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Allgemeine Problemstellung

|. Gegeben ist eine Messreihe von Daten (xj, y;), j =0, ..., n. Man bestimme
eine “einfache” Funktion v : [a, b] — R mit
Interpolation:  u(x;) = y; fir j=0,...,n (sieche Abschnitte 3.1, 7.1, 7.2)
Approximation:  u(x;) & y; fir j=0,...,n (siehe Abschnitte 6.1, 7.3)

[I. Gegeben ist eine Funktion f : [a, b] — R. Man bestimme eine “einfache”
Funktion u : [a, b] — R,
Interpolation:  die zu gegebenen Argumenten x;, j =0, ..., n, die
Funktionswerte u(x;) = f(x;) besitzt  (siehe Abschnitte 3.1, 7.1, 7.2)
Approximation:  fiir die ||f — u|| mdglichst klein ist, wobei ||.|| eine Norm
auf C[a, b] ist. (siehe Abschnitte 3.3, 7.3)

Als “einfach” bezeichnet man z.B. Polynome, rationale Funktionen oder
trigonometrische Polynome.
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Matlab/Octave: Interpolation von 4 Messwerten durch ein kubisches Polynom

x=[0,1,2,3];

y=[1,-1,1,-11; % oder y=cos(pi*x)

c=polyfit(x,y,3); % kubisches Interpolationspolynom
xx=linspace(0,3,101);

plot(x,y,’0’);

hold on

plot (xx,polyval(c,xx));

Approximation der Bevdlkerungszahl der USA 1790-1990:

load census; % laedt ‘cdate’ und ‘pop’
c=polyfit(cdate,pop,2); % quadratisches Ausgleichspolynom
xx=linspace(1790,1990,101);

plot(cdate,pop,’0’);

hold on

plot(xx,polyval(c,xx));
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Polynominterpolation Vektorraum der Polynome vom Héchstgrad n

3.1 Polynominterpolation

3.1.1 Vektorraum der Polynome vom Hochstgrad n

Fiir n € Np ist
Po={p:R—=>R | p(x) =ap+aix+---+ anx", aj € R}

der Vektorraum der Polynome mit Grad(p) < n. Es gilt dim(P,) = n+ 1, und die
Monome e; : R — R mit ej(x) = x/, j =0,...,n, sind eine Basis von P,.

Bemerkung: Mit Polynomen kann man auf einem kompakten Intervall jede stetige
Funktion beliebig genau annahern:

Satz von Weierstrass

Es sei / ein kompaktes Intervall und f € C(/). Dann gibt es zu jedem & > 0 ein
Polynom p (mit Grad(p) abhingig von ), so dass

I = Plloo := max |f(x) — p(x)| <e.
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Polynominterpolation

3.1.2 Erinnerung: Horner-Schema
Zur Berechnung von

p(x) = a0+ aix +---+apx" = ao +x-(a+x(az+---

verwendet man das Horner-Schema aus Kapitel 1:
@ Eingabe: aio) =ak, k=0,...,n, und Stelle £
@ Setze af,l) = af,o).
Berechne fir k=n—1,...,0

=0+ el

@ Ergebnis: p(¢) = agl)

Rechenaufwand: n Multiplikationen/Additionen
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Polynominterpolation Erinnerung: vollstindiges Horner-Schema

3.1.3 Erinnerung: vollstdndiges Horner-Schema
Zur Berechnung der Taylor-Entwicklung von

p(x) = ao + aix + -+ apx" = by + bi(x — &) + -+ by(x = §)"

an der Stelle ¢ verwendet man das vollstandige Horner-Schema von Ubungsblatt
1:
@ Eingabe: 2 = ax fir k=0,...,n, und Stelle £

k
e Firj=0,....,n-1,
setze af,”l) = ag),
berechne fir k=n—1,...,j
1 . 1
ai” ) — ag) +€ag:1).
0]

@ Ergebnis: b; = aj.

Rechenaufwand: n(n + 1)/2 Multiplikationen/Additionen
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Polynominterpolation Definition: Interpolationspolynom

3.1.4 Definition: Interpolationspolynom
Gegeben seien Punkte (x;,y;) € R?, j =0,...,n, mit paarweise verschiedenen
xj € R.
@ Die Zahlen x; heiBen die Stiitzstellen (oder Knoten) der
Lagrange-Interpolation.
@ Die Zahlen y; heiBen die Daten (oder Knotenwerte).
@ Ein Polynom p € P, mit p(x;) = y; fiir alle j =0, ..., n heiBt
Interpolationspolynom.

3.1.5 Hauptsatz:

Die Lagrange-Interpolationsaufgabe ist eindeutig l6sbar. D.h. zu paarweise
verschiedenen Stiitzstellen x; € R, j = 0,...,n, und beliebigen Daten y; € R
existiert genau ein Polynom p € P, mit p(x;) = y; fur alle j =0, ..., n.
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Das Interpolati ly in der M

Polynominterpolation

4 Varianten zur Darstellung/Berechnung des Interpolationspolynoms p € P,
liefern jeweils unterschiedliche Beweise von Satz 3.1.5.

3.1.6 Das Interpolationspolynom in der Monombasis

Zu paarweise verschiedenen Stiitzstellen x; € R, j =0, ..., n, und beliebigen
Daten y; € R ist das Interpolationspolynom gegeben durch p(x) = ZLO arxk,
wobei der Koeffizientenvektor (ag, az, - .., an)" € R die eindeutige Losung des

linearen Gleichungssystems

1 x x2 - X Yo
1 xq x2 - X! "
M3 =y, M = y Y=
1 2. n
Xn X, X Yn

ist. Die Matrix M ist regular und hat die Vandermonde-Determinante

det M = H (% — xi)-

0<i<j<n
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Das Interpolati ly in der M

Polynominterpolation

Beweis: Der Determinanten-Multiplikationssatz ergibt

1 1 xo Xg Xy 1 —xo
-1 1 1 x X12 Xy
detM = det

: 1 —xo

-1 1 1 xp X,2, ceeoxf 1
1 0 0 cee 0
1 x1—x0 xi(x1—x0) --- Xl"fl(xl —Xp)
1 xp—x0 Xn(xn—x0) --- x,']_l(x,,—xo)

1 0 0 cee 0

0 x1—xo xi(x1—x0) --- Xl"fl(xl —Xp) n B

= det . = H(XJ — xg) - det M,
: i
0 xn—x0 Xn(xn—x0) - x,']_l(x,,—xo)
wobei M die Vandermonde-Matrix zu den Knoten X1, ...,Xn ist. Das Herausziehen des Produktes

erfolgt mit der Linearitdt von det A beziiglich jeder Zeile von A. Die Aussage des Satzes folgt per
Induktion.
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Polynominterpolation Das Interpolati lynom in der Lagr:

3.1.7 Das Interpolationspolynom in der Lagrange-Basis

Zu n+ 1 paarweise verschiedenen Stiitzstellen x; € R, j =0, ..., n, definieren wir
die Lagrange-Grundpolynome

@ Die Lagrange-Grundpolynome {L, x : k =0, ..., n} bilden eine Basis von P,.

