

CHEMNITZ

Quantum dynamics for random models: why, what and how GAMM AGUQ Workshop TU Dortmund, 2018

Quantum dynamics for random models: why, what and how

Peter Stollmann

GAMM AGUQ Workshop TU Dortmund, 2018

13.3.2018

TECHNISCHE UNIVERSITÄT CHEMNITZ

· 13.3.2018 · Peter Stollmann

 < □ > < □ > < □ > < ≥ > < ≥ > < ≥ >
 ≥ < ○ ○</td>

 http://www.tu-chemnitz.de/mathematik/analysis

- 1. The Anderson model ► WHY?
- 2. Quantum dynamics ► WHAT?
- 3. Random models ► WHAT?
- 4. Methods ► HOW?
- 5. References

▲ロト ▲母 ト ▲目 ト ▲目 ト 三目 - のへで

In the celebrated article [4] "Absence of Diffusion in Certain Random Lattices". Phys. Rev. 109 (5): 1492 -1505 from 1958, P.W. Anderson proposed a mathematical model to explain the phase transition from insulator to metal in disordered solids.

Ξ

from Anderson's Nobel lecture, [3]: The original Anderson model

· 13.3.2018 · Peter Stollmann

Ξ

Random model for solids: Hopping term plus random onsite potential. In our terminology:

$$H_{\omega}\psi(x) = -\Delta_{disc}\psi(x) + V_{\omega}(x)\psi(x),$$

defines a random operator. The ingredients: x - site on a "lattice" Δ_{disc} - Hopping terms V_{ω} - random potential

> Need probability distributions not averages: no real atom is an average atom

▲ロト ▲団ト ▲臣ト ▲臣ト 三臣 - のへで

Anderson proved: nontransport theorem, **localization**, and suggested transition, now called Anderson transition.

The Anderson model

Why?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Quantum dynamics The Schrödinger equation

$$\dot{\psi}(t) = -i(-\Delta + V)\psi(t), \psi(0) = \psi_0,$$

· 13.3.2018 · Peter Stollmann

・ロト・(アト・モト・モト) モークロート
http://www.tu-chemnitz.de/mathematik/analysis

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

▶ If the spectral measure $\rho_{\eta_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

▶ If the spectral measure $\rho_{\eta_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But what does it look like?

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

▶ If the spectral measure $\rho_{\eta_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

▶ If the spectral measure $\rho_{\eta_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

· 13.3.2018 · Peter Stollmann

 $\psi(t) = e^{-iHt}\psi_0.$

But what does it look like? To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

▶ If the spectral measure $\rho_{\eta_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

3

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like? To this end one studies the spectral resolution of *H*.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

▶ If the spectral measure $\rho_{\psi_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like? To this end one studies the spectral resolution of *H*.

• If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

▶ If the spectral measure $\rho_{\psi_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

• If the spectral measure $\rho_{\psi_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

 $\blacktriangleright~$ If the spectral measure $\rho^H_{\psi_0}$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

 $\blacktriangleright~$ If the spectral measure $\rho^H_{\psi_0}$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

 $\blacktriangleright~$ If the spectral measure $\rho^H_{\psi_0}$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

 $\psi(t) = e^{-iHt}\psi_0.$

But: what does it look like?

To this end one studies the spectral resolution of H.

▶ If ψ_0 is an eigenvector of H with eigenvalue $E_0 \Rightarrow$

$$\psi(t) = e^{-iE_0 t} \psi_0.$$

One speaks of a **bound state**.

▶ If the spectral measure $\rho_{\psi_0}^H$ of ψ_0 w.r.t H is continuous,

$$\Rightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \|\chi_B \psi(t)\|^2 dt = 0 \text{ for compact } B.$$

One speaks of a scattering state.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- Atomic models are described by a negative potential V that decays rapidely enough near infinity: one gets bound states for negative energies and scattering
- ►
- \triangleright P.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3 :

- Atomic models are described by a negative potential V that decays rapidely enough near infinity:one gets bound states for negative energies and scattering
- ►
- \triangleright P.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3 :

- Atomic models are described by a negative potential V that decays rapidely enough near infinity: one gets bound states for negative energies and scattering states for positive energies.
- ►.
- \triangleright P.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3 :

3

- ► Atomic models are described by a negative potential V that decays rapidely enough near infinity:one gets bound states for negative energies and scattering states for positive energies.
- Solid states with perfect order are described by a periodic V ⇒ H = −△ + V has only scattering states.
- **•** P.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3 :

- ► Atomic models are described by a negative potential V that decays rapidely enough near infinity:one gets bound states for negative energies and scattering states for positive energies.
- Solid states with perfect order are described by a periodic V ⇒ H = −∆ + V has only scattering states.
- **P**.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3 :

