
Kapitel 3. Interpolation und Approximation I

Inhalt:

3.1 Polynominterpolation

3.2 Extrapolation zum Limes

3.3 Gauß-Approximation
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Allgemeine Problemstellung

I. Gegeben ist eine Messreihe von Daten (xj , yj), j = 0, . . . , n. Man bestimme
eine “einfache” Funktion u : [a, b] → R mit
Interpolation: u(xj ) = yj für j = 0, . . . , n (siehe Abschnitte 3.1, 7.1, 7.2)
Approximation: u(xj ) ≈ yj für j = 0, . . . , n (siehe Abschnitte 6.1, 7.3)

II. Gegeben ist eine Funktion f : [a, b] → R. Man bestimme eine “einfache”
Funktion u : [a, b] → R,
Interpolation: die zu gegebenen Argumenten xj , j = 0, . . . , n, die
Funktionswerte u(xj ) = f (xj) besitzt (siehe Abschnitte 3.1, 7.1, 7.2)
Approximation: für die ‖f − u‖ möglichst klein ist, wobei ‖.‖ eine Norm
auf C [a, b] ist. (siehe Abschnitte 3.3, 7.3)

Als “einfach” bezeichnet man z.B. Polynome, rationale Funktionen oder
trigonometrische Polynome.
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Matlab/Octave: Interpolation von 4 Messwerten durch ein kubisches Polynom

x=[0,1,2,3];

y=[1,-1,1,-1]; % oder y=cos(pi*x)

c=polyfit(x,y,3); % kubisches Interpolationspolynom

xx=linspace(0,3,101);

plot(x,y,’o’);
hold on

plot(xx,polyval(c,xx));

Approximation der Bevölkerungszahl der USA 1790-1990:

load census; % laedt ‘cdate’ und ‘pop’

c=polyfit(cdate,pop,2); % quadratisches Ausgleichspolynom

xx=linspace(1790,1990,101);

plot(cdate,pop,’o’);
hold on

plot(xx,polyval(c,xx));
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Polynominterpolation Vektorraum der Polynome vom Höchstgrad n

3.1 Polynominterpolation

3.1.1 Vektorraum der Polynome vom Höchstgrad n

Für n ∈ N0 ist

Pn = {p : R → R | p(x) = a0 + a1x + · · ·+ anx
n, aj ∈ R}

der Vektorraum der Polynome mit Grad(p) ≤ n. Es gilt dim(Pn) = n + 1, und die
Monome ej : R → R mit ej(x) = x j , j = 0, . . . , n, sind eine Basis von Pn.

Bemerkung: Mit Polynomen kann man auf einem kompakten Intervall jede stetige
Funktion beliebig genau annähern:

Satz von Weierstrass

Es sei I ein kompaktes Intervall und f ∈ C (I ). Dann gibt es zu jedem ε > 0 ein
Polynom p (mit Grad(p) abhängig von ε), so dass

‖f − p‖∞ := max
x∈I

|f (x)− p(x)| < ε.
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Polynominterpolation Erinnerung: Horner-Schema

3.1.2 Erinnerung: Horner-Schema
Zur Berechnung von

p(x) = a0 + a1x + · · ·+ anx
n = a0 + x · (a1 + x (a2 + · · ·+ x (an−1 + xan) · · · ))

verwendet man das Horner-Schema aus Kapitel 1:

Eingabe: a
(0)
k = ak , k = 0, . . . , n, und Stelle ξ

Setze a
(1)
n = a

(0)
n .

Berechne für k = n − 1, . . . , 0

a
(1)
k = a

(0)
k + ξa

(1)
k+1.

Ergebnis: p(ξ) = a
(1)
0

Rechenaufwand: n Multiplikationen/Additionen
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Polynominterpolation Erinnerung: vollständiges Horner-Schema

3.1.3 Erinnerung: vollständiges Horner-Schema
Zur Berechnung der Taylor-Entwicklung von

p(x) = a0 + a1x + · · ·+ anx
n = b0 + b1(x − ξ) + · · · bn(x − ξ)n

an der Stelle ξ verwendet man das vollständige Horner-Schema von Übungsblatt
1:

Eingabe: a
(0)
k = ak für k = 0, . . . , n, und Stelle ξ

Für j = 0, . . . , n − 1,

setze a
(j+1)
n = a

(j)
n ,

berechne für k = n − 1, . . . , j

a
(j+1)
k = a

(j)
k + ξa

(j+1)
k+1 .

Ergebnis: bj = a
(j)
j

Rechenaufwand: n(n + 1)/2 Multiplikationen/Additionen
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Polynominterpolation Definition: Interpolationspolynom

3.1.4 Definition: Interpolationspolynom

Gegeben seien Punkte (xj , yj) ∈ R2, j = 0, . . . , n, mit paarweise verschiedenen
xj ∈ R.

Die Zahlen xj heißen die Stützstellen (oder Knoten) der
Lagrange-Interpolation.

Die Zahlen yj heißen die Daten (oder Knotenwerte).

Ein Polynom p ∈ Pn mit p(xj ) = yj für alle j = 0, . . . , n heißt
Interpolationspolynom.

3.1.5 Hauptsatz:

Die Lagrange-Interpolationsaufgabe ist eindeutig lösbar. D.h. zu paarweise
verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, und beliebigen Daten yj ∈ R

existiert genau ein Polynom p ∈ Pn mit p(xj) = yj für alle j = 0, . . . , n.
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Polynominterpolation Das Interpolationspolynom in der Monombasis

4 Varianten zur Darstellung/Berechnung des Interpolationspolynoms p ∈ Pn

liefern jeweils unterschiedliche Beweise von Satz 3.1.5.

3.1.6 Das Interpolationspolynom in der Monombasis

Zu paarweise verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, und beliebigen
Daten yj ∈ R ist das Interpolationspolynom gegeben durch p(x) =

∑n

k=0 akx
k ,

wobei der Koeffizientenvektor (a0, a1, . . . , an)
T ∈ Rn+1 die eindeutige Lösung des

linearen Gleichungssystems

M~a = ~y , M =




1 x0 x20 · · · xn0
1 x1 x21 · · · xn1

...

1 xn x2n · · · xnn



, ~y =




y0

y1
...

yn




ist. Die Matrix M ist regulär und hat die Vandermonde-Determinante

detM =
∏

0≤i<j≤n

(xj − xi ).
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Polynominterpolation Das Interpolationspolynom in der Monombasis

Beweis: Der Determinanten-Multiplikationssatz ergibt

detM = det




1

−1 1

..

.
. . .

−1 1







1 x0 x20 · · · xn0
1 x1 x21 · · · xn1

...

1 xn x2n · · · xnn







1 −x0

. . .
. . .

1 −x0

1




︸ ︷︷ ︸

=




1 0 0 · · · 0

1 x1 − x0 x1(x1 − x0) · · · xn−1
1 (x1 − x0)

...

1 xn − x0 xn(xn − x0) · · · xn−1
n (xn − x0)




= det




1 0 0 · · · 0

0 x1 − x0 x1(x1 − x0) · · · xn−1
1 (x1 − x0)

..

.

