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Abstract. An optimal control problem for 2d and 3d Stokes equations is investigated with pointwise

inequality constraints on the state and the control. The paper is concerened with the full discretization of the

control problem allowing for different types of discretization of both the control and the state. For instance,

piecewise linear and continuous approximations of the control are included in the present theory. Under certain

assumptions on the L
∞-error of the finite element discretization of the state, error estimates for the control are

derived which can be seen to be optimal since their order of convergence coincides with the one of the interpolation

error. The assumptions of the L
∞-finite-element-error can be verified for different numerical settings. The

theoretical results are confirmed by numerical examples.

1. Introduction. This paper is concerned with the finite element discretization for the following
linear quadratic optimal control problem subject to the Stokes equations and additional constraints on
the control and the state:

(P)







minimize J(v, u) :=
1

2

∫

Ω

|v − z|2
Rd dx+

α

2

∫

Ω

|u|2
Rd dx

subject to −∆ v + ∇p = u in Ω

∇ · v = 0 in Ω

v = 0 on Γ := ∂Ω

and v ∈ K ⊂ L∞(Ω′)d

a ≤ u(x) ≤ b a.e. in Ω,

where u denotes the control, v and p are velocity and pressure, respectively, and z is the given desired
state. Furthermore, Ω ⊂ R

d, d = 2, 3 is a bounded domain with boundary Γ and α > 0 is a given number.
Moreover, a, b ∈ R

d are given vectors, whereas K denotes a closed and convex subset of L∞(Ω′)d, where
Ω′ is a fixed (not necessarily proper) subset of Ω. Possible examples for K are box constraints for v or
restrictions on the Euclidian norm of v, i.e.,

K(1) :=
{
v ∈ L∞(Ω′)d|va ≤ v(x) ≤ vb a.e. in Ω′

}

K(2) :=
{
v ∈ L∞(Ω′)d||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}

with given bounds va, vb ∈ R
d, and ̺ > 0. In view of the no-slip conditions on the boundary, it might be

reasonable to require the state constraints only in the interior of Ω. The presented theory is applicable
for both cases, i.e. Ω′ 6= Ω and Ω′ = Ω.

It is well known that, if certain constraint qualifications are satisfied, then the generalized Karush-Kuhn-
Tucker theory allows to derive first-order necessary conditions that include the existence of Lagrange
multipliers associated to the state constraints in (L∞(Ω′)d)∗, i.e., the dual of L∞(Ω′)d with respect
to the inner product of L2(Ω′)d (cf. [35] or [7]). This lack of regularity of the multipliers complicates
the numerical analysis of state-constrained optimal control problems. Nevertheless, in the recent past,
some progress has been achieved concerning the finite element error analysis of state-constrained elliptic
problems. We exemplarily mention Casas [8], where a semilinear elliptic control problem with finitely
many state constraints is considered, and Casas and Mateos [9], where convergence of a finite element
discretization for state-constrained semilinear elliptic problems is proved in a general setting. Moreover,
we refer to Deckelnick and Hinze [14, 15], where a variational discretization of state-constrained elliptic
problems is considered, and to [17] for problems with pointwise constraints on the gradient of the state
variable. Furthermore, in [16], Deckelnick and Hinze also investigated piecewise constant approximations
of the control in the presence of pointwise state constraints and obtained an order of convergence of
h| log h| in the two dimensional case and h1/2 in case of three dimensions. Afore, slightly worse results
for the same setting are proven in [30] by employing a completely different analysis.

In this paper, we show that the analysis of [30] can be transferred to the Stokes equations and piecewise
linear and continuous ansatz functions for the control. In particular, the use of piecewise linear ansatz
functions requires to significantly modify the theory presented in [30], which is performed by using a par-
ticular quasi-interpolant introduced by Carstensen in [6]. Moreover, to deal with different discretization
techniques for the Stokes equations, we have to allow for discrete states which may not be feasible for the
continuous problem. This constitutes another significant difference to the existing theory. The presented
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2 J. C. DE LOS REYES, C. MEYER, B. VEXLER

analysis covers results for different settings such as for instance the following: Let Ω ∈ R
2 be a convex

polygon and Ω′ be strictly contained in Ω and suppose that the Stokes equations are discretized with the
Taylor-Hood element, while we use piecewise linear ansatz functions for the control. Then there holds
for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,

where (ū, v̄, p̄) is the solution of (P), while (ūh, v̄h, p̄h) denotes the solution of its discrete counterpart.

To the authors’ best knowledge, this is the first note that deals with the discretization error for the
optimal control of the Stokes equations in the presence of pointwise state constraints. There are several
papers considering finite element discretizations of the unconstrained optimal control of the Stokes and
Navier-Stokes equations (see for instance [3, 13, 24, 25]) as well as contributions for the purely control-
constrained case [32]. However, the analysis in case of pointwise state constraints differs significantly from
these settings since, among other things, optimal L∞-error estimates for the finite element discretization
of the Stokes equations are required.

The paper is organized as follows: after stating the main assumptions and known results for the continuous
problem (P) in the following section, we introduce a general framework for a discretization of (P) in
Section 3, which covers different concrete discrete schemes. Thereafter, in Section 4 we discuss some
special interpolation results to be used in Section 5, where a priori error analysis for the problem under
consideration is presented. Finally, Section 6 is devoted to concrete discretization schemes and their
practical realization, whereas the numerical examples are presented in Section 7.

2. Notation and Assumptions. In all what follows, |z|Rd =
(∑d

i=1 z
2
i

)1/2
denotes the Euclidian

norm and inequalities of the form z ≤ w with w, z ∈ R
d, are understood componentwise. Moreover

the natural inner product of L2(Ω)d and the associated norm are abbreviated by (·, ·) := (·, ·)L2(Ω)d and
‖ · ‖ := ‖ · ‖L2(Ω)d . Furthermore, we introduce the Hilbert spaces

V := H1
0 (Ω)d, L :=

{
p ∈ L2(Ω)|

∫

Ω

p(x) dx = 0
}
.

Throughout this article, let σ be a real number satisfying 1 < σ < d/(d − 1). Then we define the
conjugate exponent by σ′ = σ/(σ − 1). In addition, Wσ denotes the Sobolev space W 1,σ(Ω)d, whereas
we set V∞ := L∞(Ω′)d. The dual spaces associated to Wσ and V∞ with respect to the inner product of
L2(Ω)d and L2(Ω′)d, respectively, are denoted by W ∗

σ and V ∗
∞.

Assumption 2.1. On the quantities in (P), we impose the following conditions:

• Ω is an open, simply connected domain Ω ⊂ R
d, d = 2, 3, while Ω′ denotes an open subset of Ω.

• K is a closed and convex subset of L∞(Ω′)d

• a, b ∈ R
d with a ≤ b

• z ∈ L2(Ω)d.

Let us introduce the variational formulation of the Stokes equations by

(∇v,∇ϕ) − (p,∇ · ϕ) + (∇ · v, ψ) = (u, ϕ) ∀ (ϕ, ψ) ∈ V × L. (2.1)

It is well known that, for a given right-hand side u ∈ L2(Ω)d, there exists a unique solution to (2.1)
and the associated solution operator, denoted by G : u 7→ (v, p), is continuous from L2(Ω)d to V × L.
Moreover, we introduce the control-to-state operator S : L2(Ω)d → V which maps the control variable
u to the velocity component of the solution Gu, i.e., S : u 7→ v. Sometimes S and G are considered
in different spaces (e.g. L∞(Ω′)d), for simplicity also denoted by S and G, respectively. Based on the
control-to-state operator, we define the reduced control problem by:

(P)







min
u∈L2(Ω)d

f(u) := J(S u, u)

s.t. S u ∈ K

a ≤ u(x) ≤ b a.e. in Ω.

We assume the following mapping properties of S:



Optimal Control of the Stokes Equations 3

Assumption 2.2. There is a positive number σ̄ < d/(d − 1) such that S continuously maps W ∗
σ =

(W 1,σ(Ω)d)∗ to W 1,σ′

(Ω)d for all σ ∈ [σ̄, d/(d − 1)[. Hence, due to σ̄′ > d, Sobolev embedding theorems
give

S : L2(Ω)d →֒W ∗
σ →W 1,σ′

(Ω)d →֒ V∞ ∀σ ∈ [σ̄, d/(d− 1)[. (2.2)

For the rest of the paper, let σ be a fixed, but arbitrary number in [σ̄, d/(d− 1)[. We point out that, if Ω
has a smooth boundary, then (2.2) is satisfied, see Temam [34, Ch. I, Prop. 2.3]. Furthermore, in case of
Lipschitz domains, (2.2) is proven in three dimensions by Brown and Shen [5, Theorem 2.9] and, under
certain conditions on the Lipschitz constant of Γ (the angles in the corners should not be too acute),
Galdi et al. proved (2.2) for two and three dimensions [22, Theorem 2.1].

