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Metropolis–Hastings In Hilbert Spaces Motivation for Bayesian Inference in Hilbert Spaces

Uncertainty Quantification in Groundwater Flow

Groundwater flow modelling:

PDE for groundwater pressure head p, e.g.,

−∇ · (eu(x) ∇p(x)) = 0 in D

with uncertain u ∈ C (D)

Noisy observations of u and p at locations xj ∈ D, j = 1, . . . , J

Functional f of flux −eu(x) ∇p(x), e.g., exit time of pollutants

UQ approach: (underlying probability space (Ω,A ,P))

Model uncertain u by (Gaussian) random field u(·, ω) ∈ C (D) a.s.

Employ observational data to fit stochastic model for u

Compute expectations or probabilities for resulting random f (ω)
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Stochastic Model for u

Continuous random field yields random variable U : Ω→ L2(D) with

U(ω) =
∑
m≥1

ξm(ω) φm, {φm}m∈N ONS in L2(D) (KLE)

where ξ := (ξm)m∈N random vector in `2

Convenient: fit Gaussian prior µ0 for u resp. ξ given data u(xj) (geostatistics):

ξ ∼ µ0 = N(m0,C0) on `2 =: H

Incorporate indirect data p(xj) by conditioning prior µ0 on it (Bayes)

Sample from resulting posterior measure µ to compute statistics of f (ξ)
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Bayesian Inference

Let G : H → RJ denote a forward map, here:

ξ
KLE−−→ u

PDE−−−→ p
Observation−−−−−−−→ (p(xj))Jj=1

Let d ∈ RJ be a realization of noisy observable

G (ξ) + ε, ε ∼ N(0,Σ)

Theorem (e.g., [Stuart, 2010])

If G is measurable and ξ ⊥⊥ ε, then the conditional or posterior measure µ of
ξ ∼ µ0 given that G (ξ) + ε = d is

µ(dξ) ∝ exp (−Φ(ξ))µ0(dξ),

where Φ(ξ) := 1
2 |d− G (ξ)|2Σ−1 is negative log-likelihood.
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Markov Chain Monte Carlo (MCMC)

Basic idea: construct Markov chain (ξk)k∈N with ξk
D−→ µ as k →∞...

... by constructing a transition kernel

K (x ,A) := P(ξk+1 ∈ A | ξk = x), x ∈H , A ∈ B(H ),

which is µ-invariant, i.e.,

µK =

∫
K (x , ·)µ(dx) = µ

Then, under suitable conditions, there holds for f ∈ L1
µ(R)

Sn(f ) :=
1

n

n∑
k=1

f (ξk)
n→∞−−−→ Eµ[f ] a.s.
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Efficiency of MCMC

Autocorrelation of Markov chain effects efficiency: given ξ1 ∼ µ

lim
n→∞

nE
[
|Sn(f )− Eµ[f ]|2

]
= Varµ(f ) + 2

∞∑
j=1

Cov(f (ξ1), f (ξ1+j))

Effective sample size (ESS): number of independent samples which yield
same mean squared error

Many common MCMC algorithms show decreasing efficiency for

(a) increasing dimension of state space, i.e., H = RM and M →∞
(b) decreasing noise Var(ε)→ 0, i.e., posterior µ more concentrated

We will address and resolve both issues in the following
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The Metropolis–Hastings (MH) Algorithm

Metropolis–Hastings algorithm [Metropolis et al., 1953] [Hastings, 1970]

Given current state ξk = x ,

1 draw new state y according to proposal kernel P(x , ·): Yk ∼ P(x)

2 accept proposed y with acceptance probability α(x , y), i.e., set

ξk+1 =

{
y , with probability α(x , y),

x , with probability 1− α(x , y).

[Tierney, 1998]: µ-invariance ensured if

α(x , y) = min

{
1,

dν>

dν
(x , y)

}
,

where ν(dx ,dy) := P(x ,dy) µ(dx) and ν>(dx ,dy) := ν(dy ,dx).
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Gaussian Random Walk-MH

Gaussian Random Walk-MH: proposal P(x) = N(x , s2C0)

s > 0 tunable stepsize parameter:
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If H = RM and π : RM → (0,∞) Lebesgue density of µ, then:

α(x , y) = min

{
1,
π(y)

π(x)

}

However, for fixed s there holds E [α(ξk ,Yk)]
M→∞−−−−→ 0
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Numerical Example

Problem: Bayesian inference in 2D groundwater flow model

Average acceptance rate vs. stepsize s for different dimensions M of ξ ∈ RM

Random walk-proposal P(x) = N(x , s2C0)
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MH Algorithms in Hilbert Spaces

Due to Bayes’ formula, α(x , y) is well-defined iff dν>0
dν0

exists for

ν0(dx ,dy) := P(x ,dy) µ0(dx), ν>0 (dx ,dy) := ν0(dy ,dx)

[Cotter et al., 2013]: RW proposal P(x) = N(x , s2C0) yields ν0 6∼ ν>0 in
infinite dimensions