0 xn − x0 xn(xn − x0) · · · xn−1
n (xn − x0)




=
n∏

j=1

(xj − x0) · det M̃,

wobei M̃ die Vandermonde-Matrix zu den Knoten x1, . . . , xn ist. Das Herausziehen des Produktes
erfolgt mit der Linearität von detA bezüglich jeder Zeile von A. Die Aussage des Satzes folgt per
Induktion.
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Polynominterpolation Das Interpolationspolynom in der Lagrange-Basis

3.1.7 Das Interpolationspolynom in der Lagrange-Basis

Zu n + 1 paarweise verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, definieren wir
die Lagrange-Grundpolynome

Ln,k(x) =

n∏

j=0
j 6=k

x − xj

xk − xj
∈ Pn, k = 0, . . . , n.

Die Lagrange-Grundpolynome {Ln,k : k = 0, . . . , n} bilden eine Basis von Pn.

Es gilt

Ln,k(xj ) =

{
1, j = k

0, j 6= k

Das Interpolationspolynom zu den Stützstellen xj , j = 0, . . . , n, und Daten
yj ∈ R ist

p(x) =

n∑

k=0

ykLn,k(x).
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Polynominterpolation Bemerkung:

3.1.8 Bemerkung:

(i) Mit dem Ansatz p(x) =
∑n

k=0 ckLn,k (x) ergeben die Interpolationsbedingungen das lineare
Gleichungssystem

A~c = ~y , A =
(
Ln,k (xj)

)
j,k=0,...,n

= I,

dessen Lösung ~c = ~y sofort abzulesen ist.

(ii) Kurz-Schreibweise für die Lagrange-Grundpolynome: mit Hilfe des Knotenpolynoms

w(x) =
n∏

j=0

(x − xj ) ∈ Pn+1

ist

Ln,k(x) =
w(x)

(x − xk)w ′(xk)
, k = 0, . . . , n.

(iii) Der Nachteil der Lagrange-Darstellung des Interpolationspolynoms p ∈ Pn ist, dass bei
Hinzunahme eines weiteren Stützpunktes (xn+1, yn+1) oder bei der Änderung eines
Stützpunktes (xj , yj) die Basisfunktionen Ln,k sich völlig ändern. Deshalb ist diese
Darstellung des Interpolationspolynoms für die meisten praktischen Zwecke zu aufwändig.
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Polynominterpolation Das Interpolationspolynom in der Newton-Basis

3.1.9 Das Interpolationspolynom in der Newton-Basis

Zu n + 1 paarweise verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, definieren wir
die Newton-Grundpolynome

N0(x) = 1; Nk(x) =

k−1∏

j=0

(x − xj) ∈ Pk , k = 1, . . . , n.

Die Newton-Grundpolynome {Nk : k = 0, . . . , n} bilden eine Basis von Pn.

Es gilt
Nk(xj ) = 0 für k > j .

Das Interpolationspolynom zu den Stützstellen xj , j = 0, . . . , n, und Daten
yj ∈ R ist

p(x) =

n∑

k=0

y [x0, . . . , xk ]Nk(x),

wobei y [x0, . . . , xk ] die k-te dividierte Differenz zu den Punkten (xj , yj),
j = 0, . . . , n, bezeichnet.
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Polynominterpolation Bemerkung:

3.1.10 Bemerkung:

(i) Mit dem Ansatz p(x) =
∑n

k=0 ckNk(x) ergeben die Interpolationsbedingungen das lineare
Gleichungssystem

A~c = ~y , A =
(
Nk(xj)

)
j,k=0,...,n

;

die Matrix A ist eine untere Dreiecksmatrix, das Auflösen kann also durch
Vorwärtseinsetzen erfolgen. Die dividierten Differenzen bilden einen numerisch stabileren
Algorithmus zur Lösung.

(ii) In der Newton-Darstellung ist die Teilsumme

p0,m(x) =
m∑

k=0

y [x0, . . . , xk ]Nk(x) ∈ Pm, 0 ≤ m ≤ n,

das Interpolationspolynom zu den Daten (x0, y0), . . . , (xm, ym).

Deshalb kann auch ein weiterer Punkt (xn+1, yn+1) leicht hinzugenommen werden: das neue
Interpolationspolynom p0,n+1 ergibt sich als

p0,n+1(x) = p0,n(x) + y [x0, . . . , xn+1]Nn+1(x).

(iii) Die dividierte Differenz y [x0, . . . , xn] ist der Höchstkoeffizient des Interpolationspolynoms in
der Monom-Darstellung:

p(x) = a0 + . . .+ an−1x
n−1 + anx

n mit an = y [x0, . . . , xn].
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Polynominterpolation Definition: dividierte Differenzen

3.1.11 Definition: dividierte Differenzen

Zu n + 1 paarweise verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, und Daten yj
sind die dividierten Differenzen rekursiv definiert durch

Ordnung k = 0:
y [xj ] = yj , j = 0, . . . , n,

Ordnung 1 ≤ k ≤ n:

y [xj , . . . , xj+k ] =
y [xj+1, . . . , xj+k ]− y [xj , . . . , xj+k−1]

xj+k − xj
, j = 0, . . . , n− k .

Berechnungs-Schema:

xn − x0 · · · x2 − x0 x1 − x0 x0 y0 y [x0, x1] y [x0, x1, x2] · · · y [x0, . . . , xn]
· · · x3 − x1 x2 − x1 x1 y1 y [x1, x2] y [x1, x2, x3] · · ·

...
...

...
...

xn − xn−1 xn−1 yn−1 y [xn−1, xn]
xn yn
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Polynominterpolation Lemma (zur Newton-Darstellung des Interpolationspolynoms):

3.1.12 Lemma (zur Newton-Darstellung des Interpolationspolynoms):

Es seien n+ 1 paarweise verschiedene Stützstellen xj ∈ R, j = 0, . . . , n, und Daten
yj ∈ R gegeben. Mit

pj,j+k ∈ Pk , 0 ≤ k ≤ n, 0 ≤ j ≤ n − k

bezeichnen wir das Interpolationspolynom zu den Punkten

(xj , yj), . . . , (xj+k , yj+k )

.
Dann gilt

pj,j+k (x) = y [xj ] + y [xj , xj+1](x − xj) + · · ·+

y [xj , . . . , xj+k ](x − xj) · · · (x − xj+k−1).
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Polynominterpolation Lemma (zur Newton-Darstellung des Interpolationspolynoms):

Beweis: Induktion nach k:

Für k = 0 und 0 ≤ j ≤ n ist pj,j (x) = yj = y [xj ] das konstante Interpolationspolynom zum Punkt (xj , yj ).

