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SUMMARY

A new optimal control control problem that incorporates the residual of the Eikonal equation into its
objective is presented. The formulation of the state equation is based on the level set transport equation
but extended by an additional source term, correcting the solution so as to minimize the objective functional.
The method enforces the constraint so that the interface cannot be displaced. The system of first order
optimality conditions is derived, linearized, and solved numerically. The control also prevents numerical
instabilities, so that no additional stabilization techniques are required. This approach offers the flexibility
to include other desired design criteria into the objective functional. The approach is evaluated numerically
in three different examples and compared to other PDE-based reinitialization techniques.
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1. INTRODUCTION

Level set methods are among the most popular techniques for numerical simulation of evolving
interfaces in the context of interface capturing methods. The interface is represented in an implicit
manner as the zero level set of an auxiliary function, the level set function. When applied to free-
surface problems, the smoothness of this function at the interface is of great importance. Signed
distance functions generally satisfy this need and are therefore commonly chosen as initial data.
Unfortunately, the desirable signed distance function property is not preserved in the numerical
process of advection. In some regions the level set function can become very steep, so that a nearly
discontinuous function has to be advected. In other regions it may become very flat causing a
significant loss of accuracy when localizing the interface. In order to preserve the signed distance
function property approximately, reinitialization procedures are commonly applied. Those are
roughly divided into geometric and PDE-based procedures. A wealth of geometric [1, 2, 3] and
PDE-based techniques [4, 5, 6, 7, 8, 9] exist.
A well designed reinitialization method produces an approximation to a signed distance function
that has the same zero isocontour as the original level set function. Sussman et al. [7] presented
a post processing reinitialization scheme in which a hyperbolic PDE is solved to steady state. In
practice, the numerical solution of this equation leads to significant displacements of the interface
[10] due to artificial diffusion. An approach directly addressing this inaccuracy is the interface local
projection method of Parolini [6]. Here, in a narrow band along the interface, the values of the
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2 CH. BASTING AND D. KUZMIN AND J.N. SHADID

level set function are directly computed and then used to provide boundary conditions for a post-
processing reinitialization scheme.
As alternative approach to hyperbolic reinitialization, Li et al. [5] introduce the distance regularized
level evolution (DRLSE). Its corrected level set function is the steady-state solution to an energy-
minimizing gradient flow equation. The approach offers the flexibility to choose a potential function
defining the distance regularization, so that truncated distance functions can also be handled, but
special care needs to be taken to prevent interface displacements. In our recent publication [11], we
built on this idea and developed an interface preserving level set reinitialization scheme, leading
to a nonlinear elliptic problem that penalizes interface displacements. In the present paper we will
comment on this approach combined with the interface local projection method by Parolini [6].
In the context of moving interfaces, all of the approaches mentioned above are correcting a given
predictor to the solution of the advection equation. In contrast to this procedure, Ville et al. [9]
propose an all-at-once approach that embeds the reinitialization equation of [7] into the transport
equation. The method is referred to as convective reinitialization. Here, interface accuracy relies on
how well the sign function is resolved.
In this paper we present another all-at-once approach based on an optimal control problem. The
residual of the Eikonal equation is minimized whilst constraining an augmented transport equation.
We derive the resulting nonlinear system of first order optimality conditions and linearize it. Three
numerical examples illustrate the potential of this new approach.

2. LEVEL SET METHOD

The level set approach to simulating the evolution of a free interface Γ inside a bounded domain Ω
is based on an implicit representation of Γ in terms of a scalar indicator function ϕ(t,x) such that

Γ(ϕ)(t) = {x ∈ Ω | ϕ(t,x) = 0}. (1)

In the context of two-phase flows, the sign of ϕ tells the two phases apart. It is common practice to
initialize ϕ as signed distance function to the zero level set, i.e.