[Beskos et al., 2008]: pCN proposal

P(x) = N(
√

1− s2x , s2C0)

yields ν0 = ν>0 and, thus, α(x , y) = min
{

1, eΦ(x)−Φ(y)
}
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Motivation For Improvement

Observation: [Tierney, 1994], [Roberts & Rosenthal, 2001], . . .
Higher efficiency when proposal P uses posterior covariance matrix

Example: µ = N(0,C ) in 2D, MH with different proposal covariances
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How to approximate posterior covariance in advance

If forward map G were linear, then

µ = N (m,C ) , C = (C−1
0 + G∗Σ−1G )−1

Idea: Linearization of nonlinear G at x0 ∈H

G (x) ≈ G̃ (x) := G (x0) + Jx , J = ∇G (x0)

yields approximation to posterior covariance

C ≈ C̃ = (C−1
0 + J∗Σ−1J)−1

Possible choice for x0:

xMAP = argmin
x
|d− G (x)|2 + ‖C−1/2

0 x‖2
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Generalized pCN-Proposal

Class of proposal covariances:

CΓ = (C−1
0 + Γ)−1, Γ ∈ L (H ) positive and self-adjoint

Generalized pCN-proposal:

PΓ(x) = N(AΓx , s
2CΓ),

where enforcing ν0 = ν>0 yields

AΓ = C
1/2
0

√
I − s2(I + C

1/2
0 ΓC

1/2
0 )−1 C

−1/2
0

(cf. operator weighted proposals [Law, 2013] and [Cui et al., 2016])

Lemma ([Rudolf, S., 2016])

There holds AΓ ∈ L (H ). The MH algorithm using the gpCN-proposal PΓ is
well-defined in Hilbert spaces and yields the µ-invariant gpCN-MH kernel KΓ.
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Numerical Experiment

Setting

1D model: d
dt

(
eu(t) dp

dt
(t)
)

= 0, p(0) = 0, p(1) = 2

Prior: u(t, ξ) ≈
∑M

m=1
ξm
mπ

√
2 sin(mπt), ξ ∼ N(0, I )

Observations: y =
[
p(0.2j)

]4

j=1
+ ε, ε ∼ N(0, σ2

ε I )

Quantity of interest: f (ξ) =
∫ 1

0
eu(t,ξ) dt

Proposals for MH-MCMC

Results
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Numerical Experiment

Setting

Proposals for MH-MCMC

Results

100 prior and posterior realizations

ξ ∼ µ0 ξ ∼ µ, σε = 0.1 ξ ∼ µ, σε = 0.01
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Numerical Experiment

Setting
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Geometric Ergodicity And Spectral Gaps

MH kernel K is L2
µ-geometrically ergodic if for an r > 0

‖µ− υK n‖TV ≤ Cυ e
−r n ∀υ :

dυ

dµ
∈ L2

µ(H )

Markov operator K : L2
µ(H )→ L2

µ(H ) associated with MH kernel K :

Kf (x) :=

∫
H

f (y)K (x ,dy),

L2
µ-spectral gap of K: gapµ(K) := 1− ‖K− Eµ‖L2

µ→L2
µ

[Roberts & Rosenthal, 1997]: K is L2
µ-geometrically ergodic iff gapµ(K) > 0

and, moreover, there holds

lim
n→∞

nE
[
|Sn(f )− Eµ[f ]|2

]
≤

2‖f ‖2
L2
µ

gapµ(K)
, f ∈ L2

µ(H )

16 / 25



Metropolis–Hastings In Hilbert Spaces Analysis of Metropolis–Hastings Algorithms

Geometric Ergodicity And Spectral Gaps

MH kernel K is L2
µ-geometrically ergodic if for an r > 0

‖µ− υK n‖TV ≤ Cυ e
−r n ∀υ :

dυ

dµ
∈ L2

µ(H )

Markov operator K : L2
µ(H )→ L2

µ(H ) associated with MH kernel K :

Kf (x) :=

∫
H

f (y)K (x ,dy),

L2
µ-spectral gap of K: gapµ(K) := 1− ‖K− Eµ‖L2

µ→L2
µ

[Roberts & Rosenthal, 1997]: K is L2
µ-geometrically ergodic iff gapµ(K) > 0

and, moreover, there holds

lim
n→∞

nE
[
|Sn(f )− Eµ[f ]|2

]
≤

2‖f ‖2
L2
µ

gapµ(K)
, f ∈ L2

µ(H )

16 / 25



Metropolis–Hastings In Hilbert Spaces Analysis of Metropolis–Hastings Algorithms

Proving Geometric Ergodicity of gpCN-MH Kernel

For pCN-MH kernel K0 an L2
µ-spectral gap was proven in [Hairer et al., 2014]

under certain conditions on Φ

Our Strategy: a comparative approach by relating gapµ(KΓ) to gapµ(K0):

Theorem (Comparison of spectral gaps [Rudolf, S., 2016])

If

1 the associated Markov operators K0 and KΓ are positive,

2 there exists the Radon-Nikodym derivative ρΓ(x , y) := dP0(x)
dPΓ(x)

(y)

3 and for a β > 1 there holds

sup
µ(A)∈(0, 1

2
]