As already mentioned in the introduction, a certain constraint qualification is needed to derive the
existence of Lagrange multipliers by means of the generalized Karush-Kuhn-Tucker theory. Here, we rely
on

Assumption 2.3 (Slater condition). There is a û ∈ L∞(Ω)d ∩Wσ, satisfying

S û ∈ intK

a ≤ û(x) ≤ b a.e. in Ω.

In order to state necessary optimality conditions for the solution of (P) we introduce the set of admissible
controls which incorporates both the control and the state constraints:

Uad :=
{
u ∈ L∞(Ω)d|a ≤ u(x) ≤ b a.e. in Ω, S u ∈ K

}
.

Theorem 2.4. Under Assumption 2.3 there exists a unique solution of (P), denoted by ū. This solution
provides some additional regularity, namely ū ∈Wσ, and satisfies the following variational inequality

(S ū− z , S u− S ū) + α (ū , u− ū) ≥ 0 ∀ u ∈ Uad (2.3)

where Uad is defined as above.

Proof. The existence and uniqueness result is standard. To show the additional regularity of ū, we
make use of the generalized Karush-Kuhn-Tucker theory (cf. Zowe and Kurcyusz [35]). To this end, set
v̄ = S(ū). Under the Slater condition in Assumption 2.3, the generalized KKT theory guarantees the
existence of a Lagrange multiplier µ̄ ∈ V ∗

∞ such that ū satisfies

ū = Π[a,b]

{
− 1

α
S∗
(
E2(v̄ − z) + E∞µ̄

)}
(2.4)

with the adjoint operator S∗ : (W 1,σ′

(Ω)d)∗ → Wσ (see Assumption 2.2). Moreover, E2 : L2(Ω)2 →
(W 1,σ′

(Ω)d)∗ and E∞ : V ∗
∞ → (W 1,σ′

(Ω)d)∗ are the associated embedding operators. Furthermore, Π[a,b]

denotes the component- and pointwise projection operator on the interval [a, b]. Since this projection
operator maps Wσ to itself, we have ū ∈Wσ. Finally, the derivation of the variational inequality follows
standard arguments.

Remark 2.5. We point out that the convergence analysis, presented below, does not involve dual variables,
i.e., the adjoint state or Lagrange multipliers. In this context, the existence of Lagrange multipliers is
just required to guarantee the additional regularity of ū which is needed for the derivation of interpolation
error estimates (see Lemma 4.4 and 4.5 below).

3. Discretization. Now we turn to the discretization of (P). First, let us introduce a family of
meshes {Th} with mesh size h > 0. The mesh Th consists of open cells T (triangles, tetrahedra, quadri-
laterals, hexahedra) such that

Ω̄ =
⋃

T∈Th

T̄
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fulfilling usual assumptions on the finite element mesh, see, e.g., [4]. Notice that this implies that the
cells lying on the boundary of Ω may be curved if Γ is smooth (see Section 6.1 for details). The mesh
size is defined by

h := max
T∈Th

hT with hT := diam (T ).

With each T ∈ Th, we associate the diameter of the largest ball contained in T , denoted by RT . We
suppose the following regularity assumptions for {Th}:
Assumption 3.1. There exist two positive constants ρ and R such that

hT

RT
≤ R ,

h

hT
≤ ρ

hold for all cells T ∈ ∪h>0Th.

To each mesh, we associate finite dimensional subspaces of V and L, denoted by Vh and Lh. The discrete
counterpart of (2.1) is then given by

(∇vh,∇ϕh) − (ph,∇ · ϕh) + (∇ · vh, ψh) = (u, ϕh) ∀ (ϕh, ψh) ∈ Vh × Lh (3.1)

with associated solution operator Ghu = (vh, ph) ∈ Vh × Lh. Concrete choices for the pairs (Vh, Lh),
allowing for existence of the solution operator Gh, will be discussed in Section 6. Analogously to above,
we define the discrete control-to-state operator Sh mapping given control u to the velocity component vh

of Ghu. In all what follows, we rely on the following conditions on Sh, that will be verified in Section 6
for different settings.

Assumption 3.2. The following error estimates hold true

‖S u− Sh u‖V∞
≤ c δ(h) ‖u‖L∞(Ω)d (3.2)

with some function δ : R
+ → R

+, satisfying δ(h) → 0 if h ↓ 0, and a constant c independent of h and u.

Next, we turn to the discretization of the control. To this end, we define the associated ansatz functions.

Assumption 3.3. Let n ∈ N be given and suppose that n ansatz functions φi ∈ L∞(Ω), 1 ≤ i ≤ n, are
given such that for every i ∈ {1, ..., n}

max
x∈Ω̄

φi(x) = 1, φi(x) ≥ 0 a.e. in Ω,

n∑

i=1

φi(x) = 1 a.e. in Ω. (3.3)

Moreover, we assume that the patch ωi := suppφi is a set of positive measure and contained in the union
of Mi adjacent cells that share at least one common vertex.

Notice that Assumption 3.1 implies the existence of a constant M ∈ N, independent of h, such that
Mi ≤M for all i ∈ {1, ..., n}.
Remark 3.4. If Ω is a polygon (d = 2) or polyhedron (d = 3), the assumptions on the ansatz functions
φi, i = 1, ..., n are clearly fulfilled for different common finite elements such as:

• piecewise constant elements,
• linear finite elements in case of triangles and tetrahedrons, respectively,
• bi-/trilinear elements for quadrilaterals and hexahedrons, respectively.

The assumption φi(x) ≥ 0 a.e. in Ω is not needed for the derivation of interpolation error estimates, but
for the feasibility of interpolated controls (see Lemma 5.5).

The discrete control space is given by Uh := span {φi | 1 ≤ i ≤ n}d. Now we are in the position to define
the discrete counterpart to (P):

(Ph)







min
uh∈Uh

f(u) := J(Sh uh, uh)

s.t. Sh uh ∈ K,

a ≤ uh(x) ≤ b a.e. in Ω.



Optimal Control of the Stokes Equations 5

Notice that (Ph) is not a fully discrete problem, since K and z are not discretized. The discretization of
K and z is postponed to Section 6.3. One shows by standard arguments:

Theorem 3.5. Assume that the feasible set for (Ph) is not empty, i.e., there exists a discrete control
uh ∈ Uh with a ≤ uh(x) ≤ b a.e. in Ω and Sh uh ∈ K. Then there exists unique solution of (Ph), denoted
by ūh ∈ Uh, which satisfies the following discrete variational inequality

(Sh ūh − z , Sh uh − Sh ūh) + α (ūh , uh − ūh) ≥ 0 ∀ uh ∈ Uh
ad (3.4)

with

Uh
ad :=

{
uh ∈ Uh|a ≤ uh(x) ≤ b a.e. in Ω, Sh uh ∈ K

}
.

4. Interpolation estimates. In this section we discuss some interpolation estimates for functions
in Wσ. For the error analysis in the next section we need an interpolation operator which provides
interpolation estimates of optimal order among other things in negative Sobolev norms (cf. Lemma 4.5)
and additionally has the following property:

a ≤ u(x) ≤ b a.e. in Ω ⇒ a ≤ (Πhu)(x) ≤ b a.e. in Ω. (4.1)

To this end we consider the quasi-interpolation operator introduced in [6]. For an arbitrary u ∈ L1(Ω),
the construction is as follows:

Πhu =
∑

i

πi(u)φi, (4.2)

where

πi(u) =

∫

ωi
uφi dx

∫

ωi
φi dx

. (4.3)

Analogously, the quasi-interpolation operator for vectorial quantities is defined componentwise for sim-
plicity also denoted by Πh. The property (4.1) is obviously fulfilled due to the above construction and
Assumption 3.3.

In the following we discuss error estimates for u− Πhu in different norms on the computational domain
Ω ⊂ R

d, d = 2, 3. To keep the discussion concise, we argue for a single component for the rest of this
section. The results for vectorial quantities immediately follow from norm equivalence in R

d.

Lemma 4.1. For each i ∈ {1, ..., n}, there is a constant ci which may depend on diam ωi such that

‖u− πi(u)‖L2(ωi) ≤ ci ‖∇u‖Ls(ωi) ∀u ∈ W 1,s(ωi)

for all 2d
d+2 ≤ s ≤ 2.

Remark 4.2. The condition s ≥ 2d
d+2 is required for the embedding W 1,s(ωi) →֒ L2(ωi). It obviously

holds:

2d

d+ 2
<

d

d− 1
for d = 2, 3.