Sei k ≥ 1 und 0 ≤ j ≤ n − k. Nach Induktionsannahme interpoliert

pj,j+k−1(x) = y [xj ] + · · · + y [xj , . . . , xj+k−1](x − xj ) · · · (x − xj+k−2) ∈ Pk−1

die Punkte (xj , yj ), . . . , (xj+k−1, yj+k−1), und ebenso interpoliert

pj+1,j+k (x) = y [xj+1] + · · · + y [xj+1, . . . , xj+k ](x − xj+1) · · · (x − xj+k−1) ∈ Pk−1

die Punkte (xj+1, yj+1), . . . , (xj+k , yj+k ). Deshalb interpoliert

q(x) =
(x − xj )pj+1,j+k (x) + (xj+k − x)pj,j+k−1(x)

xj+k − xj

die Punkte (xj , yj ), . . . , (xj+k , yj+k ), ist also das gesuchte Interpolationspolynom pj,j+k . Der Höchstkoeffizient von q (also der Vorfaktor

von xk ) berechnet sich aus den Höchstkoeffizienten von pj,j+k−1 und pj+1,j+k ,

a := HK (q) =
y [xj+1, . . . , xj+k ] − y [xj , . . . , xj+k−1]

xj+k − xj

= y [xj , . . . , xj+k ].

Andererseits gilt (durch Hinzunahme des Punktes (xj+k , yj+k ) zu pj,j+k−1, siehe Bemerkung 3.1.10(ii))

q(x) = pj,j+k (x) = pj,j+k−1(x) + a(x − xj ) · · · (x − xj+k−1).

Damit hat pj,j+k die behauptete Form.

Numerische Mathematik I 101



Polynominterpolation Bemerkung:

3.1.13 Bemerkung:

(i) Die dividierte Differenz y [x0, . . . , xn] ist der Höchstkoeffizient des
Interpolationspolynoms p ∈ Pn zu den Punkten (x0, y0), . . . , (xn, yn).

(ii) Die dividierte Differenz y [x0, . . . , xn] ist invariant gegenüber einer
Index-Permutation in der Aufzählung der Punkte (x0, y0), . . . , (xn, yn).
Insbesondere brauchen die Stützstellen xj nicht sortiert vorzuliegen.

(iii) Bei Hinzunahme eines Punktes (xn+1, yn+1) wird das Schema der dividierten
Differenzen unten um eine Diagonale ergänzt.
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Polynominterpolation Das Interpolationspolynom in der Neville-Aitken-Form

Zur Auswertung des Interpolationspolynoms an einer Stelle ξ ∈ R eignet sich die Rekursion im

Beweis von Lemma 3.1.12.

3.1.14 Das Interpolationspolynom in der Neville-Aitken-Form

Zu n + 1 paarweise verschiedenen Stützstellen xj ∈ R, j = 0, . . . , n, und Daten yj
berechnet man den Wert p(ξ) = p0,n(ξ) des Interpolationspolynoms rekursiv
gemäß

k = 0: pj,j(ξ) = yj für j = 0, . . . , n,

1 ≤ k ≤ n: pj,j+k (ξ) = pj,j+k−1(ξ) + (ξ − xj)
pj+1,j+k (ξ)− pj,j+k−1(ξ)

xj+k − xj
für j = 0, . . . , n − k .

Schema:

x0 y0 p0,1(ξ) p0,2(ξ) p0,3(ξ) . . . p0,n−1(ξ) p0,n(ξ)
x1 y1 p1,2(ξ) p1,3(ξ) p1,4(ξ) . . . p1,n(ξ)
x2 y2 p2,3(ξ) p2,4(ξ) p2,5(ξ) . . .
...

...
...

...
...

xn−1 yn−1 pn−1,n(ξ)
xn yn
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Polynominterpolation Das Interpolationspolynom in der Neville-Aitken-Form

Erweiterte Problemstellung:

Gegeben sei eine Funktion
f ∈ C n+1[a, b].

Zu paarweise verschiedenen Stützstellen xj ∈ [a, b] werden die Daten
yj = f (xj ) dem Graphen von f entnommen.

conv(x0, . . . , xn) bezeichnet das kleinste Intervall, das alle xj , j = 0, . . . , n,
enthält, also die konvexe Hülle der Menge {x0, . . . , xn}).

Vergleich von f (x) = log10(x) auf [a, b] = [1, 10] (schwarz) und dem
quadratischen Interpolationspolynom zu den Stützstellen xj = 1, 5, 10 (cyan)

1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
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Polynominterpolation Satz: Interpolationsfehler

3.1.15 Satz: Interpolationsfehler

Es seien f : [a, b] → R und paarweise verschiedene Stützstellen x0, . . . , xn ∈ [a, b]
gegeben. p ∈ Pn sei das Interpolationspolynom zu den Punkten (xj , f (xj )),
j = 0, . . . , n. Weiter sei x ∈ [a, b].
Dann ist der Interpolationsfehler f (x)− p(x) gegeben in Newton-Form

f (x)− p(x) = f [x0, . . . , xn, x ]

n∏

j=0

(x − xj),

mit der dividierten Differenz zu den Punkten (x0, f (x0)), . . . , (xn, f (xn)), (x , f (x)),
bzw. in Lagrange-Form

f (x)− p(x) =
f (n+1)(ξx)

(n + 1)!

n∏

j=0

(x − xj),

mit einem ξx ∈ conv(x0, . . . , xn, x), falls f ∈ C n+1[a, b] gilt.
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Polynominterpolation Folgerung:

Die dividierte Differenz f [x0, . . . , xn] zu den Punkten (x0, f (x0)), . . . , (xn, f (xn))
besitzt zwei interessante Darstellungen.

3.1.16 Folgerung:

Es seien n ∈ N0, f ∈ C n[a, b] und xj ∈ [a, b], j = 0, . . . , n, (paarweise
verschiedene) Stützstellen.

a) Es existiert ξ ∈ conv(x0, . . . , xn) mit

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

b) Für n ≥ 1 gilt

f [x0, . . . , xn] =
∫ 1

0

∫ t1

0

· · ·

∫ tn−1

0

f (n)(x0 + t1(x1 − x0) + ...+ tn(xn − xn−1)) dtn · · · dt2 dt1.
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Polynominterpolation Folgerung:

Beachte:
∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dtn · · · dt2 dt1 = vol(Standard-Simplex im Rn) = 1/n!

Im Beweis von b) führt man die innere Integration aus:

(xn − xn−1)

∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
f (n)(x0 + t1(x1 − x0) + ...+ tn(xn − xn−1)) dtn · · · dt2 dt1 =

∫ 1

0

∫ t1

0
· · ·

∫ tn−2

0

(
f (n−1)(x0 + t1(x1 − x0) + ...+ tn−1(xn − xn−2))−

f (n−1)(x0 + t1(x1 − x0) + ...+ tn−1(xn−1 − xn−2))
)
dtn−1 · · · dt2 dt1 =

f [x0, x1, . . . , xn−2, xn]− f [x0, x1, . . . , xn−2, xn−1] = nach Ind.-Annahme

f [x0, x1, . . . , xn−2, xn]− f [xn−1, x0, x1, . . . , xn−2] Vertauschung der Stützstellen
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Polynominterpolation Bemerkung:

3.1.17 Bemerkung: Die Definition der dividierten Differenz von f ∈ Cn[a,b] für
zusammenfallende Knoten geschieht mittels sogenannter “Konfluenz”: für zusammenfallende
Knoten x0 = x1 ist

f [x0, x0] = lim
h→0

f [x0, x0 + h] = lim
h→0

f (x0 + h)− f (x0)

h
= f ′(x0).

