*)}_{O(1)} \cdot \delta a \Big(\underbrace{\nabla u - \partial_i \bar{u} (e_i + \nabla \phi_i)}_{O(L^{-1} \nabla \bar{u})} \Big)$$

$$- \underbrace{\nabla \cdot \Big((\phi_j^* a + \sigma_j^*) \underbrace{\nabla \delta u}_{O(1)} \Big) + \partial_i \bar{u} \nabla \cdot \Big((\phi_j^* a + \sigma_j^*) \underbrace{\nabla \delta \phi_i}_{O(\delta a)} \Big)$$

$$- \nabla \cdot \Big(\phi_j^* \delta a \nabla u \Big) + \partial_i \bar{u} \nabla \cdot \Big(\phi_j^* \delta a (e_i + \nabla \phi_i) \Big)$$

Credits

Gaussianity of various errors: Nolen'14 based on Stein/Chatterjee, Biskup&Salvi&Wolf'14, Rossignol'14, ...

Quartic tensor Q via Helffer-Sjöstrand and Mahrarens& O.'13: Mourrat&O'14, Gu&Mourrat'15

Heuristics of a path-wise approach $w/o \equiv$: Gu&Mourrat'15, based on variational approach by Armstrong&Smart '13

 $\nabla \varphi = \bar{a}$ -Helmholtz-projection of white noise: Armstrong&Mourrat&Kuusi'16, Gloria&O.'16 based on finite range rather than Spectral Gap

Summary

1) Error in Representative Volume Element (RVE) Method, Scaling of random $var(\bar{a}_L)$ and systematic contribution $\langle \bar{a}_L \rangle - \bar{a}$ in terms of RVE-size L

2) Fluctuations of macroscopic observables $\int g \cdot \nabla u$, leading-order pathwise characterization via two-scale expansion used on level of commutator Ξ in terms of fourth-order tensor \overline{Q} extract from RVE at no additional cost Natural higher-order versions