@ Esgilt
1, j=k
L ) = B
n,k(XJ) { 0, j#k
@ Das Interpolationspolynom zu den Stiitzstellen x;, j =0, ..., n, und Daten
yj € Rist

p(x) = Z}/kLn,k(X)'
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Polynominterpolation Bemerkung:

3.1.8 Bemerkung:

(i)

(if)

(iii)

Mit dem Ansatz p(x) = >_}_ ckLn k(x) ergeben die Interpolationsbedingungen das lineare
Gleichungssystem

AE:?v A= (Ln,k(Xj)) :Iv

dessen Lésung ¢ = y sofort abzulesen ist.

j,k=0,...,n

Kurz-Schreibweise fiir die Lagrange-Grundpolynome: mit Hilfe des Knotenpolynoms

n
w(x) = [0 =) € Paa

j=0

ist
Lps(x) = LX), k=0,...,n
(x = xi)w’ (xc)

Der Nachteil der Lagrange-Darstellung des Interpolationspolynoms p € P, ist, dass bei
Hinzunahme eines weiteren Stiitzpunktes (xp+1, yn+1) oder bei der Anderung eines
Stiitzpunktes (x;, y;) die Basisfunktionen L,  sich véllig andern. Deshalb ist diese
Darstellung des Interpolationspolynoms fiir die meisten praktischen Zwecke zu aufwindig.
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Polynominterpolation Das Interpolati lynom in der Newt:

3.1.9 Das Interpolationspolynom in der Newton-Basis

Zu n+ 1 paarweise verschiedenen Stiitzstellen x; € R, j =0, ..., n, definieren wir
die Newton-Grundpolynome

k—1
No(x) =1;  Ne(x)=]JJ(x=x)€Pe, k=1,...,n.
j=0
@ Die Newton-Grundpolynome {N : k = 0,..., n} bilden eine Basis von P,,.
@ Esgilt
Nk(xj)) =0 fir k> j.
@ Das Interpolationspolynom zu den Stiitzstellen x;, j =0, ..., n, und Daten
yj € Rist
p(X) = Zy[x()a cee 7Xk]Nk(X)7
k=0
wobei y[xo, . .., xk] die k-te dividierte Differenz zu den Punkten (x;, y;),
Jj=0,...,n, bezeichnet.
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Polynominterpolation Bemerkung:

3.1.10 Bemerkung:

(i)

(i)

(iii)

Mit dem Ansatz p(x) = >} _ ckNi(x) ergeben die Interpolationsbedingungen das lineare
Gleichungssystem
AC =, A= (Nk(xj))j’kzomn;

die Matrix A ist eine untere Dreiecksmatrix, das Auflésen kann also durch
Vorwartseinsetzen erfolgen. Die dividierten Differenzen bilden einen numerisch stabileren
Algorithmus zur Ldsung.

In der Newton-Darstellung ist die Teilsumme
m
po.m(x) =D ylx0,- - Xk Ni(x) € Prm, 0<m<n,
k=0

das Interpolationspolynom zu den Daten (xo, y0); - - - s (Xm, Ym)-

Deshalb kann auch ein weiterer Punkt (xp+1, Ynt1) leicht hinzugenommen werden: das neue
Interpolationspolynom pg 1 ergibt sich als

po,n+1(x) = po,n(x) + y[x0, - - -, Xn+1] Nnt1(x).

Die dividierte Differenz y[xq, ..., xa] ist der Héchstkoeffizient des Interpolationspolynoms in
der Monom-Darstellung:

p(x)=a+...+ an_1x" 1+ apx" mit ap, = ylxo, .-, Xxn].
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Polynominterpolation Definition: dividierte Differenzen

3.1.11 Definition: dividierte Differenzen
Zu n+ 1 paarweise verschiedenen Stiitzstellen x; € R, j =0,...,n, und Daten y;
sind die dividierten Differenzen rekursiv definiert durch

@ Ordnung kK = 0:
y[XJ]:ij jIOa"'anv
@ Ordnung 1 < k< n:
y[XjJrlv"'vXjJrk]7y[va"'7Xj+k71] jIO,...,n*k.

Yl 544] = w b ,
J J

Berechnungs-Schema:

Xn— X0 ' X2—Xo  XL—X0 X0 Yo ylxo,x1]  ylxo,x1,x2] -+ y[xo,. .., Xn]
X3 — X1 X2 — X1 X1 i ylxi, x2]  ylx1,x2,x3] ---

Xp — Xp—1 | Xn—1 | Yn—1 }/[Xn—1, Xn]
Xn Yn
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Polynominterpolation Lemma (zur Newton-Darstellung des Interpolationspolynoms):

3.1.12 Lemma (zur Newton-Darstellung des Interpolationspolynoms):

Es seien n+ 1 paarweise verschiedene Stiitzstellen x; € R, j = 0,...,n, und Daten
yj € R gegeben. Mit

Pij+k €Pk,  0<k<n 0<j<n—k
bezeichnen wir das Interpolationspolynom zu den Punkten

(Xj,}/j), 00y (Xj+ka)/j+k)