Die Integraldarstellung bleibt in diesem Fall gültig,

f [x0, x0] = f ′(x0) =

∫ 1

0
f ′(x0 + t(x0 − x0)) dt =

∫ 1

0
f ′(x0) dt.

Bei mehrfacher Wiederholung der Stützstelle xj = · · · = xj+k ist

f [ xj , . . . , xj︸ ︷︷ ︸
(k+1)−mal

] =
f (k)(xj)

j!
=

∫ 1

0

∫ t1

0
· · ·

∫ tk−1

0
f (k)(xj ) dtk · · · dt2 dt1.

Sind die Stützstellen x0 ≤ x1 ≤ · · · ≤ xn angeordnet, so werden im Schema 3.1.11 die
nicht-existierenden Quotienten (Teilen durch Null) durch die entsprechenden Ableitungsterme
ersetzt. Dadurch bleibt die rekursive Berechnung von f [x0, . . . , xn] gültig, auch wenn Stützstellen
zusammenfallen.
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Polynominterpolation Hermite-Interpolation

Für mehrfache Stützstellen stellt sich eine modifizierte Interpolationsaufgabe.

3.1.18 Hermite-Interpolation

Es seien x0, . . . , xm ∈ R paarweise verschieden,
µ0, . . . , µm ∈ N0 und

Daten y
(k)
j , j = 0, . . . ,m, k = 0, . . . , µj gegeben. Weiter sei n =

m∑

j=0

(1 + µj)− 1.

Ein Polynom p ∈ Pn mit

p(k)(xj) = y
(k)
j für alle j = 0, . . . ,m, k = 0, . . . , µj ,

heißt Hermite-Interpolationspolynom.
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Polynominterpolation Satz zur Hermite-Interpolation

3.1.19 Satz zur Hermite-Interpolation

Die Hermite-Interpolationsaufgabe ist eindeutig lösbar.

Mit dem erweiterten Knotenvektor

(ξ0, ξ1, . . . , ξn) = (x0, . . . , x0︸ ︷︷ ︸
µ0+1−fach

, . . . , xm, . . . , xm︸ ︷︷ ︸
µm+1−fach

)

und der Definition dividierter Differenzen mit mehrfachen Knoten ist das
Interpolationspolynom gegeben in der Newton-Form

p(x) =

n∑

k=0

y [ξ0, . . . , ξk ](x − ξ0) · · · (x − ξk−1).
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Polynominterpolation Bemerkung:

3.1.20 Bemerkung: Die Darstellungen des Interpolationsfehlers für Daten

y
(k)
j = f (k)(xj ), j = 0, . . . ,m, k = 0, . . . , µj ,

bleiben exakt wie in Satz 3.1.15 erhalten.
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Polynominterpolation Diskussion: Interpolationsfehler bei f mit beschränkten Ableitungen

3.1.21 Diskussion: Interpolationsfehler bei f mit beschränkten Ableitungen
Mit maxx∈[a,b] |f (n+1)(x)| =: Mn+1 gilt

|f (x)− p0,n(x)| ≤
Mn+1

(n + 1)!

n∏

j=0

|x − xj |.

Für äquidistante Knoten xj = a+ jh, j = 0, . . . , n, h = (b − a)/n, ist weiterhin∏n
j=0 |x − xj | ≤ n!hn+1 , also insgesamt

|f (x)− p0,n(x)| ≤
Mn+1

n + 1

(
b − a

n

)n+1

.

Falls
Mn+1

n + 1

(
b − a

n

)n+1

= o(1) für n → ∞

gilt, so konvergiert die Folge (p0,n)n≥0 der Interpolationspolynome gleichmäßig gegen f .

Ist die Folge (Mn)n≥0 sogar beschränkt (z.B. für f (x) = ex auf [a,b]), so ist die
Konvergenz sehr schnell:

|f (x)− p0,n(x)| = O
(
(b − a)n+1

nn+2

)
für n → ∞.
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Polynominterpolation Diskussion: Interpolationsfehler bei f mit wachsenden Ableitungen

3.1.22 Diskussion: Interpolationsfehler bei f mit wachsenden Ableitungen
Ein klassisches Beispiel von Runge ist die Funktion

f : [−5, 5] → R, f (x) =
1

1 + x2
.

Interpolation mit äquidistanten Knoten xj = −5 + jh, j = 0, . . . , n, h = 10/n, führt schon für
n = 10 zu unbrauchbarem Interpolationspolynom. Tatsächlich divergiert die Folge der
Interpolationspolynome (p0,n)n≥0.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Runge−Beispiel mit n=4

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2
Runge−Beispiel mit n=10
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Extrapolation zum Limes Beispiel (vgl. 0.0.4 in der Einleitung):

3.2 Extrapolation zum Limes

3.2.1 Beispiel (vgl. 0.0.4 in der Einleitung):

Berechne: a0 = lim
h→0

f (h) für f (x) = tan x−x
x3

.

Numerische Rechnung (doppelt genau) ergibt für hj = 10−(j+1) mit j = 0, 1, 2 die
Ergebnisse

0.33467208545054, 0.33334666720702, 0.33333346673159

Mit der Taylor-Reihe

tan x = x +
1

3
x3 +

2

15
x5 +

17

315
x7 + · · ·

ergibt sich

f (x) =
1

3
+

2

15
x2 +

17

315
x4 + · · · ;

insbesondere ist f gerade, besitzt also eine Entwicklung mit geraden Potenzen von x .

Daher ist es sinnvoll, a0 anzunähern durch den Wert p0,1(0) des linearen

Interpolationspolynoms zu den Punkten (h20, f (h0)), (h
2
1 , f (h1)), also nach dem

Neville-Schema

p0,1(0) = f (h1) +
1

(h0/h1)2 − 1
(f (h1) − f (h0)) = 0.33333327914396.
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Extrapolation zum Limes Beispiel (vgl. 0.0.4 in der Einleitung):

Analog ergibt das lineare Interpolationspolynom zu den Punkten (h21 , f (h1)), (h
2
2 , f (h2))

p1,2(0) = f (h2) +
1

(h1/h2)2 − 1
(f (h2) − f (h1)) = 0.33333333339345.

Weiterführung zum quadratischen Interpolationspolynom zu den Punkten (h20 , f (h0)),
(h21 , f (h1)), (h

2
2, f (h2)) liefert

p0,2(0) = p1,2(0) +
1

(h0/h2)2 − 1
(p1,2(0) − p0,1(0)) = 0.33333333339888,

also keine weitere Verbesserung zum exakten Wert 1/3.
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Extrapolation zum Limes Beispiele: Differenzenquotienten

3.2.2 Beispiele: Differenzenquotienten

Für eine (r + 1)-mal stetig differenzierbare Funktion f : [a,b] → R und x0 ∈ [a,b] gilt

a(h) :=
f (x0 + h) − f (x0)

h
= f ′(x0) +

r∑

j=1

f (j+1)(x0)

(j + 1)!
hj + o(hr ).