Proof. Let i ∈ {1, ..., n} be arbitrary. For the proof we use an indirect argument. If the proposed assertion
is false, there exists a sequence {uk} ⊂W 1,s(ωi) with

‖uk − πi(uk)‖L2(ωi) = 1 and ‖∇uk‖Ls(ωi) ≤
1

k
∀ k ∈ N.

We consider vk = uk − πi(uk) and obtain in view of ∇πi(uk) = 0

‖vk‖L2(ωi) = 1 and ‖∇vk‖Ls(ωi) ≤
1

k
∀ k ∈ N. (4.4)
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Therefore, thanks to s ≤ 2, {vk} is bounded in W 1,s(ωi) and there exists a subsequence denoted again
by {vk} with

vk ⇀ v in W 1,s(ωi)

and therefore

vk → v in Ls(ωi).

Due to (4.4), ∇vk is a Cauchy sequence in Ls(ωi) and therefore

vk → v in W 1,s(ωi).

Hence, ∇v = 0 and v = const. Moreover there holds by the definition of πi:
∫

ωi

vkφi dx = 0,

and therefore
∫

ωi

vφi dx = 0,

which implies v = 0. Due to the embedding W 1,s(ωi) →֒ L2(ωi), we have vk → v in L2(ωi) and therefore
‖v‖L2(ωi) = 1. This is a contradiction.

Lemma 4.3. There is a constant c which is independent of h such that

‖u− πi(u)‖L2(ωi) ≤ c hd( 1
2−

1
s )+1 ‖∇u‖Ls(ωi) ∀u ∈W 1,s(ωi)

for all i ∈ {1, ..., n} and all 2d
d+2 ≤ s ≤ 2.

Proof. The proof uses the assertion from Lemma 4.1 on a reference patch ω̂i and a standard transformation
argument. For convenience of the reader, we shortly sketch the arguments for a domain with polygonal
(d = 2) or polyhedral (d = 3) boundary and the case of triangles and tetrahedra, respectively. Let ωi

be an arbitrary patch consisting of the cells T
(i)
j , j = 1, ...,Mi. As mentioned above, M = maxi{Mi} is

bounded independently of h. To each patch ωi, we associate a reference patch ω̂i whose vertices lie on

the surface of the unit ball in R
d. Moreover, it consists of Mi congruent cells T̂

(i)
j . Due to Mi ≤M , the

number of possible references patches is finite and they can be constructed such that |T̂ (i)
j | is bounded

from below and above by constants independent of h. Now denote by Fi, Fix̂ = x, the bi-Lipschitz

transformation from ω̂i to ωi, and set F
(i)
j := Fi|T̂ (i)

j

, i.e. the affine-linear transformation from T̂
(i)
j to

T
(i)
j . Analogously to (4.3), let π̂i be defined by

π̂i(v) :=

∫

ω̂i
φ̂i v dx̂

∫

ω̂i
φ̂i dx̂

=

∫

ω̂i
(φi ◦ Fi) v dx̂
∫

ω̂i
φi ◦ Fi dx̂

,

where φ̂i denote the ansatz function on ω̂i. Then, due to u ◦ Fi ∈ W 1,s(ω̂i), we obtain

‖u− πi(u)‖2
L2(ωi)

=

Mi∑

j=1

|T (i)
j |

|T̂ (i)
j |

∫

T̂
(i)
j

(

u(F
(i)
j x̂) − πi(u)

)2

dx̂

≤ c hd

∫

ω̂i

(
u ◦ Fi − π̂i(u ◦ Fi)

)2
dx̂ ≤ c hd

(
∫

ω̂i

|∇x̂(u ◦ Fi)|sdx̂
) 2

s

≤ c hd

(
Mi∑

j=1

|T̂ (i)
j |

|T (i)
j |

∫

Tj

|∇xu|s
∣
∣
∂x

∂x̂

∣
∣
s
dx

) 2
s

≤ c hd(1− 2
s )+2‖∇u‖2

Ls(ωi)
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with a constant c > 0 independent of h. If quadrilaterals or hexahedra are used, one argues analogously

using suitably defined reference patches. In case of smooth boundaries, where F
(i)
j is not longer affine-

linear, the result follows from similar transformation arguments known from the theory of interpolation
on curved domains (see [2, Lemma 2.3]).

Lemma 4.4. There is a constant c which is independent of h such that

‖u− Πhu‖L2(Ω) ≤ c hd( 1
2−

1
s )+1 ‖∇u‖Ls(Ω) ∀u ∈ W 1,s(Ω),

with 2d
d+2 ≤ s ≤ 2.

Proof. For all v ∈ L2(Ω), we find

(u − Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx,

≤ c hd( 1
2−

1
s )+1

n∑

i=1

‖∇u‖Ls(ωi) ‖v‖L2(ωi)

≤ c hd( 1
2−

1
s )+1

(
n∑

i=1

‖∇u‖s
Ls(ωi)

)1/s( n∑

i=1

‖v‖s′

L2(ωi)

)1/s′

.

Using the fact that s′

2 ≥ 1 since s ≤ 2, we have

n∑

i=1

‖v‖s′

L2(ωi)
=

n∑

i=1

(

‖v‖2
L2(ωi)

) s′

2 ≤
(

n∑

i=1

‖v‖2
L2(ωi)

) s′

2

.

Hence,

|(u − Πhu, v)| ≤ c hd( 1
2−

1
s )+1 ‖∇u‖Ls(Ω) ‖v‖L2(Ω).

Notice that Assumption 3.3 implies
∑n

i=1 ‖∇w‖
q
Lq(ωi)

≤ c ‖∇w‖q
Lq(Ω) for every w ∈ W 1,q(Ω) and every

1 ≤ q <∞. Setting v = u− Πhu, we complete the proof.

Lemma 4.5. There exists a constant c, independent of h, such that

‖u− Πhu‖W 1,s(Ω)∗ ≤ c h2d( 1
2−

1
s )+2 ‖u‖W 1,s(Ω) ∀u ∈W 1,s(Ω)

with 2d
d+2 ≤ s ≤ 2.

Proof. We consider for all v ∈W 1,s(Ω):

(u − Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx,

where we have used
∑n

i=1 φi ≡ 1 and the definition of Πh. Due to definition of πi, we have
∫

ωi

(u− πi(u))φi dx = 0,

and therefore we continue with

(u − Πhu, v) =

n∑

i=1

∫

ωi

(u− πi(u))φi (v − πi(v)) dx

≤ c h2d( 1
2−

1
s )+2

n∑

i=1

‖∇u‖Ls(ωi) ‖∇v‖Ls(ωi)

≤ c h2d( 1
2−

1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s′

Ls(ωi)

) 1
s′

,
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Using the fact s′

s ≥ 1 since s ≤ 2, we obtain

n∑

i=1

‖∇v‖s′

Ls(ωi)
=

n∑

i=1

(

‖∇v‖s
Ls(ωi)

) s′

s ≤
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) s′

s

such that

|(u − Πhu, v)| ≤ c h2d( 1
2−

1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) 1
s

≤ c h2d( 1
2−

1
s )+2 ‖u‖W 1,s(Ω) ‖v‖W 1,s(Ω).

This completes the proof.

Lemma 4.6. For every u ∈ L∞(Ω), there holds

‖Πh u‖L∞(Ω) ≤ ‖u‖L∞(Ω).

Proof. In view of (4.3), we obtain

|πi(u)| ≤ ‖u‖L∞(Ω) ∀ i ∈ {1, ..., n}.

Together with (3.3), this implies

∣
∣
∣
∣
∣

n∑

i=1

πi(u)φi(x)

∣
∣
∣
∣
∣
≤ max

i
{|πi(u)|}

n∑

i=1

φi(x) ≤ ‖u‖L∞(Ω) ∀x ∈ Ω,

which gives the assertion.

5. Convergence analysis. With the above results at hand, in particular Lemma 4.4 and 4.5, one
can extend the theory from [30] to problem (P). The analysis of [30] is mainly based on the existence
of functions ud ∈ Uh and uc ∈ U which are feasible for one of the problems (P) or (Ph), but in some
sense close to the solution of the other problem. In [30], the proofs are presented for the case of box
constraints on the state. With the help of the support functional, the arguments can easily be adapted
to the more general state constraint in (P). For convenience of the reader, this is demonstrated in the
following section. We characterize the convex set K by means of the support functional: since the interior
of K is not empty by Assumption 2.3, the supporting hyperplane theorem implies

intK =
⋂

µ∈V ∗

∞
, µ6=0

{v ∈ V∞ | 〈µ , v〉V ∗

∞
,V∞

< s(µ)}, (5.1)

where s : V ∗
∞ → R denotes the support functional, i.e. s(µ) = supv∈K〈µ , v〉V ∗

∞
,V∞

(see, e.g., Luenberger
[29]). Hence, in view of Assumption 2.3, there is a τ > 0 such that

〈µ , S û〉V ∗

∞
,V∞

≤ s(µ) − τ ∀ µ ∈ V ∗
∞, µ 6= 0. (5.2)

Recall that σ is a fixed, but arbitrary number in [σ̄, d/(d− 1)[ and Wσ = W 1,σ(Ω)d.