Dann gilt

Pij+k(x) =yl + ylxi, xp1(x — %) + -+

Y[, xi] (= x5) - (X = Xipk—1).
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Polynominterpolation Lemma (zur Newton-D. 11 des Interpolati I ):
Beweis: Induktion nach k:
@ Firk=0und0 <j < nist Pjj =y = y[xj-] das konstante Interpolationspolynom zum Punkt (xj-, yj).
@ Seik > 1und 0 < j < n — k. Nach Induktionsannahme interpoliert
Pjjak—10) = ylgl+ oyl X1l = ) s (x = X _2) € Py
die Punkte (x/-, y/), ey (XJ'Jrk*l’ yj+k—1)' und ebenso interpoliert
Pi1,j+k () = yxipal + -y s Xkl = xiga) oo (= Xipk—1) € Pr—q
die Punkte (xj 1, ¥j41): - - - » (Xj4 k> ¥j4 k- Deshalb interpoliert
40 = (=P jrk () + Gk = 2)pj jpk—1(x)
bk =X
die Punkte (x;, y;), - - - » (Xj4 k> ¥j4 k). ist also das gesuchte Interpolationspolynom p; ;. . Der Hochstkoeffizient von g (also der Vorfaktor
von xK) berechnet sich aus den Hachstkoeffizienten von p; ;¢ und pji1 4 k.
YIXjg1s oo Xkl = vIXs - X1l
2= HK(q) = 23 J J J =yl Xl
Xtk =%

Andererseits gilt (durch Hinzunahme des Punktes (Xj+k! yj+k) 20 P jik—1 siehe Bemerkung 3.1.10(ii))

a(x) = pj j4k(¥) = Pj jrk—1(x) +alx = xj) - - (x = Xjp 1)

Damit hat Pjjt+k die behauptete Form.
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Polynominterpolation Bemerkung:

3.1.13 Bemerkung:
(i) Die dividierte Differenz y[xp, ..., xn] ist der Hochstkoeffizient des

Interpolationspolynoms p € P, zu den Punkten (xo, o), .-, (Xn, ¥n)-
(ii) Die dividierte Differenz y[xo, ..., x| ist invariant gegeniiber einer
Index-Permutation in der Aufzihlung der Punkte (xo,¥0); - - -, (Xn, ¥n)-

Insbesondere brauchen die Stiitzstellen x; nicht sortiert vorzuliegen.

(iii) Bei Hinzunahme eines Punktes (xp41, Ynt1) wird das Schema der dividierten
Differenzen unten um eine Diagonale erginzt.
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Polynominterpolation Das Interpolati lynom in der Neville-Aitken-Form

Zur Auswertung des Interpolationspolynoms an einer Stelle £ € R eignet sich die Rekursion im
Beweis von Lemma 3.1.12.
3.1.14 Das Interpolationspolynom in der Neville-Aitken-Form

Zu n + 1 paarweise verschiedenen Stiitzstellen x; € R, j =0,...,n, und Daten y;
berechnet man den Wert p(§) = po.»(€) des Interpolationspolynoms rekursiv
gemaB

o k=0: pij(§) =y; firj=0,...,n,

SISKSm  pisk() = prsesa(Q) + (€ — ) 22D Pisia(©)

Xjtk = Xj
firj=0,...,n— k.
Schema:
X0 Yo po,1(€§)  po2(§)  po3(€) ... poa—1(§)  pon(§)
X1 3% p1,2(€) p1,3(6)  pra(€) ... p1,n(8)

X2 ) p23(8)  p2a(&)  p25(8)

Xn—1 Yn—1 pn—l,n(&)
Xn Yn
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Polynominterpolation Das Interpolati lynom in der Neville-Aitken-Form

Erweiterte Problemstellung:

@ Gegeben sei eine Funktion
f e C"a, b].

Zu paarweise verschiedenen Stiitzstellen x; € [a, b] werden die Daten
yj = f(x;) dem Graphen von f entnommen.

@ conv(xp, ..., Xn) bezeichnet das kleinste Intervall, das alle x;, j=0,...,n,
enthilt, also die konvexe Hiille der Menge {xp, ..., % }).

Vergleich von f(x) = log;o(x) auf [a, b] = [1, 10] (schwarz) und dem
quadratischen Interpolationspolynom zu den Stiitzstellen x; = 1,5, 10 (cyan)

2L

osl

ol

o.al

oz

o

-0z
1 2 3 @ B 6 7 B o 10
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Polynominterpolation Satz: Interpolationsfehler

3.1.15 Satz: Interpolationsfehler

Es seien f : [a, b] — R und paarweise verschiedene Stiitzstellen xg, . .., x, € [a, b]
gegeben. p € P, sei das Interpolationspolynom zu den Punkten (x;, f(x;)),
J=0,...,n. Weiter sei x € [a, b].

Dann ist der Interpolationsfehler f(x) — p(x) gegeben in Newton-Form

f(X) - p(X) = f[Xo, 000 ;Xn;X] H(X - XJ)?
=0

mit der dividierten Differenz zu den Punkten (xo, f(x0)), - - -, (X, f(xn)), (x, f(x)),
bzw. in Lagrange-Form

(n+1) (g ) "
() = o) = T [T ),
!

mit einem &, € conv(xp, . .., Xn, x), falls £ € C™1[a, b] gilt.
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Polynominterpolation

Folgerung:

Die dividierte Differenz f[xg, ..., xs] zu den Punkten (xo, f(x0)), - -, (Xn, f(xn))

besitzt zwei interessante Darstellungen.

3.1.16 Folgerung:
Es seien n € Ng, f € C"[a, b] und x; € [a, b], j =0,...,n, (paarweise
verschiedene) Stiitzstellen.

a) Es existiert £ € conv(xp, ..., X,) mit

F(€)

n!

fxos- -+, %n] =

b) Fiir n > 1 gilt

flX05- -, Xn] =

1 t1 th—1
/ / .- / f(”)(xo + t1(x1 — x0) + ... + ta(Xn — Xn—1)) dt,
o Jo 0
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Polynominterpolation Folgerung:

Beachte:

1t th1
/ / = / dtp - - - dty dt; = vol(Standard-Simplex im R") = 1/n!
0

Im Beweis von b) fiihrt man die innere Integration aus:

t th—1
X_an// / M (x0 + t1(x1 — X0) + oo + tn(Xn — Xn—1)) dtn -+~ dt dt; =
1, th_o
L [ (00 + il = 50) 4 a0 = x0-2)
o Jo 0
=D (xo 4 t1(x1 — x0) + o + ta—1(Xn—1 — Xn—2))> dtp_1---dtydt; =
FX0, X1y -« - s Xn—2, Xn] — F[X0, X1y -+« y Xn—2, Xn—1] = nach Ind.-Annahme

FX0, X1y -« -y Xn—2, Xn] — F[Xn—1, X0, X1, - -+, Xn—2] Vertauschung der Stiitzstellen
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Polynominterpolation Bemerkung:

3.1.17 Bemerkung: Die Definition der dividierten Differenz von f € C"[a, b] fiir
zusammenfallende Knoten geschieht mittels sogenannter “Konfluenz”: fiir zusammenfallende
Knoten xg = xj ist

f h)y —f
fxo0, x0] = I!TO fxo0,x0 + h] = l!im flo+h) = F(x0) = f'(xo)-

—0 h
Die Integraldarstellung bleibt in diesem Fall giiltig,

1 1
f[XQ,XQ] = f,(XO) = /0 f,(XO -+ t(XQ - XO)) dt = /0 f’(Xo) dt.

