MAT-326

Modul: Fourieranalysis (bis SS 18) MAT-326
Bachelorstudiengang: Bachelor Mathematik, Bachelor Technomathematik, Bachelor Wirtschaftsmathematik
Masterstudiengang: Master Mathematik, Master Technomathematik, Master Wirtschaftsmathematik
Turnus:
unregelmäßig
Dauer:
1 Semester
Studienabschnitt:
ab dem 4. Semester
Leistungspunkte:
9
Aufwand:
270
1 Modulstruktur
Nr Element/Veranstaltung Typ Leistungspunkte SWS
1 Vorlesung zu Fourieranalysis V 6 4
2 Übung zu Fourieranalysis Ü 3 2
2 Lehrveranstaltungssprache: Deutsch
3 Lehrinhalte

Die klassische Fourieranalysis beschäftigt sich mit dem Problem, wann eine periodische reellwertige Funktion in einer reellen Veränderlichen als Überlagerung von Sinus- und Kosinusschwingungen dargestellt werden kann. Im Blickpunkt steht dabei auch wie sich bestimmte Eigenschaften der Funktion, wie z.B. Differenzierbarkeit, in dieser Darstellung wiederspiegeln. Für nicht-periodische Funktionen liefert die sogenannte Fouriertransformation ein kontinuierliches Analogon mit verwandten Fragestellungen.

4 Kompetenzen

Verständnis des Konzeptes der Fourierreihe und der Fouriertransformierten, deren Eigenschaften und deren Anwendungen.

5 Prüfungen

Prüfungsordnung 2019:

Benotete Modulprüfung.

Als Zulassungsvoraussetzung ist folgende Studienleistung zu erbringen:

Regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben und aktive Teilnahme an den Übungen. Details werden durch die jeweilige Dozentin / den jeweiligen Dozenten in der Veranstaltungsankündigung bekannt gemacht.


Prüfungsordnung 2015:

Das Modul kann in zwei verschiedenen Formen zum Abschluss gebracht werden:

  1. als unbenotetes Modul ohne Modulprüfung.
  2. als benotetes Modul mit Modulprüfung.

Zulassungsvoraussetzung für die Modulprüfung ist die Erbringung folgender Studienleistung: Regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben und/oder Mitarbeit in den Übungen. Dazu kann auch eine Anwesenheitspflicht in den Übungen gehören. Details werden durch die jeweilige Dozentin / den jeweiligen Dozenten in der Veranstaltungsankündigung bekannt gemacht.

Für den Nachweis des erfolgreichen Abschlusses bei Wahl als unbenotetes Modul sind i.d.R. zur Studienleistung äquivalente Leistungen zu erbringen. Details werden durch die jeweilige Dozentin / den jeweiligen Dozenten in der Veranstaltungsankündigung bekannt gemacht.

6 Prüfungsformen und -leistungen

Modulprüfung: mündliche Prüfung (ca. 30 Minuten). In Ausnahmefällen Klausur (120-180 Min.).

7 Teilnahmevoraussetzungen

Kenntnisse der Module Analysis I,II, III und Lineare Algebra I,II werden vorausgesetzt.

8 Modultyp und Verwendbarkeit des Moduls
  1. Wahlpflichtmodul für Bachelor Mathematik, Bachelor Technomathematik, Bachelor Wirtschaftsmathematik, Master Mathematik, Master Technomathematik, Master Wirtschaftsmathematik
  2. Reine Mathematik
9 Modulbeauftragte/r
Studiendekan/in Mathematik
Zuständige Fakultät
Fakultät für Mathematik

Veranstaltungen zu diesem Modul

Titel Semester Dozent
Fourieranalysis (Teil I) SS17 Albrecht Seelmann
Fourier-Analysis (Teil II) WS1718 Albrecht Seelmann