Definition 5.1. Given σ ∈ [σ̄, d/(d− 1)[ and h > 0, we set

η(σ, h) := h2d( 1
2−

1
σ )+2

β(σ, h) := max{η(σ, h), δ(h)},

where δ(h) is defined as in Assumption 3.2. Moreover, we define

uc := ūh + γcδ(h)(û− ūh)

ud := Πh ū+ γd β(σ, h)(Πh û− Πh ū),
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with constants γc, γd > 0 defined in the subsequent.

Lemma 5.2. There exist a constant γc independent of h and an h1 > 0 such that the function uc is
feasible for (P) for all h < h1.

Proof. First we show S uc ∈ K. To this end, let µ ∈ V ∗
∞, µ 6= 0, be arbitrary and define

µ̃ :=
1

‖µ‖V ∗

∞

µ.

such that ‖µ̃‖V ∗

∞
= 1. Then, one obtains

〈µ̃ , S uc〉V ∗

∞
,V∞

= (1 − γcδ(h))〈µ̃ , S ūh〉V ∗

∞
,V∞

+ γcδ(h)〈µ̃ , Sû〉V ∗

∞
,V∞

≤ (1 − γδ(h))
[
〈µ̃ , Sh ūh〉V ∗

∞
,V∞

+ 〈µ̃ , (S − Sh)ūh〉V ∗

∞
,V∞

]
+ γcδ(h)

(
s(µ̃) − τ

)

≤ s(µ̃) − γcδ(h)τ + (1 − γcδ(h))‖µ̃‖V ∗

∞
‖(S − Sh)ūh‖V∞

≤ s(µ̃) − δ(h)
(
γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d

)

(5.3)

where we used Assumption 3.2, (5.2), and the feasibility of ūh for (Ph) which implies 〈µ̃ , Sh ūh〉 ≤ s(µ̃).
In view of the control constraints in (P), we obtain for the second addend in the last inequality

γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d ≥ γcτ − c max{|a|, |b|}

such that 〈µ̃ , S uc〉 < s(µ̃) is fulfilled if we choose γc > c max{|a|, |b|}/τ . Hence, uc satisfies

〈µ , S uc〉V ∗

∞
,V∞

= ‖µ‖V ∗

∞
〈µ̃ , S uc〉V ∗

∞
,V∞

< ‖µ‖V ∗

∞
s(µ̃) = s(µ),

since the support functional is clearly sublinear. As µ was chosen arbitrary, (5.1) implies S uc ∈ K if
γc > c max{|a|, |b|}/τ . Furthermore, if we choose h small enough, then uc is a convex linear combination of
two functions in {u ∈ L∞(Ω)d | a ≤ u(x) ≤ b a.e. in Ω} and therefore also satisfies the control constraints
in (P). Consequently the assertion holds true.

To prove a similar result for the other direction, i.e., the feasibility of ud for (Ph), we need some auxiliary
results which are presented in the subsequent.

Lemma 5.3. Suppose u ∈ Wσ is given. Then

‖S(u− Πh u)‖V∞
≤ c η(σ, h) ‖u‖Wσ

holds true with a constant c only depending on Ω.

Proof. The mapping properties of S in Assumption 2.2 imply

‖S(u− Πh u)‖V∞
≤ c ‖S‖L(W∗

σ ,W 1,σ′ (Ω)d) ‖u− Πh u‖W∗

σ
≤ c η(σ, h) ‖u‖Wσ

,

where we used Lemma 4.5 and the definition of η.

Lemma 5.4. Let µ̃ ∈ V ∗
∞ with ‖µ̃‖V ∗

∞
= 1 be arbitrary. Then, for every u ∈ Wσ ∩ L∞(Ω)d,

〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖u‖Wσ

+ ‖u‖L∞(Ω)d

)

is satisfied with a constant c > 0 independent of h and u.

Proof. In view of ‖µ̃‖V ∗

∞
= 1, we find

〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

= 〈µ̃ , S u〉V ∗

∞
,V∞

+ 〈µ̃ , S(Πh u− u)〉V ∗

∞
,V∞

+ 〈µ̃ , (Sh − S)Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ ‖µ̃‖V ∗

∞
‖S(Πh u− u)‖V∞

+ ‖µ̃‖V ∗

∞
‖(Sh − S)Πh u‖V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c
(
η(σ, h) ‖u‖Wσ

+ δ(h) ‖u‖L∞(Ω)d

)

where we used Lemma 5.3, Assumption 3.2, and Lemma 4.6. With the definition of β (cf. Definition 5.1),
the assertion is verified.
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Lemma 5.5. There exist a constant γd depending on ū and σ, but not on h, and a mesh size h2 so that
ud is feasible for (Ph) if h < h2.

Proof. Let µ ∈ V ∗
∞ again be arbitrary and define µ̃ = µ/‖µ‖V ∗

∞
as in the proof of Lemma 5.2. Similarly

to (5.3), we estimate

〈µ̃ , Sh ud〉V ∗

∞
,V∞

= (1 − γdβ(σ, h))〈µ̃ , Sh Πh ū〉V ∗

∞
,V∞

+ γdβ(σ, h) 〈µ̃ , Sh Πh û〉V ∗

∞
,V∞

≤ (1 − γdβ(σ, h))
[

〈µ̃ , S ū〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d

)]

+ γdβ(σ, h)
[

〈µ̃ , S û〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖û‖Wσ

+ ‖û‖L∞(Ω)d

)]

≤ s(µ̃) − β(σ, h)
[

γdτ − c
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d + ‖û‖Wσ
+ ‖û‖L∞(Ω)d

︸ ︷︷ ︸

:= cu

)]

.

(5.4)

Hence, if we choose γd > c cu/τ , then one obtains 〈µ̃ , Sh ud〉 < s(µ̃) which gives in turn Sh ud ∈ K by
the same arguments as in the proof of Lemma 5.2. Notice that γd is independent of h, but depends on
‖ū‖Wσ

and therefore on ū and σ. Moreover, we have that

a ≤ (Πhu)(x) ≤ b a.e. in Ω,

see (4.1). Hence, the same arguments as in the proof of Lemma 5.2 give

a ≤ ud(x) ≤ b a.e. in Ω,

if h is sufficiently small. Since ud ∈ Uh by construction, we therefore end up with ud ∈ Uh
ad.

Now we are in the position to prove our main result which reads as follows:

Theorem 5.6. Let ū and ūh denote the optimal solutions of (P) and (Ph), respectively. Then, under
Assumptions 2.1–2.3 and 3.1–3.3, the following estimate holds true

‖ū− ūh‖ + ‖S ū− Sh ūh‖ ≤ C
√

max{η(σ, h), δ(h)}

with a constant C > 0 which depends on ū and σ, but not on h.

Proof. Based on a technique introduced in Falk [20], it is shown in [30] that the variational inequalities
(2.3) and (3.4) imply

α

2
‖ū− ūh‖2 +

1

2
‖S ū− Sh ūh‖2

≤ c
[

‖uh − ū‖2 +
(
‖ū‖Wσ

+ ‖S ū− z‖
)(
‖u− ūh‖W∗

σ
+ ‖uh − ū‖W∗

σ

)

+ ‖uh − ū‖2
W∗

σ
+ ‖(S − Sh)uh‖2

+ ‖S ū− z‖
(
‖(S − Sh)ūh‖ + ‖(S − Sh)uh‖

)]

∀ u ∈ Uad, uh ∈ Uh
ad.

(5.5)

Here, the constant c depends on α, but not on ū, ūh, u, and uh. Thanks to Lemma 5.2 and 5.5, we are
allowed to insert u = uc and uh = ud in (5.5). Then, by means of Lemma 4.4 and 4.5 and the definition
of β, we obtain

‖ud − ū‖ ≤ ‖Πhū− ū‖ + γd β(σ, h) ‖Πhû− Πhū‖
≤ c

(
‖ū‖Wσ

+ ‖û‖Wσ

)
max{

√

η(σ, h), β(σ, h)}
(5.6)

‖ud − ū‖W∗

σ
≤ ‖Πhū− ū‖W∗

σ
+ γd β(σ, h) ‖Πhû− Πhū‖W∗

σ

≤ c
(
‖ū‖Wσ

+ ‖û‖Wσ

)
β(σ, h).

