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Overview

1. The Anderson modelIWHY?

2. Quantum dynamicsIWHAT?

3. Random modelsIWHAT?

4. MethodsI HOW?

5. References
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The Anderson model
Who?

In the celebrated article [4] “Absence of
Diffusion in Certain Random Lattices”.
Phys. Rev. 109 (5): 1492 –1505 from
1958, P.W. Anderson proposed a
mathematical model to explain the
phase transition from insulator to metal
in disordered solids.
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The Anderson model
What?

from Anderson’s Nobel lecture, [3]: The original Anderson model
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The Anderson model
How?

I Random model for solids: Hopping term plus random onsite potential. In our
terminology:

Hωψ(x) = −∆discψ(x) + Vω(x)ψ(x),

defines a random operator. The ingredients:
x - site on a “lattice”
∆disc - Hopping terms
Vω - random potential

I Need probability distributions not averages: no real atom is an average atom
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The Anderson model
Why?

Anderson proved: nontransport theorem, localization, and suggested transition, now
called Anderson transition.
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Quantum dynamics
The Schrödinger equation

ψ̇(t) = −i(−∆ + V )ψ(t), ψ(0) = ψ0,
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Quantum dynamics
The Schrödinger equation

Easy: the solution of the Schrödinger equation is

ψ(t) = e−iHtψ0.

But: what does it look like?
To this end one studies the spectral resolution of H .

I If ψ0 is an eigenvector of H with eigenvalue E0⇒

ψ(t) = e−iE0tψ0.

One speaks of a bound state.
I If the spectral measure ρHψ0

of ψ0 w.r.t H is continuous,

⇒ lim
T→∞

1

T

∫ T

−T
‖χBψ(t)‖2dt = 0 for compact B.

One speaks of a scattering state.
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Quantum dynamics
Spectral types

I Atomic models are described by a negative potential V that decays rapidely
enough near infinity:one gets bound states for negative energies and scattering
states for positive energies.

I Solid states with perfect order are described by a periodic V ⇒H = −∆ + V
has only scattering states.

I P.W. Anderson proposed a new paradigm for disordered solids in dimension≥ 3:
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Quantum dynamics
Spectral types

Once translated into the language of spectral theory there is a transition from a
localized phase that exhibits pure point spectrum
(= only bound states = no transport)
to a
delocalized phase with absolutely continuous spectrum
(= scattering states = transport)
The dynamical properties of solutions to the Schrödinger equation

ψ̇(t) = −i(−∆ + V )ψ(t), ψ(0) = ψ0,

depend drastically on the energy of ψ0!
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Quantum dynamics
Spectral types

However, for genuine random models, there is no rigorous proof for the existence of a
transition or even of the appearance of spectral components other than pure point, so
far.
This is quite a strange situation: the unperturbed problem exhibits extended states and
purely a.c. spectrum but for the perturbed one can prove the opposite spectral behavior
only.
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Random models
Anderson type models

H(ω) = −∆ + Vω in L2(Rd)

E.g., Ω = RZd

, P = µZd

a probability space describing independent, identically
distributed coupling constants

Vω =
∑
k∈Zd

ωk · v(· − k)

sometimes also called alloy type models. Localization has been proven for such
models under additional technical hypotheses on µ and v.
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Random models
Poisson models

H(ω) = −∆ + Vω in L2(Rd)

with impurities located according to a Poisson process

Vω =
∑
k∈N

v(· −Xk(ω))

Localization was shown for such models in [8]
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Random models
Random divergence type operators

Here the operators are given by

H(ω) = −∇aω∇ in L2(Rd)

where the leading order coefficient is a randomly chosen matrix, independently in
different space regions, more precisely

aω = aper +
∑
k∈Zd

ωk · χ(· − k),

and ω = (ωk)k∈Zd ∈ SZd

is picked w.r.t. a product measure, see [6] and [12].
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Random models
Random width quantum waveguides

A model studied by Kleespies and P.S.

picture taken from [9]

· 13.3.2018 · Peter Stollmann 15 / 22 http://www.tu-chemnitz.de/mathematik/analysis

http://www.tu-chemnitz.de/mathematik/analysis


Random models
Random curvature quantum waveguides

Much more complicated are the models studied by Borisov and Veselic 2013, [5], where
the curvature is random.
One main technical difficulty: missing monotonicity in the dependence on the random
variables. In that respect these models share technical features with random
displacement models, coming next:
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Random models
Random displacement models

H(ω) = −∆ + Vω in L2(Rd)
with impurities randomly displaced from their lattice position

Vω =
∑
k∈Zd

v(· − k − ωk)

... taken from [10].
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Random models
Percolation subgraphs

Starting from a given graph (e.g., Z2) edges are deleted at random and independently;
the random operator is the Laplacian on the resulting subgraph, see e.g. [11].
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Methods
Fractional moment method and multi–scale analysis

I New methods are required, traditional perturbation theory fails!
I Statistics of eigenvalues;
I decay properties of eigenfunctions;
I ... for finite volume restrictions of random operators

Two approaches:
I Fractional moment method: see Aizenman and Molchanov 1993, [1], for the start

and the monograph [2] by Aizenman and Warzel for a recent account.
I Multi–scale analysis: see Fröhlich and Spencer 1983, [7], for the start and the

monograph [13] for an extended proof.
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Methods
Multiscale analysis

Is an induction process proving “good decay properties” of resolvents on boxes CL
with high probability. With a little bit of oversimplification:

I Box of sidelength L decomposed into boxes of
sidelength ` << L.

I Small box is good if resolvent decays exponentially
with rate γ` > 0, that happens with probability p`.

I Decay for the large box is controlled by decay for
“most” small boxes, giving a decay rate
γL < γ` > 0 with probability pL > p`.

I Use independence in the latter step!
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Methods
Multiscale analysis

Two main ingredients:
I Nonresonance, Wegner estimate: For all E ∈ R,

P (dist(E, σ(Hω � C`)) ≤ ε) ≤ C`dε,

where Hω � C` denotes a selfadjoint restriction of the random operator to the
box C`.

I Initial length scale estimates allow to start the induction procedure. For E in a
certain energy regime, the probability that a box is good (resolvent at energyE) is
high enough. Often proved in terms of Lifshitz tail estimates.
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Methods
Multiscale analysis

Thank you
for your attention
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