Bei mehrfacher Wiederholung der Stiitzstelle x; = - - - = xj ist
£ (x: 1 rth te—1
flxj,...,xj] = (XJ):/ / / f(k)(Xj)dtk"'dtgdtl.
|
N—_—— J: o Jo 0
(k+1)—mal

Sind die Stiitzstellen xp < x3 < --- < x, angeordnet, so werden im Schema 3.1.11 die
nicht-existierenden Quotienten (Teilen durch Null) durch die entsprechenden Ableitungsterme
ersetzt. Dadurch bleibt die rekursive Berechnung von f[xo, . .., xa] giiltig, auch wenn Stiitzstellen
zusammenfallen.
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Polynominterpolation Hermite-Interpolation
Fiir mehrfache Stiitzstellen stellt sich eine modifizierte Interpolationsaufgabe.

3.1.18 Hermite-Interpolation

Es seien X, ..., xn € R paarweise verschieden,
10, - - -5 m € Np und
m
Daten yj(k), Jj=0,...,m k=0,...,u; gegeben. Weiter sei n = Z(l + pj) — 1.
j=0

Ein Polynom p € P, mit
p(k)(xj):yj(k) firalle j=0,....m, k=0,...,u;,

heiBt Hermite-Interpolationspolynom.
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Polynominterpolation Satz zur Hermite-Interpolation

3.1.19 Satz zur Hermite-Interpolation

Die Hermite-Interpolationsaufgabe ist eindeutig [Gsbar.

Mit dem erweiterten Knotenvektor

(503613" 'agn) - (XOa-- <3 X0y -3 Xmy - - '7Xm)
——— ————
po+1—fach um+1—fach

und der Definition dividierter Differenzen mit mehrfachen Knoten ist das
Interpolationspolynom gegeben in der Newton-Form

p(x) =D yl€o, - &l(x = &o) -+ (x — &k—1)-
k=0
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Polynominterpolation Bemerkung:

3.1.20 Bemerkung: Die Darstellungen des Interpolationsfehlers fiir Daten
k .
v =fWN(x),  j=0,....m k=0,

bleiben exakt wie in Satz 3.1.15 erhalten.
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Polynominterpolation Diskussion: Interpolationsfehler bei f mit beschrinkten Ableitungen

3.1.21 Diskussion: Interpolationsfehler bei f mit beschrankten Ableitungen
Mit maxye a5 [F"D (x)] =: Mpy1 gilt

Mn+1 2
[£(x) = po,n(x)| < 1) H Ix = .
Jj=0
Fiir dquidistante Knoten x; = a+jh, j=0,...,n, h= (b — a)/n, ist weiterhin
IT7 Ix — xj| < nth™1, also insgesamt

J
M,,+1 b—a nt+l
f(x) — po.n < .
1760 = pra) < 2t (222)

@ Falls

M b— n+1
j:i ( a) =o(l) fir n— oo
n n

gilt, so konvergiert die Folge (po,n)n>0 der Interpolationspolynome gleichmiaBig gegen f.

@ Ist die Folge (My),>0 sogar beschrankt (z.B. fiir f(x) = e* auf [a, b]), so ist die
Konvergenz sehr schnell:

)t =0 (EZ2) i 0o
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Polynominterpolation Diskussion: Interpolationsfehler bei f mit wachsenden Ableitungen

3.1.22 Diskussion: Interpolationsfehler bei f mit wachsenden Ableitungen

Ein klassisches Beispiel von Runge ist die Funktion

ot

14 x2°

Interpolation mit dquidistanten Knoten x; = —5+ jh, j =0,...,n, h=10/n, fiihrt schon fiir

n = 10 zu unbrauchbarem Interpolationspolynom. Tatsichlich divergiert die Folge der
Interpolationspolynome (po,n)n>0-

f:[-5,5] = R, f(x) =

Runge-Bespel min=4 Runge-Bespel mitn=10
i
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Extrapolation zum Limes Beispiel (vgl. 0.0.4 in der Einleitung):

3.2 Extrapolation zum Limes

3.2.1 Beispiel (vgl. 0.0.4 in der Einleitung):

Berechne: ag = lim f(h) fiir f(x) = Bnx=x
h—0 X

@ Numerische Rechnung (doppelt genau) ergibt fiir h; = 10~U+D)  mit j=0,1,2 die
Ergebnisse

0.33467208545054, 0.33334666720702, 0.33333346673159

@ Mit der Taylor-Reihe

o lel 2 1T o
X=X+ —=x —X —X
3 15 315
ergibt sich
1 2 17
F) =S4+ —=x*+-;
() =3+ 357 35"

insbesondere ist f gerade, besitzt also eine Entwicklung mit geraden Potenzen von x.

@ Daher ist es sinnvoll, ag anzundhern durch den Wert pg 1(0) des linearen
Interpolationspolynoms zu den Punkten (h2, f(ho)), (b3, f(h1)), also nach dem
Neville-Schema

po1(0) = F(hy) + - (F(hn) — f(ho)) = 0.33333327914396.

(ho/h1)?
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Extrapolation zum Limes Beispiel (vgl. 0.0.4 in der Einleitung):

@ Analog ergibt das lineare Interpolationspolynom zu den Punkten (h?, f(h1)), (h3, f(h2))

1
- (f(h2) — f(hn)) = 0.33333333330345.