∫
A

∫
Ac ρ

β
Γ (x , y) PΓ(x , dy)µ(dx)

µ(A)
<∞,

then
gapµ(K0)2β ≤ cβ gapµ(KΓ)β−1.
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Convergence Result

Assumptions 1 and 2 fulfilled for pCN- and gpCN-proposal

To ensure assumption 3, we have to consider restriction of µ:

µR(dx) ∝ 1BR
(x)µ(dx), BR := {x ∈H : ‖x‖ < R}

and restricted gpCN-MH kernel KΓ,R with αR(x , y) := 1BR
(y)α(x , y)

Theorem (Spectral gap of restricted gpCN-MH [Rudolf, S., 2016])

If
gapµ(K0) > 0,

then for any admissible Γ and any ε > 0 there exists a number R <∞ such that

‖µ− µR‖TV < ε and gapµR
(KΓ,R) > 0.

18 / 25
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Variance-Independent Performance Of MH Algorithms

Scaled observational noise ε ∼ N(0, σ2 Σ) yields family of posteriors

µσ(dx) ∝ exp
(
−σ−2 Φ(x)

)
µ0(dx), σ > 0

Given µσ-invariant MH kernels Kσ, we can investigate if

lim
σ→0

gapµσ
(Kσ) = β > 0

Hard to analyze, thus, we examine limits for σ → 0 of

Expected acceptance rate: E [ασ(ξk ,Yk)] ,

Expected squared jump size: E
[∣∣ξk − ξk+1

∣∣2] ,
where

(
ξk
)
k∈N Markov chain generated by Kσ starting at ξ1 ∼ µσ
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A Result For Gaussian Posteriors

Theorem (Variance independence for Gaussian posterior [S., 2017])

Let µ0 = N(0,C0) on RM and G : RM → Rd be linear with d < M, i.e.,

µσ = N(mσ,Cσ), Cσ = (C−1
0 + σ−2G>Σ−1G )−1.

Then for Markov chains (ξk)k∈N generated by MH algorithm with

RW-proposal Pσ(x) = N(x , s2Cσ),

gpCN-proposal PΓσ (x) = N(AΓσx , s
2Cσ)

there holds

lim
σ→0

E [ασ(ξk ,Yk)] = β > 0, lim
σ→0

E
[
|ξk+1 − ξk |2

]
= β̃ > 0,

with β = β(M, s) for RW and β = β(d , s) for gpCN.
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Gaussian Approximation of Non-Gaussian Posterior

Bernstein-von Mises Theorem states approximate Gaussianity of posteriors on
RM in the large data limit

Common Gaussian approximation of posterior

µσ(dx) ∝ exp
(
−σ−2 Φ(x)

)
µ0(dx), σ ∈ N,

with Φ ∈ C 2(RM), is Laplace approximation µ̃σ = N(xσ, C̃σ), where

xσ := argmin
x∈RM

Φ(x) + σ2‖x‖2
C−1

0
, C̃−1

σ := C−1
0 + σ−2∇2Φ(xσ)

Theorem

If unique minimizer x? := argminx∈RM Φ(x) exists with ∇2Φ(x?) > 0, xσ → x? as
σ → 0, and Φ ∈ C 3(RM), then

‖µσ − µ̃σ‖TV ∈ O(σ).
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Variance Robustness For Non-Gaussian Posteriors

Theorem extendable to Hellinger norm, arbitrary priors, sequence of Φσ,...

...and underdetermined case Φ: RM → Rd , d < M, if Φ acts only on linear
subspace M , Φ(x + m) = Φ(x) for m ∈M⊥, with dim(M ) ≤ d

Claim: Whenever there holds

lim
σ→0
‖µσ − µ̃σ‖TV = 0,

the MH algorithm based on RW or gpCN proposal

Pσ(x) = N(x , s2C̃σ), PΓσ (x) = N(AΓσx , s
2C̃σ)

yields

lim
σ→0

E [ασ(ξk ,Yk)] = β > 0.
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Numerical Experiment

Linear forward map G (convolution operator) applied to unknown function

Gaussian prior and noise ε ∼ N(0, σ2 I4) yield Gaussian posterior

P(x) = N(x , s2C0)
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Numerical Experiment cont’d

Nonlinear forward G (exp ◦ convolution operator), dim(M ) = d

Gaussian prior and noise ε ∼ N(0, σ2 I4), but non-Gaussian posterior

Use covariance C̃σ of Laplace approximation for proposal

GN-RW proposal
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Numerical Experiment cont’d

Nonlinear forward G (convolution operator ◦ exp), dim(M ) = M

Gaussian prior and noise ε ∼ N(0, σ2 I4), but non-Gaussian posterior
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Conclusions

Bayesian inference for functions calls MH algorithms well-defined in
infinite-dimensional spaces

Existing MH algorithms with dimension-independent efficiency

Introduced modification by incorporating approximate information about
posterior covariance...

... which seems to perform dimension-independent & variance-robust

Proved L2
µ-geometric ergodicity of gpCN-MH algorithm via spectral gaps

First steps to analyze variance-robustness of MH algorithms
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