(5.7)

In case of u = uc, we have

‖uc − ūh‖W∗

σ
≤ c γc δ(h) ‖û− ūh‖W∗

σ
. (5.8)
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For the remaining expressions in (5.5), (3.2) implies

‖(Sh − S)ud‖ ≤ c δ(h) ‖Πhū− γd δ(h)(Πhû− Πhū)‖L∞(Ω)d

≤ c
(
‖ū‖L∞(Ω)d + ‖û‖L∞(Ω)d

)
δ(h)

(5.9)

‖(Sh − S)ūh‖ ≤ c δ(h) ‖ūh‖L∞(Ω)d , (5.10)

where we used Lemma 4.6 for the estimation of the right hand side in (5.9). Notice that ū and û are
bounded in Wσ and L∞(Ω)d due to Assumption 2.3 and Theorem 2.4, whereas ūh is uniformly bounded
in L∞(Ω)d due to the control constraints. Inserting (5.6)–(5.10) in (5.5) finally implies

α

2
‖ū−ūh‖2 +

1

2
‖S ū− Sh ūh‖2

≤ c
[

max{η(σ, h), β(σ, h)2} +
(
‖ū‖Wσ

+ ‖S ū− z‖
) (
β(σ, h) + δ(h)

)

+ β(σ, h)2 + δ(h)2 + ‖S ū− z‖ δ(h)2
]

≤ C2 max{η(σ, h), δ(h)}
thanks to the definition of β. An inspection of the proof yields that C depends on ū and σ, but not on
h.

Corollary 5.7. Suppose that, in addition to the assumptions of Theorem 5.6,

‖(Gh −G)u‖H1(Ω)d×L2(Ω) ≤ c ϑ(h) ‖u‖L∞(Ω)d

is fulfilled with ϑ : R
+ → R

+, ϑ(h) → 0 as h ↓ 0. Then, (v̄, p̄) = G ū and (v̄h, p̄h) = Gh ūh satisfy

‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C max{ϑ(h),
√

δ(h),
√

η(σ, h)}

with a constant C independent of h.

Proof. The proof is almost standard. The mapping properties of S imply

‖Gv̄ −Ghv̄h‖H1(Ω)d×L2(Ω)

≤ ‖G(ū− ūh)‖H1(Ω)d×L2(Ω) + ‖(G−Gh)ūh‖H1(Ω)d×L2(Ω)

≤ ‖G‖L(L2(Ω)d,H1(Ω)d×L2(Ω))‖ū− ūh‖ + c ϑ(h) ‖ūh‖L∞(Ω)d ,

such that Theorem 5.6 yields the assertion.

6. Concrete numerical settings. In the subsequent, several control problems and discretization
techniques are discussed that are covered by the above theory. The critical point is to verify (3.2) for
a concrete discretization such that δ(h), i.e., the L∞-error of the finite element approximation, is not
worse than η(σ, h), i.e., the interpolation error. To keep the discussion concise, we restrict ourselves to
discretization schemes that fulfill the discrete inf-sup condition so that there is no need for stabilization.
We rely on the following assumptions:

Assumption 6.1. The spaces Vh ⊂ V and Lh ⊂ L satisfy the following conditions

• There is a number k ∈ N, k ≥ 1, such that

Vh ⊂ C(Ω̄)d, Pk(T )d ⊆ Vh|T , Pk−1(T ) ⊆ Lh|T ∀ T ∈ Th. (6.1)

Consequently, there exist interpolation operators ivh and iph that fulfill standard approximation
properties. In particular, if t ∈ {0, 1} and q, r, s ∈ [1,∞] are given such that W 2,r(Ω) →֒W t,q(Ω)
and W 1,s(Ω) →֒ Lq(Ω), then there holds:

‖∇t(v − ivh v)‖Lq(T ) ≤ c h2−t+d(1/q−1/r) ‖∇2v‖Lr(T ) ∀ v ∈W 2,r(T ) (6.2)

‖p− iph p‖Lq(T ) ≤ c h1+d(1/q−1/s) ‖∇p‖Ls(ωT ) ∀ p ∈ W 1,s(ωT ) (6.3)

for all T ∈ Th. Here, ωT denotes the union of patches associated to the ansatz funtions that are
non-zero on T .
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• Inverse property: For all vh ∈ Vh,

‖vh‖L∞(T )d ≤ c h−
d
2 ‖vh‖L2(T )d ∀T ∈ Th (6.4)

is valid.
• Discrete inf-sup condition: There is a real number γ > 0 such that

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖
≥ γ ‖ph‖ ∀ ph ∈ Lh.

The conditions in Assumption 6.1 are fulfilled by many standard finite elements, in particular by all
examples mentioned in the following. Beside Assumption 6.1, we suppose Assumptions 2.1–2.3, 3.1, and
3.3 to be satisfied in all what follows. The aim of the subsequent sections is to verify Assumption 3.2.

6.1. Smooth domains with Ω′ = Ω. Before we start the discussion, let us point out that we
assume a triangulation that exactly fits the boundary which is fairly artifical in case of a smooth boundary.
Moreover, we tacitly supposed that the integrals in (3.1) are exactly evaluated which is clearly hard to
implement if Ω is not polygonally bounded. Therefore, a realistic discretization would cause other types
of errors which are neglected here since this would go beyond the scope of this paper. Notice that these
problems do clearly not arise if Ω has a polygonal boundary as in case of the subsequent sections. We
apply a result of Chen [10], which requires some additional assumptions on the discretization, in particular
a local L2-error estimate of the Ritz-projection, see [10, Section 2] for details. The additional conditions
are verified by Arnold and Liu [1] for different types of finite elements such as

• all stable discretizations formed with Lagrange elements such as for instance the Taylor-Hood
element (i.e. P2/P1-element)

• the Mini element, i.e., the unstable P1/P1-element enriched with bubble functions.

Using a technique developed in [33], Chen proved the following result:

Theorem 6.2. Assume that the solution of (2.1) satisfies (v, p) ∈ W 1,∞(Ω)d × L∞(Ω). There is a
constant c > 0, independent of h, v, and p, such that the solution of (3.1), denoted by (vh, ph) ∈ Vh ×Lh,
satisfies

‖v − vh‖L∞(Ω)d ≤ c h | log(h)|m
(

inf
w∈Vh

‖v − w‖W 1,∞(Ω)d + inf
q∈Vh

‖q − p‖L∞(Ω)

)
,

where m = 0 if k > 1 and m = 1 if k = 1.

If Ω is of class C2, then G : Lp(Ω)d →W 2,p(Ω)d×W 1,p(Ω) for all 1 < p <∞ (see Temam [34, Proposition
2.3]). Therefore, together with (6.2) and (6.3), Chen’s result yields

Corollary 6.3. For every ε > 0, there is a constant cε > 0, independent of h and u, so that

‖v − vh‖L∞(Ω)d ≤ cε h
2−ε ‖u‖L∞(Ω)d .

Theorem 6.4. For every ε > 0, there holds

‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C h2− d
2−ε (6.5)

with a constant C > 0 which depends on ε, but not on h.

Proof. Let ε > 0 be given. In view of Corollary 6.3, Assumption 3.2 is fulfilled with a constant c depending

on ε and δ(h) = h2−2ε. Moreover, by choosing σ = max
{

σ̄, d
d−1+ε

}

, we obtain η(σ, h) ≤ h4−d−2ε

(cf. Definition 5.1). Thus, Theorem 5.6 and Corollary 5.7 together with standard finite element results
give the assertion.

Remark 6.5. Notice that C depends on ε firstly because of the constant cε from Corollary 6.3 and
secondly due to the coupling of σ and ε.

Remark 6.6. As above, let σ = σ(ε) = max
{

σ̄, d
d−1+ε

}

with a fixed, but arbitrary ε > 0. Then Lemma

4.4 implies

‖u− Πhu‖L2(Ω)d ≤ c h2−d
2−ε ‖u‖Wσ(ε)

∀u ∈ Wσ(ε) (6.6)
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and therefore, the order in (6.5) coincides with the one of the interpolation error.

6.2. Convex domains with polygonal or polyhedral boundary. First, we consider the case
Ω′ = Ω. In case of polygons and polyhedrons, respectively, the following regularity result is known. For
the proof, we refer to [12] and [27].

Theorem 6.7. Let Ω be a convex domain with polygonal (d = 2) or polyhedral (d = 3) boundary. Then,
for all u ∈ L2(Ω)d, the unique solution (v, p) ∈ V × L of (2.1) belongs to H2(Ω)d ×H1(Ω).

