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Capital Asset Pricing Model
CAPM

Figure: Harry Markowitz (1927)
explains the CAPM and the mean
variance plot. Nobel Memorial
Prize in Economic Sciences (1990)

Markowitz considers the
problem

minimize (in x ∈ RJ) var
(
ξ>x

)
subject to Eξ>x ≥ µ,

1> x ≤ 1k Euro,
(x ≥ 0)

Some statistics
Are R(·) = E(·) and R(·) = var(·) appropriate?
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Risk functionals — the Definition
Properties

Example

R(·) = E(·).

Proposition (Axioms, cf. Artzner et al. (1999))

Coherent measure of risk,

R : Y → R∪{±∞}.

1 Monotonicity: X ≤ Y a.e., then R(X )≤R(Y ),
2 Translation equivariance: R(Y + y)≤R(Y ) + y for Y ∈ Y and

y ∈ R,
3 Convexity: R

(
X + Y

)
≤R(X ) +R(Y ) for X, Y ∈ Y,

4 Positive homogeneity: R(λY ) = λ ·R(Y ) for λ > 0.
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AV@R’s Dual
Definitions

Definition (V@R, AV@R, CTE)

The Value-at-Risk at risk level α ∈ (0,1) is

V@Rα (Y ) = F−1Y (α) = inf {y : P (Y ≤ y)≥ α} ,

the Average Value-at-Risk is

AV@Rα (Y ) = 1
1−α

∫ 1

α
F−1Y (p)dp,

= min
t∈R

t + 1
1−α E(Y − t)+.

Fact
The name Conditional Value-at-Risk is suggested by the formula
AV@Rα (Y ) = E [Y |Y ≥ V@Rα (Y )].
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Convexity
The conjugate

Axioms

R(Y1)≤R(Y2) if Y1 ≤ Y2,

R(Y + c) =R(Y ) + c

R(Y1 + Y2)≤R(Y1) +R(Y2)

R(λY ) = λR(Y )

Theorem (Fenchel–Moreau,
cf. Rockafellar (1970))

It holds that

R(Y ) = sup
Z∈Y∗

EYZ −R∗(Z ),

where

R∗(Z ) = sup
Y∈Y

EYZ −R(Y )

is the convex conjugate (dual)
function.
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Law invariant risk functional
Kusuoka representation

The distortion risk measure
(spectral risk measure),

Rσ(Y ) : =
∫ 1

0
σ(u)F−1Y (u)du

=
∫ 1

0
AV@Rα(Y )µσ(dα).

Theorem (From Fenchel Moreau–Theorem (cf. Kusuoka’s
representation))

If R is version independent (law-invariant), then, for some class S,

R(Y ) = supσ∈SRσ(Y ) = sup
σ∈S

∫ 1

0
F−1Y (α)σ (α)dα
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A laaarge deviation example
Heavy tails

Chernoff bound

P (Y ≥ η) = P
(
etY ≥ etη

)
≤ EetY

etη ,

or equivalently, for t > 0,

η+ 1
t logP (Y ≥ η)≤ 1

t logEetY .

It is a further attempt to consider

η+ 1
t log P (Y ≥ η)

1−α ≤ 1
t log 1

1−α EetY .

Particularly, if we choose η := V@Rα(Y ), then

V@Rα(Y )≤ inf
t>0

1
t log 1

1−α EetY =: EV@Rα(Y ).
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EV@R’s Dual
Donsker–Varadhan variational formula

Theorem (Fenchel–Moreau, Donsker–Varadhan variational
formula cf. Ahmadi, P. (2017))

EV@Rα(Y ) = inf
t>0

1
t log 1

1−α EetY

= sup

EYZ : EZ = 1, Z ≥ 0 and EZ logZ︸ ︷︷ ︸
H(Z)

≤ log 1
1−α

 .
and conversely,

EZ logZ︸ ︷︷ ︸
entropy H(Z)

= sup
{
EYZ − logEeY : Y ∈ Y

}
.
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Entropy
Ludwig Boltzmann, 1844–1906