Für verschiedene Werte hj > 0, j = 0, . . . , r , stellt man das Neville-Schema zur Berechnung
der Interpolationspolynome

pj,j+k zu den Punkten (hj , a(hj )), . . . , (hj+k , a(hj+k))

und für die Auswertung bei ξ = 0 auf. Aus den Näherungswerten

aj,0 = pj,j (0) = a(hj ) für j = 0, . . . , r

werden (bessere) Näherungswerte berechnet:

Für 1 ≤ k ≤ r und 0 ≤ j ≤ r − k setze

aj+k,k = pj,j+k(0) = pj+1,j+k (0) +
1

(hj/hj+k )− 1
(pj+1,j+k (0)− pj,j+k−1(0)).
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Extrapolation zum Limes Beispiele: Differenzenquotienten

Wählt man stattdessen den symmetrischen Differenzenquotienten

b(h) :=
f (x0 + h)− f (x0 − h)

2h
= f ′(x0) +

[r/2]∑

j=1

f (2j+1)(x0)

(2j + 1)!
h2j + o(hr ),

so werden Interpolationspolynome

qj,j+k zu den Punkten (h2j , b(hj )), . . . , (h
2
j+k , b(hj+k ))

bei ξ = 0 ausgewertet. Aus den Näherungswerten

bj,0 = qj,j(0) = b(hj ) für j = 0, . . . , [r/2]

werden (bessere) Näherungswerte berechnet:

Für 1 ≤ k ≤ [r/2] und 0 ≤ j ≤ [r/2]− k setze

bj+k,k = qj,j+k(0) = qj+1,j+k (0) +
1

(hj/hj+k )2 − 1
(qj+1,j+k (0) − qj,j+k−1(0)).
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Extrapolation zum Limes Beispiele: Differenzenquotienten

Für f (x) = ex an der Stelle x0 = 0, hj = 2−j für j = 1, . . . , 5:

Extrapolation für Differenzenquotienten (q = 1 in Satz 3.2.3)

tab=extrapolation_tab(’bsp_diffqu_exp’,2.^-[1:5],1)

tab =

1.29744254140026 0 0 0

1.13610166675097 0.97476079210167 0 0

1.06518762453461 0.99427358231826 1.00077784572378 0

1.03191134268575 0.99863506083689 1.00008888700977 0.99999046433634

1.01578903997129 0.99966673725682 1.00001062939680 0.99999944973780

Extrapolation für symmetrische Differenzenquotienten (q = 2 in Satz 3.2.3)

tab=extrapolation_tab(’bsp_symdiffqu_exp’,2.^-[1:5],2)

tab =

1.04219061098749 0 0 0

1.01044926723267 0.99986881931440 0 0

1.00260620192892 0.99999184682767 1.00000004866189 0

1.00065116883507 0.99999949113712 1.00000000075775 0.99999999999737

1.00016276836414 0.99999996820716 1.00000000001183 0.99999999999999
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Extrapolation zum Limes Satz: Richardson-Extrapolation

3.2.3 Satz: Richardson-Extrapolation

Die Funktion a : R+ → R besitze die Entwicklung

a(h) = a0 +

n+1∑

j=1

ajh
j·q + o(h(n+1)q), h → 0.

Hierbei sind q > 0 und aj ∈ R, j = 0, . . . , n + 1.
Weiter sei (hj)j∈N0 eine monoton fallende Folge positiver Zahlen mit

0 <
hj+1

hj
≤ ρ < 1, j ∈ N0.

Dann erfüllt das Interpolationspolynom

pj,j+n ∈ Pn zu den Punkten (hqj , a(hj)), . . . , (h
q
j+n, a(hj+n))

die Beziehung

a(0)− pj,j+n(0) = O(h
(n+1)q
j ), j → ∞.
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Extrapolation zum Limes Lemma

3.2.4 Lemma

Die Lagrange-Grundpolynome Ln,j zu paarweise verschiedenen Stützstellen
x0, . . . , xn ∈ R erfüllen

n∑

j=0

xkj Ln,j(x) =




xk , für 0 ≤ k ≤ n,

xn+1 − w(x), für k = n+ 1.

Beweis: Für x ∈ R und 0 ≤ k ≤ n ist

n∑

j=0

xkj Ln,j (x) = xk ,

weil das Monom ek : R → R, ek (x) = xk “sich selbst interpoliert”. Für k = n + 1 ergibt die
Fehlerdarstellung in der Newton-Form

xn+1 −
n∑

j=0

xn+1
j

Ln,j (x) = en+1[x0, . . . , xn, x ] · w(x),

und die dividierte Differenz (n + 1)-ter Ordnung von en+1 ist 1.
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Extrapolation zum Limes Extrapolations-Tafel:

3.2.5 Extrapolations-Tafel: Das Neville-Schema zur Berechnung der aj+k,k := pj,j+k(0) ≈ a(0)
wird als untere Dreiecksmatrix aufgeschrieben:

h0 a00 = a(h0)

h1 a10 = a(h1) a11

h2 a20 = a(h2) a21 a22

...
...

...
...

hj aj0 = a(hj ) aj1 aj2 . . . aj,j−1 ajj

...
...

...
...

...
...

. . .

mit Hilfe der Rekursion (mit dem entsprechenden q in Satz 3.2.3)

j = 0, 1, 2 . . . : aj0 = a(hj )

k = 1, . . . , j : ajk = aj,k−1 +
1(

hj−k/hj
)q − 1

(
aj,k−1 − aj−1,k−1

)
.
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Extrapolation zum Limes Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

3.2.6 Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

(i) Gebräuchliche Schrittweiten-Folgen (hj )j≥0 sind
(

1

2j

)

j∈N0

,

(
1

nj

)

j∈N0

, nj = 1, 2, 3, 4, 6, 8, 12, ...,2(j+1)/2 j ungerade, 3 ∗ 2(j−2)/2 j ≥ 2 gerade.

Unzulässig ist die Folge
(

1
j

)

j∈N

, da lim
j→∞

j

j + 1
= ρ = 1.

(ii) Nach Satz 3.2.3 gilt für die Einträge der k-ten Spalte

ajk − a(0) = O(h
(k+1)q
j−k

), j → ∞,

falls die Schrittweiten-Folge (hj )j≥0 die Voraussetzungen des Satzes erfüllt. Noch genauer
ist sogar für (unbekanntes!) ak+1 6= 0

ajk − a(0) = (−1)kak+1

k∏

i=j−k

h
q
i
+ o(h

(k+1)q
j−k

), j → ∞,

woraus man auf “schließlich monotone” Konvergenz der Folge (ajk)j≥k gegen a(0)
schließen kann.
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Extrapolation zum Limes Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

(iii) Führt man zusätzlich die Folge

bj,k = 2aj+1,k − aj,k , j ≥ k,

mit, so ergibt sich wegen |aj+1,k − a(0)| ≪ |aj,k − a(0)| die Beziehung

bj,k − a(0) ≈ a(0) − aj,k ,

also (heuristisch) eine Einschließung (→ Abbruchkriterium!)

aj,k ≤ a(0) ≤ bj,k oder aj,k ≥ a(0) ≥ bj,k .
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Extrapolation zum Limes Satz: Konvergenz entlang der Diagonalen

Besitzt die Funktion a sogar eine Reihenentwicklung

a(h) = a(0) +
∞∑

j=1

ajh
qj

(z.B. falls a analytisch ist), so kann auch der Grenzwert limk→∞ akk entlang der
Diagonalen der Extrapolations-Tafel betrachtet werden.