Based on this result and standard finite element error estimates, one proves for an arbitrary u ∈ L2(Ω)

‖v − vh‖L∞(Ω)d ≤ c h2−d
2 ‖u‖L2(Ω)d ,

where v = S u and vh = Sh u and c > 0 only depends on Ω (see for instance [32, Lemma 3.2]). Therefore,
by setting δ(h) = h2−d/2 and σ = max{σ̄, 4/3} (notice that 4/3 < d/(d − 1) for d = 2, 3) such that
η(δ, h) ≤ h2−d/2, Theorem 5.6 and Corollary 5.7 imply

Theorem 6.8. Suppose that Ω is a convex domain with polygonal (d = 2) or polyhedral (d = 3) boundary.
Then, we have

‖ū− ūh‖L2(Ω) + ‖v̄ − v̄h‖H1(Ω) + ‖p̄− p̄h‖L2(Ω) ≤ C h1− d
4

with a constant C > 0 independent of h.

Notice that the order of convergence now differs from the one of the interpolation error. The situation
changes if we restrict to two dimensional domains with polygonal boundary and a maximum angle of less
or equal π/2. To see this, let us define the weighted L2-norm as follows:

‖q‖2
ςν :=

∫

Ω

|q(x)|2 ς(x)ν dx, q ∈ L2(Ω)d, (6.7)

where ς : Ω̄ → R+ is defined by

ς(x) :=
√

|x− x0|2 + θ2, (6.8)

with given x0 ∈ Ω and θ > h > 0.

Theorem 6.9. Let Ω ⊂ R
2 be a convex polygon whose maximum aperture angle is less or equal π/2.

Moreover, suppose that (Vh, Lh) satisfies the discrete weighted inf-sup condition, i.e. there is a constant
c > 0 independent of h such that, for every θ > 0,

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖ς2

≥ c | log θ|−1/2‖ph‖ς−2 ∀ ph ∈ Lh. (6.9)

Then, for every ε > 0, the discrete solution satisfies

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε

with a constant C > 0 which depends on ε, but not on h.

Proof. According to a result of Mazya et al. [28, Section 5.8.1], for all q ∈ [1,∞[, the solution v ∈ (V ×L)
of (2.1) belongs to W 2,q(Ω)2 ×W 1,q(Ω), provided that u ∈ Lq(Ω)2, and there holds

‖v‖W 2,q(Ω)2 + ‖p‖W 1,q(Ω) ≤ c ‖u‖Lq(Ω)2 . (6.10)

Moreover, Duran and Nochetto proved in [19] that, for all discretizations fulfilling Assumption 6.1 and
(6.9), there exists a constant c > 0 independent of h such that

‖v − vh‖L∞(Ω)2 ≤ c h | log(h)|3
(

inf
w∈Vh

‖v − w‖W 1,∞(Ω)2 + inf
q∈Vh

‖q − p‖L∞(Ω)

)
.

Hence, together with (6.10), (6.2) and (6.3) give the existence of a constant cε > 0, depending on ε, but
not on h, such that for every ε > 0

‖v − vh‖L∞(Ω)2 ≤ cε h
2−ε ‖u‖L∞(Ω)2 .
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Then an argument, analogous to the proof of Theorem 6.4, finally implies the assertion.

Remark 6.10. The discrete weighted inf-sup condition (6.9) is satisfied by various common stable finite
elements, as proven in [19]. We only mention

• the Taylor-Hood element on triangles or quadrilaterals (i.e., P2/P1- and Q2/Q1-elements, re-
spectively)

• the Mini element
• the Crouzeix-Raviart element of different order k ≥ 2, i.e., the Pk/Pk−1-element enriched with

bubble functions.

If the state constraints are only imposed in the interior of Ω, the results of [19] allow to get same the order
of convergence as in the interpolation error (6.6), even if the maximum angle is larger than π/2. Notice
that, in the presence of no-slip boundary conditions, it appears natural to consider the state constraints
only in the interior of Ω, as illustrated in the introduction.

Theorem 6.11. Assume that Ω is a convex polygon and let Ω′ ⊂ Ω be given. Furthermore, we
assume that, for every h, a union of cells of Th, denoted by Ω′′, exists that contains Ω′ and fulfills
dist(Ω′,Ω \ Ω′′) =: d > 0 and dist(Ω′′,Γ) =: δ > 0 with d and δ independent of h. Furthermore, suppose
that (Vh, Lh) satisfies the discrete weighted inf-sup condition (6.9). Then, for every ε > 0, there is a
constant C > 0 depending on ε, but not on h, such that

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε.

Proof. The proof is similar to the proof of [19, Theorem 4.1]. In view of Theorem 6.7 and embedding
theorems for d = 2, we have ∇v ∈ Lq(Ω) for all q < ∞. Thus, Theorem 4.1 in [21] yields for every
q ∈ [1,∞[ that (v, p) ∈ W 2,q

loc (Ω)2 ×W 1,q
loc (Ω) if u ∈ Lq

loc(Ω)2 which is clearly fulfilled due to the control
constraints. Thus we obtain (v, p) ∈W 2,q(Ω′′)2 ×W 1,q(Ω′′) for all q <∞. Based on (6.9), it is shown in
[19] that

‖v − vh‖2
ς−4 ≤ c

h2

θ2
| log θ|3

(

‖∇(v − ivhv)‖2
ς−2 + ‖v − ivhv‖2

ς−4 + ‖p− iphp‖2
ς−2

)

(6.11)

holds for all θ > h > 0 provided that Ω is a convex polygon. Here, ς and the associated norms are defined
as in (6.8) and (6.7). Recall that V∞ = L∞(Ω′)2. We start by estimating

‖v − vh‖V∞
≤ ‖v − ivhv‖V∞

+ ‖vh − ivhv‖V∞
.

Since |vh − ivhv| ∈ C(Ω̄′), there is an x0 ∈ T̄0 ⊆ Ω′ such that ‖vh − ivhv‖V ∞ = |vh(x0) − ivhv(x0)|. In all
what follows, we use this x0 in the definition of ς in (6.8). The inverse estimate (6.4) implies

|vh(x0) − ivhv(x0)| ≤ ‖vh − ivhv‖L∞(T0)2

≤ c h−1 ‖vh − ivhv‖L2(T0)2 ≤ c
θ2

h
‖vh − ivhv‖ς−4 ,

where the last estimate follows from the definition of ‖ · ‖ς−4 because of θ > h. Now, one can apply (6.11)
and continue with

‖v − vh‖V∞
≤ ‖v − ivhv‖V∞

+ c θ| log θ| 32
(

‖∇(v − ivhv)‖ς−2 + ‖p− iphp‖ς−2

)

+ c
(θ2

h
+ θ| log θ|3/2

)

‖v − ivhv‖ς−4

For an arbitrary w ∈ L∞(Ω) and ν ≥ 0, we obtain

‖w‖ς−(2+ν) ≤ ‖w ς−(1+ν/2)‖L2(Ω′′) + ‖w ς−(1+ν/2)‖L2(Ω\Ω′′)

≤ ‖w‖L∞(Ω′)

∫

Ω′′

ς−(2+ν) dx
1
2 + c ‖w‖L2(Ω),
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where we used the norm equivalence of ‖·‖ς−(2+ν) and ‖·‖L2 on Ω\Ω′′ which holds due to dist(x0,Ω \ Ω′′) ≥
d > 0. Together with

∫

Ω′′

ς−(2+ν) dx ≤
{
c θ−ν , ν > 0
c | log θ|, ν = 0

(see [19]), it follows with ν = 0 and ν = 2, respectively, that

‖v − vh‖V∞
≤ ‖v − ivhv‖L∞(Ω′′)2

+ c θ| log θ|2
(

‖∇(v − ivhv)‖L∞(Ω′′)2 + ‖∇(v − ivhv)‖L2(Ω)2

+ ‖p− iphp‖L∞(Ω′′) + ‖p− iphp‖L2(Ω)

)

+ c
( θ

h
+ | log θ|3/2

)(

‖v − ivhv‖L∞(Ω′′)2 + ‖v − ivhv‖L2(Ω)2

)

.

Because of the regularity of (v, p) stated at the beginning of the proof, choosing θ = h| logh| > h and
applying (6.2) and (6.3) yields the existence of a constant cε > 0, depending on ε, such that

‖v − vh‖V∞
≤ cε h

2−ε ‖u‖L∞(Ω)2 ∀ ε > 0.

Notice that the assumption dist(Ω′′,Γ) =: δ > 0 implies dist(ωT ,Γ) > 0 for all T ∈ Th ⊂ Ω′′ if h is
sufficiently small. Hence, the above regularity result implies

p ∈W 1,q

(
⋃

T⊂Ω′′

ωT

)

∀ q <∞

such that (6.3) applies to ‖p− iphp‖L∞(Ω′′). For the rest of the proof, we argue as in the proof of Theorem
6.4, which gives the assertion.