First law of thermodynamics:
E = const
Second law of thermodynamics:
∆S ≥ 0

Figure: Entropy
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Change of Measure
Kullback–Leibler divergence

Proposition
Choose the density dQ = ZdP, then

EV@Rα(Y ) = inf
t>0

1
t log 1

1−α EetY

= sup

EYZ : EZ = 1, Z ≥ 0 and EZ logZ︸ ︷︷ ︸
H(Z)

≤ log 1
1−α


= sup

{
EQ Y : DKL(Q‖P)≤ log 1

1−α

}
.
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Rényi Entropies
Rényi entropy generalizes Shannon entropy

Definition (Entropies)

1 Shannon Entropy: H1(Z ) := EZ logZ ,
2 Rényi Entropy (q 6= 1):

Hq(Z ) := 1
q−1 logEZq = q

q−1 log‖Z‖q.

Proposition (Risk measure based on Rényi entropy,
Dentcheva et al. (2010))

EV@Rp
α(Y ) : = sup

{
EYZ

∣∣∣∣∣ Z ≥ 0, EZ = 1 and
Hq(Z )≤ log 1

1−α

}

= inf
t∈R

{
t +

( 1
1−α

)1/p

· ‖(Y − t)+‖p

}
.
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Wasserstein/ Kantorovich Distance
Kantorovich, resp.

Definition (Wasserstein/ Kantorovich Distance)

The Kantorovich distance (also Wasserstein distance) of order r on
a Polish space (Ξ,d)

wr (P,Q;d) :=
(

inf
π

∫∫
Ξ×Ξ̃

d (x ,y)r π(dx ,dy)
) 1

r
,

where the infimum is taken over all (bivariate) probability measures
π on Ξ×Ξ which have respective marginals, that is

π(A×Ξ) = P(A) and π(Ξ×B) = Q(B)

for all measurable sets A⊆ Ξ and B ⊆ Ξ.
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Wasserstein Distance
Kantorovich, resp.

Why Wasserstein?
Rachev lists 76 metrics for measures in
his book...
the empirical measures 1

n
∑n

i=1 δξi (and∑n
i=1 piδωi ) should be dense,∫
Y dPn→

∫
Y dP,

We do have (stochastic) optimization
problems in mind.

A. Pichler order in disorder 19



Another link
There is a 1:1 relationship

A spectral risk measure always comes with Wasserstein.

Theorem (For Measures P and P̃ on the real line R )

For a measure P on the real line R and r = 2, a random variable Y
and U uniform, then

2 ·Rσ(Y ) = ‖Y ‖2L2 +‖σ‖2L2−w2
(
PY ,Pσ(U)

)2

A. Pichler order in disorder 20



The Dual for the Wasserstein/ Kantorovich
Distance

Theorem (Kantorovich
Rubinstein)

The Dual of the Wasserstein problem
reads w(P,Q)

maximize
(in Y ) EP Y −EQ Y

subject to Y (ξ)−Y
(
ξ̃
)
≤ d

(
ξ, ξ̃
)
.
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Change of measure
with Wasserstein

Proposition (A tight bound)

Let RS be a general risk functional. Suppose that the random
variables Y , Ỹ : Ξ→ R satisfy

Y (ξ)− Ỹ (ξ̃)≤ L ·d(ξ, ξ̃).

Then
RS;P(Y )−RS;Q(Ỹ )≤ L ·wr (P,Q) · sup

σ∈S
‖σ‖q ,

where q ∈ (1,∞] is the Hölder conjugate exponent of r (the order of
the Wasserstein metric), i.e., 1

q + 1
r = 1.
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Problem formulation
Classification: what it is...