P1,2(0) = f(h2) + W

@ Weiterfiihrung zum quadratischen Interpolationspolynom zu den Punkten (h3, f(ho)),
(2, f(h1)), (K3, f(h2)) liefert

Po,2(0) = p1,2(0) + 1 (p1,2(0) — po,1(0)) = 0.33333333339888,

I
(ho/h2)? —

also keine weitere Verbesserung zum exakten Wert 1/3.
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Extrapolation zum Limes Beispiele: Differenzenquotienten

3.2.2 Beispiele: Differenzenquotienten
@ Fiir eine (r + 1)-mal stetig differenzierbare Funktion f : [a,b] — R und xp € [a, b] gilt

f(X() + h) — f(X() / " FU+ )(XO .
h) = ——— = W h").
a(h) ; Z G el
Fiir verschiedene Werte h; > 0, j =0, ..., r, stellt man das Neville-Schema zur Berechnung

der Interpolationspolynome
pjj+k zu den Punkten (hj,a(h))),. .., (hjtk, a(hjik))
und fiir die Auswertung bei £ = 0 auf. Aus den N&herungswerten
ajo = pj,j(0) = a(hy) fir j=0,....r
werden (bessere) Niherungswerte berechnet:

Firl< k<rund 0 <j<r— k setze

ajsk,k = Pjj+k(0) = pjt1,j+x(0) + W(Pj+1,j+k(0) = Pj,j+k—1(0))-
U+ -
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Extrapolation zum Limes Beispiele: Differenzenquotienten

@ Wihlt man stattdessen den symmetrischen Differenzenquotienten

F(xo+h) — flxo— h) _ o) + /2 £(2i41) (xp)

bh) := 2h — (2 +1)!

h¥ +o("),

so werden Interpolationspolynome

qgjj+k zu den Punkten (hf,b(hj)) (JJrk7 b(hj1«))

bei £ = 0 ausgewertet. Aus den Ndherungswerten
bjo = q;,j(0) = b(h;) fir j=0,...,[r/2]

werden (bessere) Niherungswerte berechnet:

Fir 1 < k <[r/2] und 0 <j < [r/2] — k setze

btk = 4j,j+k(0) = Gj41,j44(0) + W(qﬁlﬁk(o) = gj,j+k—1(0))-
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Extrapolation zum Limes Beispiele: Differenzenquotienten
Fiir f(x) = € an der Stelle xo =0, h; =27 fiir j=1,...,5:
@ Extrapolation fiir Differenzenquotienten (g =1 in Satz 3.2.3)

tab=extrapolation_tab(’bsp_diffqu_exp’,2."-[1:5],1)

tab =
1.29744254140026 0 0 0
1.13610166675097 0.97476079210167 0 0
1.06518762453461 0.99427358231826 1.00077784572378 0
1.03191134268575 0.99863506083689 1.00008888700977 0.99999046433634
1.01578903997129 0.99966673725682 1.00001062939680 0.99999944973780

@ Extrapolation fiir symmetrische Differenzenquotienten (g = 2 in Satz 3.2.3)

tab=extrapolation_tab(’bsp_symdiffqu_exp’,2. -[1:5],2)

tab =
1.04219061098749 0 0 0
1.01044926723267  0.99986881931440 0 0
1.00260620192892  0.99999184682767 1.00000004866189 0
1.00065116883507  0.99999949113712 1.00000000075775 0.99999999999737
1.00016276836414  0.99999996820716 1.00000000001183  0.99999999999999
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Extrapolation zum Limes Satz: Richardson-Extrapolation

3.2.3 Satz: Richardson-Extrapolation
Die Funktion a: Ry — R besitze die Entwicklung

n+1
a(h)y=a0+ Y a9 +o(h"™9),  h—o.
j=1

Hierbei sind g >0und a; € R, j=0,...,n+ 1.

Weiter sei (hj)jen, eine monoton fallende Folge positiver Zahlen mit

h.
0<Jh—+_1gp<1, j € No.
J

Dann erfiillt das Interpolationspolynom
Pjj+n € Pn zu den Punkten (h7,a(h))),...,(h, . a(hjsn))

die Beziehung
3(0) — pjjn(0) = O(H™™),  j = oco.
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Extrapolation zum Limes Lemma

3.2.4 Lemma

Die Lagrange-Grundpolynome L, ; zu paarweise verschiedenen Stiitzstellen
X0, - - -, Xn € R erfiillen

xk, fir 0 < k < n,

D xflnj(x) =
=0

X" —w(x), firk=n+1.

Beweis: Fiir x € Rund 0 < k < nist
n
k k
ij L"yj(X) =X,
Jj=0

weil das Monom e : R — R, e (x) = xk “sich selbst interpoliert”. Fiir k = n+ 1 ergibt die
Fehlerdarstellung in der Newton-Form

n
X" — ZXJ'"+1Ln,j(X) = en+l[X07 s ,X,,,X] . W(X)v

Jj=0

und die dividierte Differenz (n + 1)-ter Ordnung von epyq ist 1.
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Extrapolation zum Limes

Extrapolations-Tafel:

3.2.5 Extrapolations-Tafel: Das Neville-Schema zur Berechnung der aj x := p;j j+«(0) = a(0)
wird als untere Dreiecksmatrix aufgeschrieben:

ho
hy
hy

ao0 =
a =

a0

ajo =

ai
ari an2
N

mit Hilfe der Rekursion (mit dem entsprechenden g in Satz 3.2.3)

j=0,1,2...: ajo = a(hj)

1

k=1,...,j: ax=ajk1+ W (3j,k—1 — aj—1,k—1) -
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Extrapolation zum Limes Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

3.2.6 Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

(i) Gebrauchliche Schrittweiten-Folgen (h;);>o sind

()

%) jeny

1 . .

(7) , nj=1,2,3,4,6,8,12,...,2071)/2 j ungerade, 3 x 20=2)/2 j > 2 gerade.
JENg

Unzulassig ist die Folge <71->jeN' da jI—IIEOJ;‘,I»il p=1
(if) Nach Satz 3.2.3 gilt fiir die Eintrige der k-ten Spalte
aj — a(0) = O(h V%), j — oo,
falls die Schrittweiten-Folge (h;);>o die Voraussetzungen des Satzes erfiillt. Noch genauer
ist sogar fiir (unbekanntes!) ax;1 # 0
aj — a(0) = (1) aks1 H hY +o(h*ID9), i oo,
i=j—k

woraus man auf “schlieBlich monotone” Konvergenz der Folge (ajc);>« gegen a(0)
schlieBen kann.
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Extrapolation zum Limes Bemerkung: Schrittweiten-Folgen und monotone Konvergenz
(iii) Fiihrt man zusitzlich die Folge
bjx =2aj416 —ajk, S22k
mit, so ergibt sich wegen |aj; 1, — a(0)| < |aj x — a(0)| die Beziehung
bj i — a(0) = a(0) — a4,
also (heuristisch) eine EinschlieBung (— Abbruchkriterium!)

aj k S 3(0) S bj’k oder aj k Z 3(0) Z bJ"k.
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Extrapolation zum Limes Satz: Konvergenz entlang der Diagonalen

Besitzt die Funktion a sogar eine Reihenentwicklung

a(h) = a(0) + Z ah¥

(z.B. falls a analytisch ist), so kann auch der Grenzwert limy_, o axx entlang der
Diagonalen der Extrapolations-Tafel betrachtet werden.