- Atomic models are described by a negative potential V that decays rapidely enough near infinity: one gets bound states for negative energies and scattering states for positive energies.
- Solid states with perfect order are described by a periodic $V \Rightarrow H = -\Delta + V$ has only scattering states.
- ▶ P.W. Anderson proposed a new paradigm for disordered solids in dimension ≥ 3:

Da C

- ► Atomic models are described by a negative potential V that decays rapidely enough near infinity:one gets bound states for negative energies and scattering states for positive energies.
- ► Solid states with perfect order are described by a periodic $V \Rightarrow H = -\Delta + V$ has only scattering states.
- P.W. Anderson proposed a new paradigm for disordered solids in dimension \geq 3:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Once translated into the language of spectral theory there is a transition from a **localized phase** that exhibits pure point spectrum (= only bound states = no transport)

to a

delocalized phase with absolutely continuous spectrum

(= scattering states = transport)

The dynamical properties of solutions to the Schrödinger equation

 $\dot{\psi}(t) = -i(-\Delta + V)\psi(t), \psi(0) = \psi_0,$

depend drastically on the energy of ψ_0 !

Once translated into the language of spectral theory there is a transition from a **localized phase** that exhibits pure point spectrum

to a

delocalized phase with absolutely continuous spectrum

(= scattering states = transport)

$$\dot{\psi}(t) = -i(-\Delta + V)\psi(t), \psi(0) = \psi_0,$$

3

Once translated into the language of spectral theory there is a transition from a **localized phase** that exhibits pure point spectrum

(= only bound states = no transport)

to a

delocalized phase with absolutely continuous spectrum

(= scattering states = transport)

The dynamical properties of solutions to the Schrödinger equation

 $\dot{\psi}(t) = -i(-\Delta + V)\psi(t), \psi(0) = \psi_0,$

depend drastically on the energy of $\psi_0!$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 第二 の�?

However, for genuine random models, there is no rigorous proof for the existence of a transition or even of the appearance of spectral components other than pure point, so far.

However, for genuine random models, there is no rigorous proof for the existence of a transition or even of the appearance of spectral components other than pure point, so far.

This is guite a strange situation: the unperturbed problem exhibits extended states and purely a.c. spectrum but for the perturbed one can prove the opposite spectral behavior only.

3

$$H(\omega) = -\Delta + V_{\omega} \text{ in } L^2(\mathbb{R}^d)$$

E.g., $\Omega = \mathbb{R}^{\mathbb{Z}^d}$, $\mathbb{P} = \mu^{\mathbb{Z}^d}$ a probability space describing independent, identically distributed coupling constants

$$V_{\omega} = \sum_{k \in \mathbb{Z}^d} \omega_k \cdot v(\cdot - k)$$

sometimes also called alloy type models. Localization has been proven for such models under additional technical hypotheses on μ and v.

$$H(\omega) = -\Delta + V_{\omega} \text{ in } L^2(\mathbb{R}^d)$$

with impurities located according to a Poisson process

$$V_{\omega} = \sum_{k \in \mathbb{N}} v(\cdot - X_k(\omega))$$

Localization was shown for such models in [8]

· 13.3.2018 · Peter Stollmann

http://www.tu-chemnitz.de/mathematik/analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Here the operators are given by

$$H(\omega) = -\nabla \mathbf{a}_{\omega} \nabla \operatorname{in} L^2(\mathbb{R}^d)$$

where the leading order coefficient is a randomly chosen matrix, independently in different space regions, more precisely

$$\mathbf{a}_{\omega} = \mathbf{a}_{per} + \sum_{k \in \mathbb{Z}^d} \omega_k \cdot \chi(\cdot - k),$$

and $\omega = (\omega_k)_{k \in \mathbb{Z}^d} \in S^{\mathbb{Z}^d}$ is picked w.r.t. a product measure, see [6] and [12].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

A model studied by Kleespies and P.S.

picture taken from [9]

· 13.3.2018 · Peter Stollmann

http://www.tu-chemnitz.de/mathematik/analysis

E

(日) (四) (王) (王) (王)

Much more complicated are the models studied by Borisov and Veselic 2013, [5], where the curvature is random.

One main technical difficulty: missing monotonicity in the dependence on the random variables. In that respect these models share technical features with random displacement models, coming next:

$$H(\omega) = -\Delta + V_{\omega} \text{ in } L^2(\mathbb{R}^d)$$

with impurities randomly displaced from their lattice position

$$V_{\omega} = \sum_{k \in \mathbb{Z}^d} v(\cdot - k - \omega_k)$$

FIGURE 1. A typical configuration

... taken from [10].