3.2.7 Satz: Konvergenz entlang der Diagonalen

Falls in der Reihenentwicklung unendlich viele aj 6= 0 sind und falls

inf
j∈N0

hj+1

hj
> 0 und sup

j∈N0

hj+1

hj
< 1,

so konvergiert die Folge (akk )k≥0 der Diagonalelemente der Extrapolations-Tafel
schneller gegen a(0) als die Folge (aj,k0)j≥k0 entlang einer beliebigen Spalte k0;
d.h.

lim
k→∞

|akk − a(0)|

|ak,k0 − a(0)|
= 0.
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Gauß-Approximation

3.3 Gauß-Approximation

Wir betrachten weiterhin die Approximation von Funktionen

f ∈ C [a, b] = {f : [a, b] → K : f ist stetig}.

C [a, b] ist ein K-Vektorraum, seine Dimension ist unendlich.

Pn (genauer die Einschränkungen der Polynome vom Grad kleiner oder gleich
n auf [a, b]) ist ein (n + 1)-dimensionaler Teilraum von C [a, b]

Die Gaußapproximation ist die Orthogonalprojektion von C [a, b] auf Pn bezüglich
eines gegebenen Skalarprodukts.
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Gauß-Approximation Definition: Skalarprodukt

3.3.1 Definition: Skalarprodukt

Es sei V ein K-Vektorraum. Eine Abbildung s : V × V → K heißt Skalarprodukt
auf V , wenn

(S1) s(αx + βy , z) = αs(x , z) + βs(y , z) für alle x , y , z ∈ V , α, β ∈ K;

(S2) s(x , y) = s(y , x) für alle x , y ∈ V ;

(S3) (x , x) > 0 für alle x ∈ V \ {0}.

(V , s) heißt Skalarproduktraum oder Prä-Hilbertraum, speziell für K = R auch
euklidischer Raum und für K = C unitärer Raum.

Schreibweise: 〈x , y〉 = s(x , y)

Wichtige Ergänzung:

(i) Das Skalarprodukt induziert eine Norm

‖x‖ =
√

〈x , x〉, x ∈ V .

(ii) Es gilt die Cauchy-Schwarz-Ungleichung

|〈x , y〉| ≤ ‖x‖ ‖y‖, x , y ∈ V .

Beweis: klar für v = 0 oder w = 0; für v, w 6= 0 setze o.B.d.A. ‖v‖ = ‖w‖ = 1 und betrachte

0 ≤ 〈v − 〈v, w〉w, v − 〈v, w〉w〉 = 1 − |〈v, w〉|
2
.
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Gauß-Approximation Beispiel: Skalarprodukte auf C [a, b

3.3.2 Beispiel: Skalarprodukte auf C [a,b
Es seien a, b ∈ R, a < b.

a) Das “Standard-Skalarprodukt” auf C [a,b] ist

〈f , g〉 =
∫ b

a

f (x)g(x) dx .

(SP1) und (SP2) sind sofort klar, (SP3) folgt aus der Stetigkeit:

〈f , f 〉 =
∫ b

a

|f (x)|2 dx ≥ 0 für alle f ∈ C [a, b];

für f 6= 0 existiert ein Intervall U = [x0 − δ, x0 + δ] ∩ [a,b] mit |f (x)| > 0 für alle x ∈ U,

also ist
∫ b
a
|f (x)|2 dx > 0 für f 6= 0.

Die induzierte Norm ist die L2-Norm

‖f ‖ =

(∫ b

a

|f (x)|2 dx
)1/2

.

Durch

‖f − g‖ =

(∫ b

a

|f (x) − g(x)|2 dx
)1/2

wird die Abweichung von f und g im quadratischen Mittel erfasst.
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Gauß-Approximation Beispiel: Skalarprodukte auf C [a, b

b) Das gewichtete Skalarprodukt auf C [a, b]: Die Funktion w : (a, b) → R erfülle

w(x) > 0 für alle x ∈ (a, b),

∫ b

a

w(x) dx < ∞.

w heißt Gewichtsfunktion. Dann ist

〈f , g〉w =

∫ b

a

f (x)g(x) w(x) dx

ein Skalarprodukt auf C [a, b] mit induzierter Norm

‖f ‖w =

(∫ b

a

|f (x)|2 w(x) dx

)1/2

.

Beispiel: w(x) = 1√
1−x2

auf [−1, 1] ergibt

〈f , g〉w =

∫ 1

−1
f (x)g(x)

dx√
1− x2

.
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Gauß-Approximation Bemerkung und Bezeichnungen:

3.3.3 Bemerkung und Bezeichnungen: Es sei V ein Skalarproduktraum.

(i) Es gilt die Parallelogramm-Identität

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2), x , y ∈ V .

Aus der Parallelogramm-Identität folgt umgekehrt die Polarisierung für K = R

〈x , y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2),

und für K = C

〈x , y〉 =
1

2
(‖x + y‖2 + i‖x + iy‖2 − (1 + i)(‖x‖2 + ‖y‖2)).

(ii) Der Cosinus des Winkels zwischen x , y ∈ V mit x , y 6= 0 ist

cos∠(x , y) =
〈x , y〉

‖x‖ ‖y‖
.

(iii) x , y ∈ V sind orthogonal, wenn 〈x , y〉 = 0 gilt.
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Gauß-Approximation Geometrisches Verständnis der Gauß-Approximation:

3.3.4 Geometrisches Verständnis der Gauß-Approximation:
Die Gaußapproximation von f ∈ C [a, b] durch Polynome vom Grad kleiner oder
gleich n berechnet dasjenige p ∈ Pn mit

‖f − p‖ = min
q∈Pn

‖f − q‖.

Dieser kürzeste Abstand wird genau dann erzielt, wenn die
Orthogonalitätsbedingung

〈f − p, q〉 = 0 für alle q ∈ Pn

erfüllt ist; d.h. die Differenz f − p ist orthogonal zu jedem q ∈ Pn. Siehe hierzu
Satz 3.3.5.

Anschaulich: Die Gaußapproximation von f ∈ C [a, b] ist die Orthogonalprojektion
von f auf den Teilraum der Polynome.
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Gauß-Approximation Satz: Die Orthogonalitätsbedingung

3.3.5 Satz: Die Orthogonalitätsbedingung

Es sei V ein Skalarproduktraum und S � V ein endlichdimensionaler Teilraum.
Dann sind äquivalent:

(i) p ∈ S ist eine beste Approximation von f ∈ V ; d.h.

‖f − p‖ = min
q∈S

‖f − q‖.

(ii) Es gilt die Orthogonalitätsbedingung

〈f − p, q〉 = 0 für alle q ∈ S .

Das Element p ∈ S ist durch (i) oder (ii) eindeutig bestimmt. Es heißt
Orthogonalprojektion von f auf S .