Corollary
Consider the problem

v(P) := minimize RP(c(x , ξ)
subject to x ∈ X,

then
v(P)− v(P̃)≤ L ·wr (P, P̃) · sup

σ∈S
‖σ‖q ,
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Classical stochastic problem formulations include
Aleatoric risk

The three problems are
parametric
optimization

one parameter ξ:
standard determin-
istic optimization

set of possible
parameters ξ ∈ Ξ:
robust optimization

the parameters
are distributed

ξ ∼ P: stochastic
optimization

miny∈Y c(y) miny∈Y maxξ∈Ξ c(y , ξ) miny∈Y R
(
c(y , ξ)

)
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Problem Formulations
Stochastic Optimization

Problem
The typical formulation of the
multistage problem reads

minimize R
(
c(x , ξ)

)
,

x ∈ X

Problem (Probabilistic
constraints)

minimizex∈XR
(
c(x , ξ)

)
,

subject to P
(
g(x , ξ)≤ 0

)
≥ α

Problem (Markowitz)

minimizex∈XR
(
c(x , ξ)

)
,

subject to Eg(x , ξ)≥ µ

Problem (alternative
Markowitz)

maximize Eg(x , ξ),
subject to R

(
c(x , ξ)

)
≤ c

x ∈ X
A. Pichler order in disorder 26



Problem Formulations
Stochastic Optimization

Problem (Integrated risk mgmt)

minimizeγ ·Eg(x , ξ) + (1−γ) ·R
(
c(x , ξ)

)
,

subject to x ∈ X

Problem (Integrated risk mgmt)

minimizein z(·) AV@Rα
(∫ 1

0

(
u
(
x ,z(x)

)
−1
)2dx

)
+ α

2

∫ 1

0
z(x)2dx ,

subject to ν(ξ)uxx (ξ,x) + u(ξ,x) ·ux = f (x) + z(x)
u(0, ·) = d0(·) and u(1, ·) = d1(·)
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Outline

1 Risk measures
Introduction & history
Examples
Entropy

2 Change of measure
Kullback–Leibler divergence

Wasserstein
3 ... and their role in UQ

Problem formulations
Ambiguity

4 References
Summary

A. Pichler order in disorder 28



On Ambiguity
Classification: what it is...

Following Ellsberg (1961) we distinguish between the
uncertainty problem (aleatoric), if the model is fully known, but
the realizations of the random variables are unknown; and the
ambiguity problem (epistemic), if the probability model itself is
unknown. Another name for ambiguity is Knightian uncertainty
(referring to F. Knight’s 1921 book Knight (1921)).
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Ambiguity extension
Epistemic risk

optimization with randomly
distributed parameters

there is only
one distribution
P: stochastic
optimization

set of possible
distributions:

P ∈ P: distribu-
tionally robust
optimization

the parameters
are random
themselves,

P ∼ µ: Bayesian
ambiguous
optimization

Example: P := {Q : w(P,Q)≤ ε}.
The ambiguity extension considers the new objective

miny maxP∈PRP
(
c(y , ξ)

)
.
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Ambiguity extension (cont.)
Epistemic risk

We consider the ambiguity problems (distributionally robust,
epistemic) in

optimization,
2 stage stochastic optimization
multistage stochastic optimization and
dynamic optimization.
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Conclusion

EV@Rα(Y ) : = inf
t>0

1
t log 1

1−α EetY

= sup
{
EYZ

∣∣∣∣∣ Z ≥ 0, EZ = 1 and
H(Z )≤ log 1

1−α

}

1 Entropies: Boltzmann — Shannon — Rényi
2 Risk measures based on Entropies and

relations to Wasserstein
3 Dual representation, even in non-convex

situations
4 Empirical measure
5 Ambiguity

A. Pichler order in disorder 33



References

Ahmadi-Javid, A. and Pichler, A. (2017). An analytical study of norms and Banach spaces
induced by the entropic value-at-risk. Mathematics and Financial Economics,
11(4):527–550.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent Measures of Risk.
Mathematical Finance, 9:203–228.

Dentcheva, D., Penev, S., and Ruszczyński, A. (2010). Kusuoka representation of higher order
dual risk measures. Annals of Operations Research, 181:325–335.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of
Economics, 75(4):643–669.

Knight, F. H. (1921). Risk, Uncertainty and Profit. Library of Economics and Liberty.
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

A. Pichler order in disorder 34


	Risk measures
	Introduction & history
	Examples
	Entropy

	Change of measure
	Kullback–Leibler divergence
	Wasserstein

	... and their role in UQ
	Problem formulations
	Ambiguity 

	References
	Summary 