6.3. Discretization of the data. Up to now, problem (Ph) is no finite dimensional optimization
problem since we have not discretized the problem data, i.e., the desired state z and the set K. To this

end, let us introduce the space of linear (bilinear) finite elements V
(1)
h ⊂ Vh and a nodewise interpolant

i
(1)
h : C(Ω̄)d → V

(1)
h . In addition, we introduce a discretization of K, denoted by Kh ⊂ V∞. The

corresponding completely discrete problem for

uh =

n∑

i=1

uiφi,

for simplicity also denoted by (Ph), is then given with

(Ph)







min Jh(vh, uh) :=
1

2
‖vh − i

(1)
h z‖2

L2(Ω)d +
α

2
‖uh‖2

L2(Ω)d

s.t. vh = Sh uh

and i
(1)
h vh ∈ Kh

uh ∈ Uh, a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.

Remark 6.12. Notice that it depends on the concrete structure of K and its discretization whether
(Ph) represents a finite dimensional optimization problem or not. In the cases, discussed in this paper,

the linear (bilinear) interpolation operator i
(1)
h allows to formulate (Ph) as a finite dimensional problem,

which can be solved numerically (see below).

To shorten the description, we assume in all what follows that Assumption 3.2 is fulfilled with δ(h) =
c h2−ε with a fixed but arbitrary ε > 0 (see Sections 6.1 and 6.2). If this is not fulfilled, the subsequent
analysis can easily be modified.
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Assumption 6.13. Beside Assumptions 2.1–2.3 and 3.1–3.3, assume that z ∈ H2(Ω)d. Furthermore, let
Assumption 3.2 hold with

δ(h) = c h2−ε (6.12)

with some fixed but arbitrary ε > 0 and assume that S : L∞(Ω)d → W 2,q(Ω′′)d for all q < ∞, where Ω′′

is a union of cells containing Ω′. Moreover, suppose that Kh is convex with associated support functional
sh : V ∗

∞ → R that fulfills

|s(µ) − sh(µ)| ≤ cs h
2−ε ‖µ‖V ∗

∞
∀µ ∈ V ∗

∞ (6.13)

with a constant cs > 0. To guarantee the existence of a solution to (Ph), we require the existence of a

feasible point, i.e., there is a û ∈ Uh with a ≤ ûi ≤ b ∀ i ∈ {1, ..., n} and i
(1)
h Sh ûh ∈ Kh.

Remark 6.14. Notice that the hypothesis on S and δ(h) agree with the theory presented in Sections 6.1
and 6.2 (cf. in particular Corollary 6.3 and the proofs of Theorem 6.9 and 6.11).

Lemma 6.15. Suppose that Assumption 6.13 holds. Let u ∈ L∞(Ω)d be arbitrary and set as before
vh = Sh u. Then, for every ε > 0, there is a constant c > 0, independent of u and h, such that

‖vh − i
(1)
h vh‖V ∞ ≤ c h2−ε ‖u‖L∞(Ω)d .

Proof. The arguments are standard. For convenience of the reader, we sketch the proof for a single
component of vh, for simplicity also denoted by vh. Let ε > 0 be arbitrary. We start by estimating

‖vh − i
(1)
h vh‖V ∞ ≤ ‖i(1)h (v − vh)‖V ∞ + ‖v − i

(1)
h v‖V ∞ + ‖v − vh‖V ∞

with v = S u. Similarly to Lemma 4.6, one proves

‖i(1)h (v − vh)‖V ∞ ≤ ‖v − vh‖L∞(Ω′′).

Moreover, the standard linear (bilinear) interpolation operator satisfies

‖v − i
(1)
h v‖L∞(Ω′′) ≤ c h2−d/q‖∇2v‖Lq(Ω′′) ∀ q <∞

(cf. [4] or [2]). Thus, by choosing q = d/ε < ∞, the mapping properties of S together with Assumption
3.2 and (6.12), i.e.

‖v − vh‖V ∞ ≤ c h2−ε‖u‖L∞(Ω),

gives the assertion.

Theorem 6.16. Assume that Assumption 6.13 is fulfilled. Then, for every ε > 0, the unique solution of
(Ph) satisfies

‖ū− ūh‖ + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω)d ≤ C h2− d
2−ε

where the constant C > 0 depends on ε but not on h.

Proof. Since z is sufficiently smooth by assumption, we have ‖z − i
(1)
h z‖L2(Ω)d ≤ c h2 ‖z‖H2(Ω)d due to

standard interpolation estimates. In view of this, the discretization of z can easily incorporated in the
presented analysis. The underlying arguments are presented in detail in [30, Section 7]. In addition, due
to Assumption 3.3, it is sufficient to require the control constraints only in the nodes as done in (Ph).
If K is discretized, then the proofs of Lemma 5.2 and 5.5 have to be modified, more precisely (5.3) and
(5.4), respectively. We exemplarily consider (5.4), the arguments in case of (5.3) are similar. Using (6.13)
and Lemma 6.15, we obtain for all µ̃ with ‖µ̃‖V ∗

∞
= 1

〈µ̃ , i(1)h Sh ud〉V ∗

∞
,V∞

≤ 〈µ̃ , Sh ud〉V ∗

∞
,V∞

+ ‖Sh ud − i
(1)
h Sh ud‖V∞

≤ s(µ̃) − c h2−d
2−ε(γdτ − cu) + c h2−ε ‖ud‖L∞(Ω)d

≤ sh(µ̃) − c h2−d
2−ε(γdτ − cu − cs),
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where cu is defined as in (5.4). Hence, if we choose γd > (cu + cs)/τ , then the same arguments as in the
proof of Lemma 5.5 imply that ud is feasible for (Ph). Again γd depends on ū and σ, but not on h. Based
on the feasibility of uc and ud, one can argue as in the proof of Theorem 5.6 to verify the assertion.

Let us investigate two exemplary state constraints that are also used for the numerical tests in Section 7:

K(1) :=
{
v ∈ V∞|va(x) ≤ v(x) ≤ vb(x) a.e. in Ω′

}

K(2) :=
{
v ∈ V∞||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}
.

First, we consider K(1), i.e., the cases of box constraints. Let us assume that Ω′ coincides with a union of
cells of Th and denote the set of all nodes of Th by N (Th). We consider the following finite dimensional
optimization problem

(P
(1)
h )







min
uh∈Uh

Jh(vh, uh)

s.t. vh = Sh uh

and va,h(xi) ≤ vh(xi) ≤ vb,h(xi) ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n},

with vb,h = i
(1)
h vb and va,h defined analogously.

Corollary 6.17. Suppose that Ω is a convex polygon and let Ω′ ⊂ Ω be a union of cells of Th for all
h > 0. Assume in addition that Ω′ fulfills the assumptions of Theorem 6.11. Furthermore, suppose that

z ∈ H2(Ω)d and va, vb ∈ W 2,∞(Ω′)d. Then the solution of (P
(1)
h ) satisfies for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,

where the constant C > 0 depends on ε, but not on h.

Proof. We apply Theorem 6.16. Thus, we have to verify (6.13). To shorten the demonstration, we just
consider the upper bound vb. The case with lower constraint can be discussed analogously. Let ϕi,

i = 1, ...,m, denote the ansatz functions associated to the linear (bilinear) interpolant i
(1)
h . Since they are

non-negative and satisfy ϕi(xj) = δij , the state constraints in (P
(1)
h ) are equivalent to (i

(1)
h vh)(x) ≤ vb,h(x)

a.e. in Ω′. Thus, K
(1)
h is given by

K
(1)
h := {v ∈ V∞ | v(x) ≤ vb,h(x) a.e. in Ω′}.

Given an arbitrary v ∈ K(1), we define Π
K

(1)
h

(v)(x) := min{v(x), vb,h(x)}, hence ‖v − Π
K

(1)
h

(v)‖V∞
≤

‖vb − vb,h‖V∞
. Therefore we have for every µ ∈ V ∗

∞

〈µ , v〉V ∗

∞
,V∞

≤ 〈µ , Π
K

(1)
h

(v)〉V ∗

∞
,V∞

+ ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

∀ v ∈ K(1).

Since Π
K

(1)
h

(v) ∈ K
(1)
h , this gives

s(µ) ≤ sh(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

(6.14)

An analogous argument with ΠK(1)(v)(x) := min{v(x), vb(x)}, v ∈ K
(1)
h , implies

sh(µ) ≤ s(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

. (6.15)

Together with (6.14), this verifies (6.13) provided that vb is sufficiently smooth, for instance vb ∈
W 2,∞(Ω′)d. The remaining conditions in Assumption 6.13, in particular (6.12), are verified by the
proof of Theorem 6.11 which gives the assertion.