Bemerkung: In der Approximationstheorie und der Funktionalanalysis wird gezeigt, dass die
Aquivalenz sogar für jeden abgeschlossenen Teilraum (auch mit dim S = ∞) eines Hilbertraumes
gilt.
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Gauß-Approximation Definition und Satz: Gram-Matrix

Die Gram-Matrix dient der allgemeinen Beschreibung der Orthogonalprojektion.

3.3.6 Definition und Satz: Gram-Matrix

Es seien V ein Skalarproduktraum, ψ1, . . . , ψn ∈ V . Die Matrix

M =



〈ψ1, ψ1〉 · · · 〈ψn, ψ1〉

...
...

〈ψ1, ψn〉 · · · 〈ψn, ψn〉




heißt Gram-Matrix der Elemente ψ1, . . . , ψn. Es gilt:

a) M ist hermitesch und positiv-semidefinit.

b) M ist genau dann positiv-definit, wenn die Familie (ψ1, . . . , ψn) linear unabhängig ist.

c) Sind ψ1, . . . , ψn linear unabhängig und S = Span(ψ1, . . . , ψn), so ist die
Orthogonalprojektion von f ∈ V auf S gegeben durch

p =
n∑

j=1

cjψj ,

wobei der Vektor ~c = (cj )j=1,...,n die eindeutige Lösung des linearen Gleichungssystems

M~c =



〈f , ψ1〉

..

.
〈f , ψn〉


 ist.
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Gauß-Approximation Bemerkung:

3.3.7 Bemerkung: Es seien ψ1, . . . , ψn ∈ V und M die zugehörige Gram-Matrix.

(i) M ist genau dann eine Diagonalmatrix, wenn die Elemente ψ1, . . . , ψn paarweise orthogonal
sind, und M = I genau dann, wenn die Elemente ψ1, . . . , ψn ein Orthonormalsystem in V

bilden.

(ii) Gedächtnisstütze: Die Transponierte der Gram-Matrix kann man kurz schreiben als

MT = M =



〈ψ1,
.
..

〈ψn,


 (ψ1〉, . . . , ψn〉) .

Dabei wird die n × n-Matrix der Einträge 〈ψj , ψk〉 gebildet. Diese Vektornotation hilft z.B.
beim Basiswechsel.
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Gauß-Approximation Korollar:

3.3.8 Korollar:

a) Die Orthogonalprojektion ΠS : V → S ist eine lineare Abbildung.

b) Falls (φ1, . . . , φn) eine Orthonormalbasis von S ist, so ist die
Orthogonalprojektion gegeben durch

ΠS(f ) =

n∑

j=1

〈f , φj 〉φj , f ∈ V .
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Gauß-Approximation Beispiele:

3.3.9 Beispiele:

a) Auf dem R-Vektorraum C [0, 1] ist das Standardskalarprodukt

〈f , g〉 =
∫ 1

0
f (x)g(x) dx

definiert. Zur Monom-Basis ek : [0, 1] → R, ek(x) = xk , k = 0, . . . , n, von Pn gehört die
Gram-Matrix

Hn+1 =

(
1

j + k − 1

)

j,k=1,...,n+1

,

dies ist die Hilbert-Matrix von Übungsblatt 3. Sie ist sehr schlecht konditioniert. Für die
Gauß-Approximation sollte man also eine andere Methode als in Satz 3.3.6 verwenden!!

(→ Koordinaten-Transformation der Legendre-Polynome auf das Intervall [0, 1].)
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Gauß-Approximation Beispiele:

b) Auf dem R-Vektorraum C [−1, 1] ist das gewichtete Skalarprodukt

〈f , g〉w =

∫ 1

−1
f (x)g(x)

dx√
1− x2

definiert. Die Tschebyscheff-Polynome 1. Art Tn ∈ Pn lauten für x ∈ [−1, 1]

Tn(x) = cos(n arccos(x)), n =∈ N0.

Dies sind tatsächlich Polynome vom Grad n: klar ist

T0(x) = 1, T1(x) = x für x ∈ [−1, 1],

und aus der trigonometrischen Identität cos((n + 1)t) + cos((n − 1)t) = 2 cos(nt) cos t
folgt die Rekursion der Tschebyscheff-Polynome

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

also für n = 2, 3, 4, 5

T2(x) = 2x2−1, T3(x) = 4x3−3x , T4(x) = 8x4−8x2+1, T5(x) = 16x5−20x3+5x .

(Natürlich sind die Polynome auf ganz R (sogar C) mittels der Rekursion definiert.)

Für j , k ≥ 0 ergibt sich das Skalarprodukt

〈Tj ,Tk〉w =

∫ 1

−1
Tj (x)Tk (x)

dx√
1− x2

=

∫ π

0
cos(jt) cos(kt) dt =






π, für j = k = 0,

π/2, für j = k > 0,

0, für j 6= k.
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Gauß-Approximation Beispiele:

Die zugehörige Gram-Matrix ist eine Diagonalmatrix. Die Gauß-(Tschebyscheff)-Approximation
vom Grad n der Funktion f ∈ C [−1, 1] ist gegeben durch

p =
n∑

k=0

ckTk

mit den Koeffizienten

c0 =
1

π

∫ 1

−1
f (x)

dx√
1− x2

, ck =
2

π

∫ 1

−1
f (x)Tk (x)

dx√
1− x2

für k > 0.
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Gauß-Approximation Verfahren: Gram-Schmidt-Orthogonalisierung

Vorteilhaft für die Gauß-Approximation ist die Verwendung von
Orthogonalsystemen. Aus der Linearen Algebra ist bekannt (evtl. für Vektoren im
Kn):

3.3.10 Verfahren: Gram-Schmidt-Orthogonalisierung

Es sei V ein Skalarproduktraum und ψ1, . . . , ψn ∈ V \ {0}. Weiter sei

S = Span(ψ1, . . . , ψn), 1 ≤ r = dim S ≤ n.

Der folgende Algorithmus liefert eine Orthonormalbasis φ1, . . . , φr von S (mit
Aussortieren linear abhängiger ψj):

1. Setze k = 1 und φ1 =
1

‖ψ1‖
ψ1.

2. Für j = 2, . . . , n

τ = ψj −

k∑

ℓ=1

〈ψj , φℓ〉φℓ.

Falls τ 6= 0 setze k = k + 1 und φk =
1

‖τ‖
τ .
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Gauß-Approximation Beispiel: Legendre-Polynome auf [−1, 1

3.3.11 Beispiel: Legendre-Polynome auf [−1, 1
C [−1, 1] als R-Vektorraum mit dem Standardskalarprodukt

〈f , g〉 =
∫ 1

−1
f (x)g(x) dx

besitzt die Monom-Basis ek : [−1, 1] → R, ek(x) = xk , für k = 0, 1, . . . , n.

Gram-Schmidt-Orthonormalisierung ergibt (verwende Lj für die τ im Algorithmus 3.3.10):

L0(x) = 1, φ0(x) =
√

1/2,

L1(x) = x , φ1(x) =
√

3/2 x ,

und mit dem folgenden Satz 3.3.12

Lk+1(x) = x · Lk(x) −
k2

4k2 − 1
· Lk−1(x), k = 1, 2, . . .