3.2.7 Satz: Konvergenz entlang der Diagonalen
Falls in der Reihenentwicklung unendlich viele a; # 0 sind und falls

hjt h
inf 2t >0 und sup it <1,

JENg hj j€ENg hj

so konvergiert die Folge (axk)«>o0 der Diagonalelemente der Extrapolations-Tafel
schneller gegen a(0) als die Folge (aj 4, )j>k entlang einer beliebigen Spalte ko;

d.h. .
im 2 =201

| =0.
k— o0 |ak7k0 — 3(0)|
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GauB-Approximation

3.3 GauB-Approximation

Wir betrachten weiterhin die Approximation von Funktionen

fe Cla,bl={f:]ab] = K: f ist stetig}.

@ CJa, b] ist ein K-Vektorraum, seine Dimension ist unendlich.

@ P, (genauer die Einschriankungen der Polynome vom Grad kleiner oder gleich
n auf [a, b]) ist ein (n + 1)-dimensionaler Teilraum von Cla, b]

Die GauBapproximation ist die Orthogonalprojektion von C|a, b] auf P, beziiglich
eines gegebenen Skalarprodukts.

Numerische Mathematik | 125



GauB-Approximation Definition: Skalarprodukt

3.3.1 Definition: Skalarprodukt

Es sei V ein K-Vektorraum. Eine Abbildung s : V x V — K heiBt Skalarprodukt
auf V, wenn

(S1) s(ax+ By,z) = as(x,z) + Bs(y, z) fir alle x,y,z€ V, a, 5 € K;

(S2) s(x,y) = s(y, x) fiir alle x,y € V;

(S3) (x,x) > 0 fir alle x € V' \ {0}.

(V,s) heiBt Skalarproduktraum oder Pri-Hilbertraum, speziell fiir K =R auch
euklidischer Raum und fiir K = C unitirer Raum.

Schreibweise:  (x,y) = s(x,y)

Wichtige Erganzung:
(i) Das Skalarprodukt induziert eine Norm
Xl = V{x,x), xeV.

(ii) Es gilt die Cauchy-Schwarz-Ungleichung
G < DXL x,y € V.
Beweis: klar fiir v = 0 oder w = 0; fiir v, w 0 setze 0.B.d.A. ||v|| = ||w|| = 1 und betrachte

0< (ve (v, whw,v — (v, ww) =1 — |{v, w)|2.

Numerische Mathematik | 126




GauB-Approximation Beispiel: Skalarprodukte auf C[a, b

3.3.2 Beispiel: Skalarprodukte auf C[a, b
Es seien a,b € R, a < b.

a) Das “Standard-Skalarprodukt” auf Cla, b] ist
b
()= [ et d
a
SP1) und (SP2) sind sofort klar, (SP3) folgt aus der Stetigkeit:
( g g
b
(F, ) :/ IF()Pdx >0 firalle £ € Cla, B]:
a

fiir f # 0 existiert ein Intervall U = [xg — §, xo + 6] N [a, b] mit |f(x)| > O fiir alle x € U,
also ist fab |f(x)[? dx > 0 fiir f # 0.

Die induzierte Norm ist die Lr-Norm

Il = (/ab|f(x)\2dx)1/2.

If —gll = (/b 1£(x) fg(x)\zdx)l/z

wird die Abweichung von f und g im quadratischen Mittel erfasst.

Durch
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GauB-Approximation Beispiel: Skalarprodukte auf C[a, b

b) Das gewichtete Skalarprodukt auf Cla, b]: Die Funktion w : (a, b) — R erfiille
b
w(x) > 0 fiir alle x € (a, b), / w(x) dx < oco.
a
w heiBt Gewichtsfunktion. Dann ist
b
(f,g8)w :/ f(x)g(x) w(x) dx
a

ein Skalarprodukt auf C[a, b] mit induzierter Norm

||f||w—(/ () w(x) dx)l/z.

Beispiel: w(x) = \/11_2 auf [—1, 1] ergibt
—X

(f,g)w = f(x)g X .
&) / () lfx
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GauB-Approximation Bemerkung und Bezeichnungen:

3.3.3 Bemerkung und Bezeichnungen: Es sei V ein Skalarproduktraum.
(i) Es gilt die Parallelogramm-Identitit

Ix + vl + x = yI? =20IxI2 + Iy ), x,y € V.
Aus der Parallelogramm-ldentitat folgt umgekehrt die Polarisierung fir K = R
(xy) = %(HX +y[? = lIxl? =y,
und fir K=C
(x,y) = %(IIX + I+ il iyll2 = @+ D + lly 12).

(ii) Der Cosinus des Winkels zwischen x,y € V mit x,y # 0 ist
(x,y)
cos Z(x,y) = 7.
[ {1yl

(iii) x,y € V sind orthogonal, wenn (x, y) = 0 gilt.
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GauB-Approximation Geometrisches Verstindnis der GauB-Approximation:

3.3.4 Geometrisches Verstandnis der GauB-Approximation:
Die GauBapproximation von f € Cla, b] durch Polynome vom Grad kleiner oder
gleich n berechnet dasjenige p € P, mit

f—p| = min||f —q.
If — pll qrg;gnll ql|

Dieser kiirzeste Abstand wird genau dann erzielt, wenn die
Orthogonalititsbedingung

(f —p,q) =0 firalle geP,

erfiillt ist; d.h. die Differenz f — p ist orthogonal zu jedem g € P,,. Siehe hierzu
Satz 3.3.5.

Anschaulich: Die GauBapproximation von f € C[a, b] ist die Orthogonalprojektion
von f auf den Teilraum der Polynome.
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GauB-Approximation Satz: Die Orthogonalititsbedingung

3.3.5 Satz: Die Orthogonalitdtsbedingung

Es sei V ein Skalarproduktraum und S < V ein endlichdimensionaler Teilraum.
Dann sind dquivalent:

(i) p € S ist eine beste Approximation von f € V; d.h.
f —p|ll = min||f — q||.
If = pll = min ||f — q
(ii) Es gilt die Orthogonalititsbedingung
(f —p,gq)=0 firalle geS.