ϕ(0,x) = ±dist(x,Γ(0)). (2)

A signed distance function satisfies the Eikonal equation

|∇ϕ| = 1, (3)

almost everywhere. If ϕ is a signed distance function (SDF), the normal vector to the interface is
readily obtained by

n = ∇ϕ. (4)

This is particularly useful when it comes to recovering interface related quantities such as the
curvature. The signed distance function property is also very useful in the context of adaptive
strategies, since it serves as interface proximity indicator. Furthermore, when numerically solving
the level set transport equation

∂ϕ

∂t
+ v · ∇ϕ = 0 in Ω, (5)

reinitialization of ϕ will ensure |∇ϕ| ≈ 1, thus preventing numerical instabilities due to steepening
and flattening effects as described above. Numerical methods generally fail to preserve this desirable
SDF property over time, wherefore reinitialization methods are commonly applied.

3. REINITIALIZATION

A well-designed reinitilization scheme should possess three important properties. Most importantly,
the boundary condition ϕ|Γ = 0 should be satisfied as closely as possible, i.e. the zero isocontour
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OPTIMAL CONTROL FOR REINITIALIZATION IN LEVEL SET METHODS 3

of ϕ must not be displaced in any significant manner by the reinitialization procedure. Second, the
result should satisfy the SDF property and be smooth away from kinks. In particular, the residual of
|∇ϕ| = 1 should be small in proximity to the interface where accuracy is most important. Last but
not least, computational efforts due to reinitialization must be managable.

Many algorithms to tackle the problem of reinitialization exist and can roughly be subdivided into
direct and PDE-based methods. Latter ones do not require the explicit localization of the interface
but an approximate distance function is obtained by solving an additional or modified PDE. In this
paper we focus on reinitialization methods mainly designed for evolution problems, i.e. methods of
particular interest are those that approximate the solution to the interface transport equation while
enforcing the SDF property in a certain way, which we will refer to as all-at-once methods. The
alternative are post-processing approaches, where the numerical solution to the transport equation ϕ̃
serves as a predictor and the reinitialization method then corrects ϕ̃ to become a good approximation
to a signed distance function.

3.1. Hyperbolic Reinitialization

The most common PDE-based approach was introduced by Sussman et al. [7]. Due to the methods
hyperbolic nature, we refer to this approach as hyperbolic reinitialization. The key idea boils down
to solving the initial value problem

∂ϕ

∂τ
+ Sε(ϕ̃)(|∇ϕ| − 1) = 0, ϕ(0,x) = ϕ̃, (6)

in virtual time τ to steady state. Sε is a regularization of the sign function; a commonly chosen one
is

Sε(ϕ̃) =
ϕ̃√

ϕ̃2 + ε2
.

Since Sε(ϕ̃) vanishes where ϕ = 0, the steady state solution to (6) preserves the implicitly defined
interface Γ(ϕ̃) exactly. Furthermore, the steady state ϕ satisfies the Eikonal equation |∇ϕ| = 1
almost everywhere. As already pointed out, this method avoids the explicit localization of the
interface. However, numerically this approach requires a well-chosen and mesh-size dependent
regularization parameter ε (its choice is not clear) and a stable scheme to solve the equation to
steady state. Inappropriate choices of ε may lead to slow speed of convergence and considerable
displacements of the interface due to the added numerical diffusion. This may affect the global
mass conservation properties of the overall scheme significantly, see for example [12].

Convected Reinitialization
Based on the hyperbolic reinitializaton approach, Ville et al. [9] embed the reinitialization process
into the actual transport model, transforming the post-processing into an all-at-once method. The
convected reinitialization equation

∂ϕ

∂t
+ v · ∇ϕ+ λS(ϕ)(|∇ϕ| − 1) = 0, (7)

is obtained by considering the auxillary intial value problem (6) in virtual time τ , chosing the
parameter

λ =
∂τ

∂t
, (8)

and rewriting it into an Eulerian context. At the interface, S(ϕ̃) is zero and the source term vanishes.
The numerical solution of (7) however requires a regularized signed distance function introducing
an additional parameter as well as an iterative scheme to linearize the problem.
In terms of a finite element discretization, Ville et al. [9] suggest an streamline-upwind Petrov-
Galerkin (SUPG) method to solve this convection dominated problem with coefficient

τSUPG '
h

D|v|
, (9)
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4 CH. BASTING AND D. KUZMIN AND J.N. SHADID

where D is the number of nodes per element and h is the mesh size. The problem can easily be
linearized by means of a fixed-point iteration or Newton’s method. Usually a couple of virtual time
steps are sufficient. The scheme is sensitive to the choice of λ and may require smaller choices of λ
than (8) which may increase the number of artificial time steps required.

