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Topologie

5.4 Zerlegungen der Eins

In der Analysis und der Mafltheorie ist es manchmal niitzlich, Funktionen in solche mit

,kleinen“ Tragern zu zerlegen.

Definition 5.4.1. Es sei X ein topologischer Raum, f: X — R eine Funktion und
E:={z¢c X : f(xr)#0}. Dann heifit E der Triger von f und wird mit Tr f oder supp f
(Englisch: support) bezeichnet.

Definition 5.4.2. Es sei X ein topologischer Raum und A eine Indexmenge.

(a) Ein System % = (Uy,)aea von Teilmengen von X heifit Uberdeckung von X, wenn
U = X. Eine Uberdeckung (U,)aeca von X heift offene Uberdeckung bzw. abge-

a€cA
schlossene Uberdeckung von X, wenn alle Mengen U, offen bzw. abgeschlossen sind.

Eine Uberdeckung (Ua)aea von X heiflt endlich bzw. abzdhlbar, wenn die Index-
menge A endlich bzw. abzéhlbar ist.

(b) Ein System & = (E,)aea von Teilmengen von X heifit lokalendlich, wenn es zu
jedem Punkt z € X eine Umgebung U von z gibt, die nur endlich viele der F,
schneidet. Weiter heifit & punktendlich, wenn jeder Punkt x € X nur in endlich

vielen der F,, liegt.

Offenbar ist jede lokalendliche Uberdeckung von X auch punktendlich. Aber die Umkeh-
rung gilt im Allgemeinen nicht. Dazu sei X = {1 :n € N} U {0} versehen mit der von
R induzierten Topologie und & = { {1} : n € N} U{X}. Dann ist & eine punktendliche
aber keine lokalendliche Uberdeckung von X, da jede Umgebung von 0 unendlich viele
der Punkte % enthalt.

Satz 5.4.3. Es sei X ein normaler Raum, F' C X abgeschlossen und & = (Eq)aca

ein punktendliches System offener Mengen, das F' iiberdeckt. Dann gibt es eine offene
Uberdeckung 4 = (G)aca von F mit G, C E,.



Beweis. Es sei .# die Familie aller offenen Uberdeckungen von F der Gestalt (G3)seg U
(Ey)yec mit BUC=A BN C =0 und G5 C E; fiir B € B. Fiir B= 0 und C = A sind
alle Bedingungen erfiillt und daher .# # 0.

Sind 7 = (Gg)pes U (E;)yec und " = (G)perr U (E))recr Uberdeckungen aus .2, so
sei 7 < ', wenn B C B’ und By = Bj fiir alle 3 € B. Wir zeigen, dass .# durch die
Relation < induktiv geordnet ist.

Zum Beweis betrachten wir eine linear geordnete Teilfamilie (%) von 4. Zu H°
mogen die Indexmengen B* und C* mit B* U C°® = A und B* N C* = () gehoren. Fiir
B:=JB und C:=|J C¥gilt BUC=Aund BNC = 0.
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Nun sei 7 = (Gg)ses U (Ey) ec mit Gg = G fiir 8 € B*. Wegen der Definition der
Ordnung auf . ist 7 wohldefiniert und besteht aus offenen Mengen. Es bleibt noch zu
zeigen, dass J# eine Uberdeckung von F ist. Dazu sei x € F. Dann ist P(z) := {a € A :
x € E, } endlich. Fiir o € P(z) N Cgilt E, € 5 und = € E,. Also bleibt noch der Fall
P(z) € B. Wegen der linearen Ordnung gilt bereits P(x) C B® fiir ein s € S. Da J#* eine
Uberdeckung ist, gilt = € E, fiir ein p € B® C £.