Das Element p € S ist durch (i) oder (ii) eindeutig bestimmt. Es heiBt
Orthogonalprojektion von f auf S.

Bemerkung: In der Approximationstheorie und der Funktionalanalysis wird gezeigt, dass die
Aquivalenz sogar fiir jeden abgeschlossenen Teilraum (auch mit dim S = o) eines Hilbertraumes
gilt.
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GauB-Approximation Definition und Satz: Gram-Matrix
Die Gram-Matrix dient der allgemeinen Beschreibung der Orthogonalprojektion.

3.3.6 Definition und Satz: Gram-Matrix

Es seien V ein Skalarproduktraum, 1, ...,1, € V. Die Matrix
@1, ¢1) - (Y0, 91)
m={ 5
@1, %) o (Yn, Yn)
heiBt Gram-Matrix der Elemente 11, ...,%,. Es gilt:

a) M ist hermitesch und positiv-semidefinit.
b) M ist genau dann positiv-definit, wenn die Familie (¢1,...,%n) linear unabhingig ist.

c) Sind %1, ..., linear unabhingig und S = Span(¢1,...,%n), so ist die
Orthogonalprojektion von f € V auf S gegeben durch

n

p=>_ i,

j=1
wobei der Vektor ¢ = (¢j)j=1,...,n die eindeutige Lésung des linearen Gleichungssystems
(f,%1)
Mc = : ist.
<f7 1/’n>
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GauB-Approximation Bemerkung:

3.3.7 Bemerkung: Es seien ¢1,...,1%, € V und M die zugehdrige Gram-Matrix.

(i) M ist genau dann eine Diagonalmatrix, wenn die Elemente 11, ..., %, paarweise orthogonal
sind, und M =1 genau dann, wenn die Elemente 1, ..., %, ein Orthonormalsystem in V
bilden.

(if) Gedichtnisstiitze: Die Transponierte der Gram-Matrix kann man kurz schreiben als

(Y1,
MTiM: (w1>a"'aw">)'
(wna

Dabei wird die n x n-Matrix der Eintrage (1);, 1x) gebildet. Diese Vektornotation hilft z.B.
beim Basiswechsel.
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GauB-Approximation Korollar:

3.3.8 Korollar:
a) Die Orthogonalprojektion Mg : V — S ist eine lineare Abbildung.
b) Falls (¢1,...,¢,) eine Orthonormalbasis von S ist, so ist die
Orthogonalprojektion gegeben durch

n

Ms(f) = > (f, )¢, fev.

j=t
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GauB-Approximation Beispiele:

3.3.9 Beispiele:
a) Auf dem R-Vektorraum C[0, 1] ist das Standardskalarprodukt
1
(8= [ F(e) e

definiert. Zur Monom-Basis e : [0,1] — R, ex(x) = x*, k =0,...,n, von P, gehort die

Gram-Matrix L
H +1 = (7> )
! Jtk =1/ =1, .nt1

dies ist die Hilbert-Matrix von Ubungsblatt 3. Sie ist sehr schlecht konditioniert. Fiir die
GauB-Approximation sollte man also eine andere Methode als in Satz 3.3.6 verwenden!!

(— Koordinaten-Transformation der Legendre-Polynome auf das Intervall [0, 1].)
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GauB-Approximation Beispiele:

b) Auf dem R-Vektorraum C[—1,1] ist das gewichtete Skalarprodukt

(f,g)w = f(x)g Xi
&) / () V1—x2

definiert. Die Tschebyscheff-Polynome 1. Art T, € Py lauten fiir x € [—1,1]
Tn(x) = cos(narccos(x)), n =€ Np.
Dies sind tatsdchlich Polynome vom Grad n: klar ist
To(x)=1, Ti(x)=x fir x € [—1,1],

und aus der trigonometrischen ldentitdt cos((n + 1)t) + cos((n — 1)t) = 2 cos(nt) cos t
folgt die Rekursion der Tschebyscheff-Polynome

| Toi1(0) = 2xTa(x) = Toa(x),  n>1,]

also fiir n =2,3,4,5
To(x) =2x2—1, Ts(x)=4x3—3x, Ti(x)=8x*—8x>+1, Ts(x)=16x>—20x>+5x.
(Natiirlich sind die Polynome auf ganz R (sogar C) mittels der Rekursion definiert.)
Fiir j, k > 0 ergibt sich das Skalarprodukt
T, fir j =k =0,
" cos(jt) cos(kt) dt = { w/2, fiir j =k >0,
0, fir j # k.

1 X
(T T :L T T(x) \/% :/0
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GauB-Approximation Beispiele:

Die zugehdrige Gram-Matrix ist eine Diagonalmatrix. Die GauB-(Tschebyscheff)-Approximation
vom Grad n der Funktion f € C[—1,1] ist gegeben durch

n
p= Z ck Tk
k=0
mit den Koeffizienten

1 /1 dx 2 [t dx
= — f — = — f(x)T, ——= fir k>0.
Tz /4 () VI—x2’ “T /,1 CITi(x) V1—x2 ke
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GauB-Approximation Verfahren: Gram-Schmidt-Orthogonalisierung

Vorteilhaft fiir die GauB-Approximation ist die Verwendung von
Orthogonalsystemen. Aus der Linearen Algebra ist bekannt (evtl. fiir Vektoren im
K™):

3.3.10 Verfahren: Gram-Schmidt-Orthogonalisierung
Es sei V ein Skalarproduktraum und 1, ...,¢, € V' \ {0}. Weiter sei

S = Span(¢, . . . ,¥n), 1<r=dimS <n.

Der folgende Algorithmus liefert eine Orthonormalbasis ¢1, ..., ¢, von S (mit
Aussortieren linear abhangiger v;):
1
1. Setze k=1 und ¢ = —— 1
K%Y
2. Firj=2,...,n
k
T=1— > (), ¢e)be.
=1
Falls 7 # 0 setze k = k+ 1 und ¢y =
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GauB-Approximation Beispiel: Legendre-Polynome auf [—1, 1

3.3.11 Beispiel: Legendre-Polynome auf [—1,1
C[-1,1] als R-Vektorraum mit dem Standardskalarprodukt

1
(f.g) = [ F()e(x)

besitzt die Monom-Basis ey : [-1,1] — R, ex(x) = x¥, fir k=0,1,...,n.