3.2. Parabolic Reinitialization

A different approach to hyperbolic PDE reinitialization is the DRLSE algorithm developed by Li et
al. [5]. In the context of pure reinitialization, the corrected level set function represents the steady-
state solution to an energy-minimizing gradient flow equation

∂ϕ

∂τ
+
∂R
∂ϕ

= 0, (10)

where R(ϕ) is a suitable energy functional [11]. The choice

R(ϕ) =
1

2

∫
Ω

(|∇ϕ| − 1)2dx (11)

is the least-squares solution to (3). For this particular choice, (10) reduces to the nonlinear heat
equation

∂ϕ

∂τ
−∇ ·

(
∇ϕ− ∇ϕ

|∇ϕ|

)
= 0. (12)

The initial condition for the steady-state computations is given by the original level set function ϕ̃.
For other definitions of the energy functional R(ϕ), see [5, 11].

3.3. Elliptic Reinitialization

In [11] the authors presented a different approach based on the presented parabolic reinitialization
but yielding an elliptic problem instead. In contrast to the local hyperpolic reinitialization approach
needed to be carried out to steady state, the elliptic approach is global and hence produces a solution
in just one step – justifying the higher computational costs. However, since the problem is nonlinear,
a fixed-point iteration needs to be applied. In practice, only one or very few iterations are needed
for it to produce sufficiently good results.
The method is based on a general energy functional (see also [5])

Rp(ϕ) =
1

2

∫
Ω

p(|∇ϕ|)dx, (13)

depending on a suitably chosen potential function p : [0,∞)→ R. For

p(s) := (s− 1)2 (14)

we obtain the particular choice of (11). To enforce the boundary condition ϕ|Γ(ϕ̃) = 0 imposed by
the original level set function ϕ̃, the cost functional is augmented by adding the penalty term

Pϕ̃(ϕ) =
α

2

∫
Γ(ϕ̃)

ϕ2ds, (15)

where ϕ̃ denotes the provisional solution before applying the reinitialization scheme. The penalized
minimization problem yields the necessary optimality conditions

∂Rp
∂ϕ

+
∂Pϕ̃
∂ϕ

= 0. (16)

The variational form of the penalized minimization process becomes∫
Ω

dp(|∇ϕ|)∇ϕ · ∇vdx+ α

∫
Γ(ϕ̃)

ϕvds, (17)
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OPTIMAL CONTROL FOR REINITIALIZATION IN LEVEL SET METHODS 5

with diffusion rate dp(s) = p′(s)
s . This representation reveals that the level set regularization

term generates forward diffusion for dp(|∇ϕ|) > 0 and backward diffusion for dp(|∇ϕ|) < 0,
respectively.
The variational problem can be solved using a Ritz-Galerkin finite element method. The variational
form associated with (16) and for the particular choice (14) is given by∫

Ω

(
1− 1

|∇ϕ|

)
∇ϕ · ∇vdx+ α

∫
Γ(ϕ̃)

ϕvds, (18)

and can be linearized into a consistent fixed-point iteration where at each step a steady diffusion-
reaction equation with a source term depending on the gradient of the previous iterate has to be
solved.
Note that other choices of p lead to different diffusion rates and can, for example, preserve flat
gradients of ϕ away from the interface; see [11] for more details.