· 13.3.2018 · Peter Stollmann

17/22

▲ロト ▲母 ト ▲目 ト ▲目 ト 三目 - のへで

Starting from a given graph (e.g., \mathbb{Z}^2) edges are deleted at random and independently; the random operator is the Laplacian on the resulting subgraph, see e.g. [11].

Ξ

- ► New methods are required, traditional perturbation theory fails!
- Statistics of eigenvalues;
- decay properties of eigenfunctions;
- ... for finite volume restrictions of random operators

Two approaches:

- ► Fractional moment method: see Aizenman and Molchanov 1993, [1], for the start and the monograph [2] by Aizenman and Warzel for a recent account.
- Multi-scale analysis: see Fröhlich and Spencer 1983, [7], for the start and the monograph [13] for an extended proof.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Is an induction process proving "good decay properties" of resolvents on boxes C_L with high probability. With a little bit of oversimplification:

-							
G	G	G	B	G	G	G	G
B	G	G	G	B	G	G	B
G	G	G	G	G	G	G	G
G	G	G	G	G	G	G	G
G	G	G	G	G	G	ß	G
G	G	B	G	G	G	G	G
G	G	G	B	G	G	G	G
G	G	G	G	G	G	B	G

- ► Box of sidelength *L* decomposed into boxes of sidelength $\ell << L$.
- Small box is good if resolvent decays exponentially with rate γ_ℓ > 0, that happens with probability p_ℓ.
- ► Decay for the large box is controlled by decay for "most" small boxes, giving a decay rate γ_L < γ_ℓ > 0 with probability p_L > p_ℓ.
- Use independence in the latter step!

Two main ingredients:

• Nonresonance, Wegner estimate: For all $E \in \mathbb{R}$,

 $\mathbb{P}\left(\operatorname{dist}(E, \sigma(H_{\omega} \restriction C_{\ell})) \leq \epsilon\right) \leq C\ell^{d}\epsilon,$

where $H_{\omega} \upharpoonright C_{\ell}$ denotes a selfadjoint restriction of the random operator to the box C_{ℓ} .

► Initial length scale estimates allow to start the induction procedure. For *E* in a certain energy regime, the probability that a box is good (resolvent at energy *E*) is high enough. Often proved in terms of Lifshitz tail estimates.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 第二 の�?

Methods Multiscale analysis

Thank you for your attention

· 13.3.2018 · Peter Stollmann

イロト イヨト イヨト イヨト http://www.tu-chemnitz.de/mathematik/analysis

References CONTRACTOR MARKETAR

- Localization at large disorder and at extreme energies: an elementary derivation. *Comm. Math. Phys.*, 157(2):245–278, 1993.
- Michael Aizenman and Simone Warzel. Random operators, volume 168 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015. Disorder effects on quantum spectra and dynamics.

P. W. Anderson.

Local moments and localized states. *Rev. Mod. Phys.*, 50:191–201, Apr 1978.

P.W. Anderson. Absence of diffusion in certain random lattices. *Phys. Reviews*, 109(5):1492–1505, 1958.

Denis Borisov and Ivan Veselić.
 Low lying eigenvalues of randomly curved quantum waveguides.
 J. Funct. Anal., 265(11):2877–2909, 2013.

- Alexander Figotin and Abel Klein. Localization of classical waves. II. Electromagnetic waves. *Comm. Math. Phys.*, 184(2):411–441, 1997.
- Jürg Fröhlich and Thomas Spencer. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. *Comm. Math. Phys.*, 88(2):151–184, 1983.
- François Germinet, Peter D. Hislop, and Abel Klein. Localization for Schrödinger operators with Poisson random potential. J. Eur. Math. Soc. (JEMS), 9(3):577–607, 2007.
- Frank Kleespies and Peter Stollmann. Lifshitz asymptotics and localization for random quantum waveguides. *Rev. Math. Phys.*, 12(10):1345–1365, 2000.
- Frédéric Klopp, Michael Loss, Shu Nakamura, and Günter Stolz. Localization for the random displacement model. Duke Math. J., 161(4):587–621, 2012.

3

- Reza Samavat, Peter Stollmann, and Ivan Veselić. Lifshitz asymptotics for percolation Hamiltonians. Bull. Lond. Math. Soc., 46(6):1113-1125, 2014.

Peter Stollmann.

Localization for random perturbations of anisotropic periodic media. Israel J. Math., 107:125-139, 1998.

Peter Stollmann.

Caught by disorder, volume 20 of Progress in Mathematical Physics. Birkhäuser Boston, Inc., Boston, MA, 2001. Bound states in random media