Gram-Schmidt-Orthonormalisierung ergibt (verwende L; fiir die 7 im Algorithmus 3.3.10):

Lo(x) =1, do(x) = /1/2,

LI(X):X7 ¢1(X): 3/2 X,
und mit dem folgenden Satz 3.3.12

k2
Ler1(x) = x - Li(x) — w1 < Le—1(x), k=12, ...
_(2k) [2k¥1
dk(x) = (k02 V 22 Lic(x).
Fiir n=2,3,4,5 ist
1 1

Lo(x) = x2 — 3 L3(x) = x3 — gx, La(x) = x4 — gXQ + %, Ls(x) = x> — EOXZ’ + 25—1X.
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GauB-Approximation Beispiel: Legendre-Polynome auf [—1, 1

Damit ist die GauB-(Legendre)-Approximation von f durch Polynome vom Grad n gegeben durch

n

P=_ ki

k=0
mit den Koeffizienten

1
ck:/ f(x)pr(x)dx fir k=0,...,n.
—1
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GauB-Approximation Beispiel: Legendre-Polynome auf [—1, 1

Die Normalisierungskonstante der ¢, berechnet man z.B. mit der sog. Rodriguez-Formel fiir die
Legendre-Polynome:
nld"

(2n)! dxn [(6F=1)].

Ln(x) =

Beachte: Hochstkoeffizient ist
L) 1 d [
n! (2n)! dx2n
=(2n)!
Mit partieller Integration (alle Randterme sind Null) ergibt sich

o (n!)2 ! d” X2 _ n
(L, Ln) = ((2n)1)2 /,1 dxn I 1]

_ (_1)" (n!) / (X2 _ 1)" ﬂ [(X2 _ 1)"] dx
-1

(x*-1)"] =1.

dn[(x —1)} dx

((2n)1)2 dx2n
=(2n)!
- (- )E )) / (x = 1)" (x+1)" dx
(n1)? (n!)? n
(@) (2n)!/_( X1 e
(n!)4 22n+1
(2nm2 2n+1’

und daraus die obige Normierung der ¢y.
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GauB-Approximation

Bemerkung:

Eine andere Normalisierung, ndmlich Z,,(l) = 1, erzielt man mit der Rekursion

Lo(x)=1, L(x)=x,

Lisr(x) = LT (x) — 55 Loy (x).

k+1 k+1

Hierbei ist 5

Ly, Ly) = ,

(Lol = 30
also ist ¢ in 3.3.11

2k +1 ~
Pk(x) = > Li(x).

Fir n =2,3,4,5 ist
~ 3 1 35 15 3
La(x) = Exzfa, L3(x) = =x3—Zx, La(x) = 5 477X2 A
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Beispiel: Legendre-Polynome auf [—1, 1

5 355,15
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GauB-Approximation Satz: 3-Term Rekursion der Orthogonalpolynome

3.3.12 Satz: 3-Term Rekursion der Orthogonalpolynome
Das Skalarprodukt (-, -) auf C[—1, 1] besitze die Symmetrie-Eigenschaft

(p,xq) = (xp,q) fiir alle Polynome p,q.

Dann fiihrt die Gram-Schmidt-Orthonormalisierung der Monom-Basis
{1,x,...,x"} auf die folgenden Polynome p, (mit Hochstkoeffizient 1) und ¢«

(mit [|¢kll = v/(¢k, dx) = 1):

po(x) = 1, pi(x)=x—fo,
Prt(x) = (x = B)p(x) = Pr-1(x),  k=1,2,...,
b = Hﬁlkllﬁk’ k=0,1,2,...
mit
Bk = PP i > 0, e = APl g >1
([ Px[? [[Px—1lI?

Achtung: ||p||?> = (p, p) mit dem gegebenen Skalarprodukt!
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GauB-Approximation Satz: 3-Term Rekursion der Orthogonalpolynome
Beweis: pp = 1 und p1(x) = x — (X, $o)¢o = x — Bo sind anhand der Definitionen abzulesen.
Fiir k > 1 setze

Ar1(x) = (x = Bi)Pr(x) — YuPr—1(x).
Dann ergibt die Orthogonalitat px L Pr_1

(a1 Pk) = (XPk, Pr) — BillPrll® = vk (Prs P—1) = 0,
[ ——
-0
(Qrs1,Pr—1) = (XPk, Pr—1) — Bk (Pr Pr—1) — Y llPr—11?
—_— ——
=0 =(Px>Px)

= (PksXPk—1 — Px) = 0.
N———
€Pk-1
Weiterhin ergibt sich fiir j < k — 1 sofort (q1,p;) = 0.

Wir haben gezeigt, dass g1 ein Polynom vom Grad k + 1 mit dem Hochstkoeffizienten 1 ist,
das orthogonal zu Py ist. Weil das orthogonale Komplement von Py in Py eindimensional ist,
folgt also qx+1 = Pkt1-
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GauB-Approximation Bemerkung:

3.3.13 Bemerkung:
Bei der GauB-Approximation bzgl. des Standard-Skalarprodukts wird die Abweichung im
quadratischen Mittel minimiert. Dabei wird die Maximalabweichung

Ilf = pll = max [f(x) — p(x)]
x€[a,b]

haufig insbesondere in der Ndhe der Intervallenden groB. Deshalb verwendet man bei der
Berechnung der besten GauB-Approximation p gerne das gewichtete Skalarprodukt

d.
(f,g) / f(x)g(x) X
(x —a)(b—x)
das den Fehler f — p am Rand hdher gewichtet als in der Mitte des Intervalls [a, b].

Die Orthogonalpolynome zu diesem Skalarprodukt sind die auf das Intervall [a, b] transformierten
Tschebyscheff-Polynome 1. Art, siehe Beispiel 3.3.9(b):

2x —a—0>b
T =To (25277)

mit der Normalisierungskonstanten
w(b—a)

b 2x —a—b\? dx , firn=0,
HTn,[a,b]”2 = / Tn ( b ) = 7r(b2—a) .
a —a (x —a)(b—x) a fiir n > 0.
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GauB-Approximation Beispiel:

Die GauB-Legendre Approximation (links) zum Standard-Skalarprodukt, und die
GauB-Tschebyscheff Approximation (rechts) zur Gewichtsfunktion w(x) =1/v1 — x2:

Gauss-Legendre-Approximation von 1/(1+25*><z)
T T T T T

Gauss-Tschebyscheff-Approximation von 1/(1+25'><2)
T T T

T 12

08

06

04

02

~02 L L L L L L L L L ~02 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1
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