Local Projection Penalty Term
The method presented in [11] can be modified as follows: instead of enforcing the boundary
condition ϕ|Γ(ϕ̃) = 0 by adding a surface penalty term such as (15), deviations from a desired state
are penalized. This desired state is defined by the local L2 projection of an exact but discontinuous
reinitialization of ϕ̃ in the interface proximity region Ωint. This local projection technique was
developed by Parolini [6]. Applied to elliptic reinitialization, the energy functionalR and the penalty

0

1

2

3

4

5

Figure 1. Interface region Ωint (shaded)

term P change to

R(ϕ) =
1

2

∫
Ω\Ωint

p(|∇ϕ|)dx, (19)

and
P(ϕ) = α

∫
Ωint

(ϕ− ϕint)
2dx, (20)

with the local L2 projection ∫
Ωint

ϕintvdx =

∫
Ωint

ϕ̃

|∇ϕ̃|
vdx. (21)

Note that the ϕ̃
|∇ϕ̃| satisfies the Eikonal equation and its zero level set coincides with ϕ̃. Both

approaches yield very similar results; however the local projection is easier to implement as no
explicit localization of the interface is required.
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6 CH. BASTING AND D. KUZMIN AND J.N. SHADID

4. OPTIMAL CONTROL APPROACH

We now present an optimal control approach designed as all-at-once method, i. e. solving the level
set transport equation while constraining the Eikonal residual. In this method the transport equation
is augmented by a source term ϕu and serves as a constraint for the optimization problem. The
objective functional consists of the energy functional Rp(ϕ) as introduced in (13) and a Tikonov
regularization term for the control variable u. The optimization problem is formulated as follows:

min J(ϕ, u) :=
1

2
Rp(ϕ) +

β

2
‖u‖2U , (22a)

subject to
∂ϕ

∂t
+ v · ∇ϕ+ ϕu = 0. (22b)

A suitable control space has to be chosen, for example U = L2(Ω). Since the added source term
vanishes where ϕ = 0, the zero isocontour is not displaced by definition of the method even though
no further regularization (e. g. of the sign function as in [7, 9]) is required. Elsewhere, the control
adjusts the added source term so that the residual of the Eikonal equation is minimized under the
given objective. The choice of U and β determine the expected regularity of the control.

4.1. Weak Form

The state equation (22b) can be written in weak form as∫
Ω

(
∂ϕ

∂t
+ v · ∇ϕ+ ϕu

)
v dx,

defining a bilinear form a(·, ·) and a trilinear form b(·, ·, ·). We will consider different schemes for
discretization and stabilization, each resulting in specific linear forms. For simplicity we restrict
ourselves to the time-discrete problem. Let ϕn denote the solution of the previous time level tn. The
added source term is treated fully implicitly. The semi-discrete problem then reads

min J(ϕ, u) := Rp(ϕ) +
β

2
‖u‖2U , (23a)

subject to a(ϕ, v) + b(ϕ, u, v) = l(v) ∀v. (23b)

Since the state equation is convection dominated, stabilized numerical schemes are preferred but not
necessarily required in the optimal control approach where the control will stabilize the solution.
We will consider the following three approaches:

1. θ-scheme and no stabilization

aNS(ϕ, v) =

∫
Ω

ϕv + ∆tθv · ∇ϕvdx, (24a)

bNS(ϕ, u, v) =

∫
Ω

∆tϕuvdx, (24b)

lNS(v) =

∫
Ω

ϕnv −∆t(1− θ)v · ∇ϕn. (24c)

2. θ-scheme and SUPG stabilization (with parameter τ )

aSUPG(ϕ, v) =

∫
Ω

(
ϕ+ ∆tθv · ∇ϕ

)
(v + τv · ∇v)dx, (25a)

bSUPG(ϕ, u, v) =

∫
Ω

∆tϕu(v + τv · ∇v)dx, (25b)

lSUPG(v) =

∫
Ω

(
ϕn −∆t(1− θ)v · ∇ϕn

)
(v + τv · ∇v)dx. (25c)
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OPTIMAL CONTROL FOR REINITIALIZATION IN LEVEL SET METHODS 7