φk(x) =
(2k)!

(k!)2

√
2k + 1

22k+1
Lk (x).

Für n = 2, 3, 4, 5 ist

L2(x) = x2 − 1

3
, L3(x) = x3 − 3

5
x , L4(x) = x4 − 6

7
x2 +

3

35
, L5(x) = x5 − 10

9
x3 +

5

21
x .
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Gauß-Approximation Beispiel: Legendre-Polynome auf [−1, 1

Damit ist die Gauß-(Legendre)-Approximation von f durch Polynome vom Grad n gegeben durch

p =
n∑

k=0

ckφk

mit den Koeffizienten

ck =

∫ 1

−1
f (x)φk (x) dx für k = 0, . . . , n.
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Gauß-Approximation Beispiel: Legendre-Polynome auf [−1, 1

Die Normalisierungskonstante der φk berechnet man z.B. mit der sog. Rodriguez-Formel für die
Legendre-Polynome:

Ln(x) =
n!

(2n)!

dn

dxn

[
(x2 − 1)n

]
.

Beachte: Höchstkoeffizient ist

L
(n)
n (0)

n!
=

1

(2n)!

d2n

dx2n

[
(x2 − 1)n

]

︸ ︷︷ ︸
=(2n)!

= 1.

Mit partieller Integration (alle Randterme sind Null) ergibt sich

〈Ln,Ln〉 =
(n!)2

((2n)!)2

∫ 1

−1

dn

dxn

[
(x2 − 1)n

] dn

dxn

[
(x2 − 1)n

]
dx

= (−1)n
(n!)2

((2n)!)2

∫ 1

−1
(x2 − 1)n

d2n

dx2n

[
(x2 − 1)n

]

︸ ︷︷ ︸
=(2n)!

dx

= (−1)n
(n!)2

(2n)!

∫ 1

−1
(x − 1)n (x + 1)n dx

=
(n!)2

(2n)!

(n!)2

(2n)!

∫ 1

−1
(x + 1)2n dx

=
(n!)4

((2n)!)2
22n+1

2n + 1
,

und daraus die obige Normierung der φk .
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Gauß-Approximation Beispiel: Legendre-Polynome auf [−1, 1

Bemerkung:
Eine andere Normalisierung, nämlich L̃n(1) = 1, erzielt man mit der Rekursion

L̃0(x) = 1, L̃1(x) = x ,

L̃k+1(x) =
2k+1
k+1

L̃k(x)− k
k+1

L̃k−1(x).

Hierbei ist

〈Lk ,Lk 〉 =
2

2k + 1
,

also ist φk in 3.3.11

φk(x) =

√
2k + 1

2
L̃k (x).

Für n = 2, 3, 4, 5 ist

L̃2(x) =
3

2
x2−1

2
, L3(x) =

5

2
x3−3

2
x , L4(x) =

35

8
x4−15

4
x2+

3

8
, L5(x) =

63

8
x5−35

4
x3+

15

8
x .
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Gauß-Approximation Satz: 3-Term Rekursion der Orthogonalpolynome

3.3.12 Satz: 3-Term Rekursion der Orthogonalpolynome

Das Skalarprodukt 〈·, ·〉 auf C [−1, 1] besitze die Symmetrie-Eigenschaft

〈p, xq〉 = 〈xp, q〉 für alle Polynome p, q.

Dann führt die Gram-Schmidt-Orthonormalisierung der Monom-Basis
{1, x , . . . , xn} auf die folgenden Polynome p̃k (mit Höchstkoeffizient 1) und φk
(mit ‖φk‖ =

√
〈φk , φk〉 = 1):

p̃0(x) = 1, p̃1(x) = x − β0,

p̃k+1(x) = (x − βk)p̃k(x)− γk p̃k−1(x), k = 1, 2, . . . ,

φk = 1
‖p̃k‖

p̃k , k = 0, 1, 2, . . .

mit

βk =
〈xp̃k p̃k〉

‖p̃k‖2
für k ≥ 0, γk =

‖p̃k‖
2

‖p̃k−1‖2
für k ≥ 1

Achtung: ‖p‖2 = 〈p, p〉 mit dem gegebenen Skalarprodukt!
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Gauß-Approximation Satz: 3-Term Rekursion der Orthogonalpolynome

Beweis: p̃0 = 1 und p̃1(x) = x − 〈x , φ0〉φ0 = x − β0 sind anhand der Definitionen abzulesen.

Für k ≥ 1 setze
qk+1(x) = (x − βk)p̃k (x)− γk p̃k−1(x).

Dann ergibt die Orthogonalität p̃k ⊥ Pk−1

〈qk+1, p̃k〉 = 〈xp̃k , p̃k 〉 − βk‖p̃k‖2 − γk 〈p̃k , p̃k−1〉︸ ︷︷ ︸
=0

= 0,

〈qk+1, p̃k−1〉 = 〈xp̃k , p̃k−1〉 − βk 〈p̃k , p̃k−1〉︸ ︷︷ ︸
=0

− γk‖p̃k−1‖2︸ ︷︷ ︸
=〈p̃k ,p̃k 〉

= 〈p̃k , xp̃k−1 − p̃k︸ ︷︷ ︸
∈Pk−1

〉 = 0.

Weiterhin ergibt sich für j < k − 1 sofort 〈qk+1, p̃j 〉 = 0.

Wir haben gezeigt, dass qk+1 ein Polynom vom Grad k + 1 mit dem Höchstkoeffizienten 1 ist,
das orthogonal zu Pk ist. Weil das orthogonale Komplement von Pk in Pk+1 eindimensional ist,
folgt also qk+1 = p̃k+1.
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Gauß-Approximation Bemerkung:

3.3.13 Bemerkung:
Bei der Gauß-Approximation bzgl. des Standard-Skalarprodukts wird die Abweichung im
quadratischen Mittel minimiert. Dabei wird die Maximalabweichung

‖f − p‖ = max
x∈[a,b]

|f (x)− p(x)|

häufig insbesondere in der Nähe der Intervallenden groß. Deshalb verwendet man bei der
Berechnung der besten Gauß-Approximation p gerne das gewichtete Skalarprodukt

(f , g) =

∫ b

a

f (x)g(x)
dx√

(x − a)(b − x)
,

das den Fehler f − p am Rand höher gewichtet als in der Mitte des Intervalls [a,b].

Die Orthogonalpolynome zu diesem Skalarprodukt sind die auf das Intervall [a,b] transformierten
Tschebyscheff-Polynome 1. Art, siehe Beispiel 3.3.9(b):

Tn,[a,b](x) = Tn

(
2x − a− b

b − a

)

mit der Normalisierungskonstanten

‖Tn,[a,b]‖2 =

∫ b

a

Tn

(
2x − a − b

b − a

)2 dx√
(x − a)(b − x)

=

{
π(b−a)

2
, für n = 0,

π(b−a)
4

, für n > 0.
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Gauß-Approximation Beispiel:

Die Gauß-Legendre Approximation (links) zum Standard-Skalarprodukt, und die
Gauß-Tschebyscheff Approximation (rechts) zur Gewichtsfunktion w(x) = 1/

√
1− x2:
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