Damit ist .# induktiv geordnet und nach dem Lemma von ZORN existiert ein maximales
Element J7* = (Gg)gep U (E)yecx. Ist C* # 0, so sei a« € C* ein fester Index. Dann ist
A=F\| U GsUU{E,:v€C v#a} | abgeschlossen. Da #* eine Uberdeckung

BeB*
ist, gilt A C E,. Wegen der Normalitdt von X gibt es eine offene Menge G, mit A C

Go C Gy C E,. Dann ist aber 7 = (Gg)gep- U (Gqo) U (E5)yecr, v#a €in Element von
M mit '~ % im Widerspruch zur Maximalitéit von 5#*. Also ist C* = (). O

Definition 5.4.4. Es sei X ein topologischer Raum und % = (U, )aea eine offene Uber-
deckung von X. Dann heifit ein System von Funktionen f,: X — R eine zu % passende
Zerlegung der Fins, wenn Folgendes gilt:

(a) fo(x) >0 fiir alle z € X und alle a € A;
(b) (supp fa)aea bilden ein lokalendliches System;
(c) fiir a € A ist supp fo C Us;

(d) > falz) =1 fiir alle x € X.
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Hierbei ist zu beachten, dass wegen (b) die Summe in (d) fiir jedes x € X endlich ist.

Sind alle f, stetig, so ist auch diese Summe stetig.

Satz 5.4.5. FEs sei X ein normaler Raum und % = (Uy)aca eine lokalendliche, offene

Uberdeckung von X. Dann gibt es eine zu % passende Zerlequng der Eins.

Beweis. Nach Satz existiert eine offene Uberdeckung YV = (Va)aea von X mit V,CU,.
Wegen der Normalitit von X gibt es zu jedem a € A eine offene Menge W, mit V, C
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W, C W4 C U,. Nach dem Lemma von URYSOHN gibt es zu jedem o € A eine stetige
Funktion g,: X — [0,1] mit g.(z) = 1 fiir x € V, und g, (z) = 0 fiir x € X \ W,,. Weiter

gilt supp g, € W4 C U,. Nun ist die Funktion g: X — [0,00) mit g(x) := 3 ga(7)
acA
wohldefiniert und stetig. Da (Vj,)aea €ine Uberdeckung von X ist, gilt g(x) > 1 fir alle
x € X. Dann bilden die Funktionen (f,)aeca mit fo(z) = ggo‘(—gf)) eine zu % passende
Zerlegung der Eins. O]

Folgerung 5.4.6. Es set X ein normaler Raum, F eine abgeschlossene Teilmenge von
X und % = (Uy)aea eine lokalendliche, offene Uberdeckung von F. Dann gibt es eine
Familie (fo)aea stetiger Funktionen fo: X — [0,1], sodass fo(z) = 0 fir « ¢ U, und
> falx) =1 fiir alle x € F.
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Beweis. Wir erginzen % = (Uy)aea durch X \ F zu einer offenen Uberdeckung von X

und wenden den vorigen Satz an. O

Zerlegungen der Eins erlauben es, Untersuchungen iiber Funktionen auf die Untersuchung
von Funktionen mit ,kleinen® Tragern zuriickzufiihren. In der Integrationstheorie werden
z.B. lokalkompakte Rédume untersucht und Integrale als positive Linearformen auf den
Funktionen mit kompakten Tragern definiert. Diese Definition ldsst sich mittels Zerlegun-
gen der Eins auf groflere Funktionenklassen ausdehnen.

Ein anderes Beispiel betrifft Mannigfaltigkeiten. Diese Rdume besitzen fiir jeden Punkt
eine Umgebung, die homdomorph zu R™ ist. Durch Verwendung von Zerlegungen der Eins
lassen sich Untersuchungen von Funktionen, die auf einer Mannigfaltigkeit definiert sind,
auf die Betrachtung von Funktionen, die auf ganz R™ definiert sind und auflerhalb einer
kompakten Menge verschwinden (d.h. gleich 0 sind).

SchlieBllich werden Zerlegungen der Eins bei Beweisen von Metrisationssétzen benutzt.
Dies sind Sétze, die hinreichende oder notwendige Bedinungen fiir die Metrisierbarkeit

von topologischen Rdumen sind.