3. Semi-Implicit Lax-Wendroff (SILW) stabilization

aSILW(ϕ, v) =

∫
Ω

ϕv +
(∆t)2

2
(v · ∇ϕ)(v · ∇v)dx, (26a)

bSILW(ϕ, u, v) =

∫
Ω

∆tϕuvdx, (26b)

lSILW(v) =

∫
Ω

−∆tv · ∇ϕnv. (26c)

4.2. Optimality Conditions

We derive the first order optimality conditions for (23) by differentiating the associated Lagrangian
functional

L(ϕ, u, λ) := J(ϕ, u) + a(ϕ, λ) + b(ϕ, u, λ)− l(λ) (27)

with respect to state ϕ, control u and Lagrange multiplier λ:

δR(ϕ,ψ) + a(ψ, λ) + b(ψ, u, λ)− l(λ) = 0 ∀ψ (28a)
b(ϕ, η, λ) + β(u, η)U = 0 ∀η (28b)
a(ϕ, v) + b(ϕ, u, v) = l(v) ∀v (28c)

The derivative of Rp(ϕ) with respect to ϕ in direction v is given by

δRp(ϕ, v) =

∫
Ω

p′(|∇ϕ|)∇ϕ · ∇v
|∇ϕ|

dx, (29)

and similarly, the second derivative is

δ2Rp(ϕ, v, w) =

∫
Ω

p′′(|∇ϕ|)∇ϕ · ∇w
|∇ϕ|

∇ϕ · ∇v
|∇ϕ|

dx

+

∫
Ω

p′(|∇ϕ|)
(
∇w · ∇v
|∇ϕ|

− ∇ϕ · ∇v
|∇ϕ|2

∇w · ∇ϕ
|∇ϕ|

)
dx

=

∫
Ω

p′′(|∇ϕ|)
|∇ϕ|2

∇ϕ · ∇w∇ϕ · ∇vdx

+

∫
Ω

p′(|∇ϕ|)
|∇ϕ|

(
∇w · ∇v − (∇ϕ · ∇v)(∇ϕ · ∇w)

|∇ϕ|2

)
dx

For p1, we have p′1(s) = s− 1, p′′1(s) = 1, whence

δR1(ϕ, v) =

∫
Ω

(
1− 1

|∇ϕ|

)
∇ϕ · ∇vdx,

and

δ2R2(ϕ, v, w) =

∫
ω

∇v · ∇w
(

1− 1

|∇ϕ|

)
+

(∇ϕ · ∇v)(∇ϕ · ∇w)

|∇ϕ|3
dx.

4.3. Linearization

To solve system (28) numerically, a linearization is required. For a potential function p chosen as in
(14), the system can be linearized by employing an iterative solution strategy such as

δR1(ϕ, v) ≈
∫

Ω

∇ϕm · ∇vdx−
∫

Ω

∇ϕm−1 · ∇v
|∇ϕm−1|

dx.

and
b(ϕ, u, λ) ≈ b(ϕm−1, um, λm).
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8 CH. BASTING AND D. KUZMIN AND J.N. SHADID

Alternatively, we can employ Newton’s method for linearization. Therefore, let us denote the
residual of (28) by F (x) where x := (ϕ, u, λ). The Newton update to solve (28) then reads

xm+1 = xm −
(
J(xm)

)−1
F (xm), (30)

with the Jacobian (
J(xm)

)
i,j

=

(
∂Fi
∂xj

)
. (31)

The derivatives of F are:

∂F1

∂ϕ
= δ2Rp(ϕ, δϕ, ψ), (32a)

∂F1

∂u
= b(ψ, δu, λ), (32b)

∂F1

∂λ
= a(ψ, δλ) + b(ψ, u, δλ), (32c)

∂F2

∂ϕ
= b(δϕ, η, λ), (32d)

∂F2

∂u
= (δu, η)U , (32e)

∂F2

∂λ
= b(ϕ, η, δλ), (32f)

∂F3

∂ϕ
= a(δϕ, v) + b(δϕ, u, v), (32g)

∂F3

∂u
= b(ϕ, δu, v), (32h)

∂F3

∂λ
= 0. (32i)

Considering the fully discrete numerical scheme, the Jacobian matrix has the block structure

J =

 δ2R(ϕ) ∆tM(λ) A+ ∆tM(u)
∆tM(λ) βM ∆tM(ϕ)

Â+ ∆tM(u) ∆tM(ϕ) 0

 ,
whereA is the discretization matrix of the transport equation defined by the bilinear form a(·, ·), and
M(·) the weighted mass matrix corresponding to the trilinear form b(·, ·, ·). Thus, the discretization
and stabilization schemes differ only in the discretization matrices A and M(·).