Now, let us turn to K(2), i.e., constraints on the Euclidian norm of v. For this case we set K
(2)
h = K(2).

The completely discrete problem is now given by

(P
(2)
h )







min
uh∈Uh

Jh(vh, uh)

s.t. vh = Sh uh

and |vh(xi)|2R2 ≤ ̺ ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.
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Corollary 6.18. Suppose that Ω is a convex polygon and Ω′ ⊂ Ω fulfills the assumptions of Corollary

6.17. Furthermore, assume that z ∈ H2(Ω)d. Then, the solution of (P
(2)
h ) satisfies for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,

where the constant C > 0 depends on ε, but not on h.

Proof. Similar arguments as in the proof of Corollary 6.17 together with the convexity of |·|2
R2 imply that

the state constraints in (P
(2)
h ) are equivalent to |(i(1)h vh)(x)|2

R2 ≤ ̺ a.e. in Ω′. Thus, Theorem 6.16 and
the same arguments as in the proof of Theorem 6.11 give the assertion.

7. Numerical experiments. In this section we perform numerical tests in order to verify the finite
element error estimates obtained in the previous sections. The convex polygonal domain Ω = (0, 1)×(0, 1)
was discretized using a uniform triangular mesh. Boundary conditions of Dirichlet type were imposed
on the boundary. On the upper boundary the horizontal velocity takes the value one, while the vertical
component is zero. On the remaining boundary the condition is of no slip type. This problem is known in
the literature as the ”driven cavity flow”. It is easy to see that the non-homogeneous Dirichlet boundary
conditions do not influence the above theory since the solution of the Stokes equation can be seen as a
superposition of a fixed contribution caused by the inhomogeneity on the boundary and a variable part
associated to the control to which the presented analysis applies. For the finite element discretization,
we use Taylor-Hood elements with quadratic ansatz functions for the velocity and linear functions for
the pressure. The controls were also discretized using piecewise linear polynomials consistent with the
conditions in Assumption 3.3. The discretized inequality constrained optimization problems are solved
by applying a semi-smooth Newton method as stated in [26]. The inequality state constraints are added
to the cost functional through a penalized Moreau-Yosida regularization term, see, e.g., [18]. For the
solution of the discretized systems appearing in each semi-smooth Newton step a penalty method is
applied (cf. [23, p. 125]). This method considers, for 0 < ǫ << 1, the modified Stokes system

(
A BT

B ǫI

)(
~v
~p

)

=

(
M~u
0

)

,

where A, B, and M are the matrices resulting from the finite element discretization of (2.1), I is the
identity matrix, and ~v, ~p, and ~u are the vectors for the velocity, pressure, and control, respectively. A
similar penalty scheme was used for the adjoint equations. For convergence results on this approach we
refer to [23].

The semi-smooth Newton algorithm stops if the L2-residuum of the discretized control is lower than a
given tolerance, typically set as 10−4. The method is initialized setting the controls equal to 0 and solving
successively the Stokes and the adjoint equations. With this values at hand, the active and inactive sets
are determined for the first iteration.

The resulting linear systems in each semismooth Newton iteration were solved using Matlab exact
solver. All algorithms were implemented in Matlab 7.4 and run on a 300 GHz machine with 24 GByte
RAM and a precision of eps=2.2204e-16.

7.1. Example 1: box constraints. First, we consider simple box constraints on the state, i.e.,
constraints of the form K(1). To be more precise, the state constraint is given by y1 ≥ −0.15 in Ωs =
[0.1, 0.9] × [0.1, 0.9]. The target is to diminish the backward flow velocity and, as a consequence, the
intensity of the vortex. The desired state is given by zd ≡ 0. Thus, the example fits to the setting
of Corollary 6.17. The Tikhonov regularization parameter is set to α = 0.1, while we choose 105 as
penalization parameter for the state constraints.

With a mesh size h =
√

2/32 the algorithm stops after 20 iterations. The horizontal and vertical compo-
nents of the optimal control are depicted in Figure 7.1, for h =

√
2/64. In Figure 7.2 the active set for

the horizontal velocity component is depicted. From the graphics, the concentration of the irregular part
of the horizontal control on the active set can be observed.

In Table 7.1 the convergence history is registered. The experimental error norms for different values of
h are tabulated. We consider as optimal solution the one obtained numerically with a mesh step size
h =

√
2/160. The quantity #it refers to the number of semi-smooth Newton iterations. We observe that
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Fig. 7.1. Example 1: horizontal and vertical components of the optimal control; h =
√

2/64.
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Fig. 7.2. Example 1: active set for the horizontal component of the velocity; h =
√

2/32.

Table 7.1
Example 1, convergence history.

√
2/h2 5 10 20 40 80

#it 4 8 20 20 32

‖uh − u∗‖L
2
h

1.1601 0.7982 0.4804 0.2572 0.1098

the algorithm does not appear to be mesh-independent. To illustrate the convergence behavior, we define
the quantity

EOC2(u) :=
log(‖uh1 − u∗‖L2) − log(‖uh2 − u∗‖L2)

log(h1) − log(h2)
(7.1)

as the experimental order of convergence for the L2-norm of u. Here, h1 and h2 denote two consecutive
mesh sizes. In Table 7.2, EOC2(u) is evaluated for the current box constrained case. From Table

Table 7.2
Example 1, experimental order of convergence.

√
2/h2 8 16 32 64

EOC2(u) 0.5394 0.7325 0.9013 1.2280

7.2, the coincidence between the theoretical and experimental convergence order can be inferred, since
the experimental order of convergence order averages 1 − ε. This observation confirms the theoretical
predictions of Corollary 6.17.

7.2. Example 2: constraint on the Euclidian norm of the velocity vector. In this example,
we consider the state constraint v2

1(x) + v2
2(x) ≤ 10−4 in the center of the driven cavity. With this
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Fig. 7.3. Example 2: velocity vector field; h =
√

2/24.

constraint the norm of the velocity vector field is restricted pointwise in the domain Ωs = [ 7
16 ,

9
16 ]2.

Hence, the example is covered by the setting of Corollary 6.18. The Tikhonov parameter is set to
α = 0.1, while we used 105 for the penalization of the state constraints. The desired state is again given
by zd ≡ 0. The resulting velocity vector field is shown in Figure 7.3. The obstacle effect of the state
constraint can be observed in the plot. The evolution of the finite element error and of the convergence
rate as h → 0 is registered in Table 7.3. In average, the order 1 − ǫ for the L2-norms of control can be
observed also in this example. Thus, the theoretical error estimate of Corollary 6.18 can be seen to be
experimentally verified.

Table 7.3
Example 2, convergence history.

√
2/h2 5 10 20 40 80

#it 4 8 20 20 32

‖uh − u∗‖L
2
h

5.4043 3.3571 1.6865 1.1680 0.5171

EOC2(u) – 0.6868 0.9931 0.5299 1.1755

REFERENCES

[1] D.N. Arnold, X. Liu, Local error estimates for finite element discretizations of the Stokes equations, M2AN, 29
(1995), pp. 367–389.

[2] C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal., 25 (1989), pp. 1212–
1240.

[3] P. Bochev and M. Gunzburger, Least-squares finite-element methods for optimization and control for the Stokes

equations, Comput. Math. Appl., 48 (2004), pp. 1035–1057.
[4] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, Berlin,

Heidelberg, 1994.
[5] R.M. Brown, Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995),

pp. 1183–1206.
[6] C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite elements methods, M2AN, 33 (1999),

pp. 1187–1202.
[7] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J. Control Optim.,

31 (1993), pp. 993–1006.
[8] E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many

state constraints, ESAIM: COCV, 8 (2002), pp. 345–374.
[9] E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems,

Comp. Appl. Math, 21 (2002).
[10] H. Chen, Pointwise error estimates for finite element solutions of the Stokes problem, SIAM J. Numer. Anal., 44

(2006), pp. 1–28.



Optimal Control of the Stokes Equations 21

[11] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numer., R-2 (1975),
pp. 77–84.

[12] M. Dauge, Stationary Stokes and Navier-Stokes systems on two- and three-dimensional domains with corners. Part

I: Linearized equations, SIAM J. Math. Anal., 20 (1989), pp. 74–97.
[13] K. Deckelnick and M. Hinze, Semidiscretization and error estimates for distributed control of the instationary

Navier-Stokes equations, Numer. Math., 97 (2004), pp. 297–320.
[14] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control

problem, SIAM J. Numer. Anal., 45 (2007), pp. 1937–1953.
[15] K. Deckelnick and M. Hinze, Finite element approximations to elliptic control problems in the presence of control

and state constraints, Preprint HBAM 2007-01, Hamburger Beiträge zur Angewandten Mathematik, Universität
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