4.4. Influence of the Regularization Parameter β

In this section we will assess the influence of the regularization parameter β for an examplary test
case. Figure 2 shows the L2(Ω) error, the H1(Ω) error, the displacement error (33) and the residual
of the Eikonal equation after one full revolution of the distance function of a circle on a circular
mesh. Note that in the optimal-control context ϕ ∈ H1(Ω) by definition of the objective functional.
Each of the three discretizations described in the previous section produces very similar results.
Therefore we restrict ourselves to the θ-method with no stabilization (24). Other test cases exhibit
very similar error behavior for the choice of β.
In our numerical studies we observed that very small values of β will, as expected, admit larger
controls leading to larger errors than using larger values of β. We found the choice of β between
10−3 and 10−1 to produce good results in all cases. No significant time dependence was observed
in the below numerical experiments.
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Figure 2. Influence of regularization parameter β on the errors of ϕh.

5. NUMERICAL RESULTS

To evaluate the error in terms of the displacement of the interface, we define

eΓ =
1

NΓ

∑
i∈P (Γ)

|D(xi)− ϕi|. (33)

P (Γ) denotes the set of nodes belonging to an element that is intersected by the zero isocontour,
NΓ is the number of such elements. To measure the overall quality of the signed distance function
approximation, we evaluate the residual of the Eikonal equation in the L2 sense and relative to the
initial data:

eE =
‖|∇ϕh(t = T )| − 1‖L2(Ω)

‖|∇ϕh(t = 0)| − 1‖L2(Ω)

(34)

Other errors measured are the L2(Ω) and H1(Ω) error, given the finite element projection of the
exact solution at the final time t = T . Note that theH1(Ω) error will only provide information on the
smoothness behavior, since we can only expect the optimal control solution to belong toH1(Ω). For
all results presented in the following, we used a second-order accurate time discretization (Crank-
Nicolson or Semi-Implicit Lax-Wendroff) and linear finite elements for spatial discretization.

5.1. Mass Conservation

As already pointed out, reinitialization procedures may have an negative inlfuence on the local
(and global) mass conservation as they can shift the interface. In the context of two-phase flows,
knowledge of the exact interface location is crucial as it defines the mass contained within the
interface. Errors in the interface position and thereby in conservation of mass significantly reduce
numerical accuracy and may lead to unphysical behavior.
Therefore, in this first example we assess the quality of the reinitialization methods in terms of
mass conservation. We consider two initial contours: a single circular interface, and a non-convex
interface of two overlapping circles, each depicted in figure 3. The level set function is initialized
as twice the signed distance function of the particular interface. Figures 4 and 5 show the initial
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10 CH. BASTING AND D. KUZMIN AND J.N. SHADID

condition and its reinitialized counterpart. In tables I and II the corresponding numerical relative
mass (area) errors

E =
A(ϕh)−Aexact

Aexact
,

and rates of convergence are shown. Numerical computations were performed using linear finite
elements on a uniform square mesh with mesh sizes hi = 1

20 ·
1
2i , i = 0, 1, 2, 3, 4. Iterations were

stopped when the residual of the Eikonal equation reached a value less than 1.1 times the Eikonal
residual of the projected solution.
The L2-projection of the initial data into the linear finite element space is second order accurate in
terms of mass conservation. As pointed out in [6], the classical hyperbolic reinitialization approach
(6) shows a convergence rate of ≈ 1. In contrast, both elliptic approaches and the optimal control
approach exhibits a rate of ≈ 2 which is of the same order as direct brute-force reinitialization.
We want to emphasize the global character of the elliptic reinitialization: the results shown
were obtained after only one iteration, which justifies the higher computational costs. Hyperbolic
approaches need many iterations to reach steady state when provided a poor initial condition as in
this test case. Furthermore, this example shows that the methods are not only capable of correcting
a level set function that is close to a signed distance function but also generating a signed distance
function from a given profile.
Due to the static nature of this test case, the optimal control approach is applied by setting the
velocity field equal to zero. The observed larger absolute mass error can be justified by the design
as an all-at-once method, where corrections are typically small within each time step whereas in
this example large correction and hence large controls are needed. Clearly, large values of u will
degrade the interface accuracy due to increased numerical diffusion in the source term. We also
note that the other all-at-once method presented in the previous chapter, convective reinitialization,
did not converge at all when applied to this test case.

Figure 3. Test case interface shapes

h
Initial L2 proj. Elliptic reinit. Elliptic reinit. w. L.P. OC
Error Order Error Order Error Order Error Order

0.050000 0.008928 2.2446 0.001486 -0.2100 0.006966 1.8986 0.046514 3.3584
0.025000 0.001884 2.1359 0.001719 2.0291 0.001868 2.1253 0.004535 1.9897
0.012500 0.000429 2.0632 0.000421 2.0294 0.000428 1.9757 0.001142 1.9831
0.006250 0.000103 2.0783 0.000103 1.9717 0.000109 1.9886 0.000289 1.8825
0.003125 0.000024 0.000026 0.000027 0.000078

Table I. Convergence test: relative mass (area) error for the circular interface.
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OPTIMAL CONTROL FOR REINITIALIZATION IN LEVEL SET METHODS 11

Figure 4. Circular interface: initial condition (left) and the level set function after reinitialization (right)

Figure 5. Non-convex overlapping circle interface: initial condition (left) and the level set funciton after
reinitialization (right)

5.2. Rotation of a Slotted Disk

In this and the following section we solve time-dependent convection problems using the optimal
control approach and the convected level set method. Reinitialization techniques based on post-
processing are not considered in this numerical study. In our experience they require additional
stabilization and tend to produce stronger displacements of the interface if applied at each time step.
First, we consider a very challenging non-stationary test case in which the initial data is given as the

(2016)
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h
Initial L2 proj. Elliptic reinit. Elliptic reinit. w. L.P. OC
Error Order Error Order Error Order Error Order

0.050000 0.008723 1.8378 0.006606 1.3485 0.008727 1.6760 0.174454 4.1036
0.025000 0.002440 2.0102 0.002594 2.0431 0.002731 2.2448 0.010148 1.9720
0.012500 0.000606 1.9306 0.000629 1.9581 0.000576 1.8585 0.002587 1.9562
0.006250 0.000159 2.0128 0.000162 2.0270 0.000159 2.0128 0.000667 1.9942
0.003125 0.000039 0.000040 0.000039 0.000167

Table II. Convergence test: relative mass (area) error for the non-convex interface.

distance function of a slotted disk, see figure 6. The velocity field is set to

v(t,x) =

[
x2 − 1

2
1
2 − x1

]
,

thus defining a rotation about the center of the domain Ω = U0.5(0.5, 0.5). In the absence of an
inflow boundary portion (the velocity field v is perpendicular to the outer normal vector) no
boundary conditions are required. At t = 2π, the zero level set of the solution coincides with the
initial data so that errors can easily be measured.

Figure 6. Initial configuration

All numerical computations were carried out using the second-order implicit Crank-Nicolson
time stepping scheme and linear finite elements on a mesh with maximal edge length h0 = 0.05 and
∆t0 = 2π

600 ≈ 0.01047 (refinement level ` = 0) and the associated refinements h` = h0 · 2−` and
∆t` = ∆t · 2−` for ` = 1, 2, 3. We assess the relative averaged mass error by

emass =

∫ T

0

|A(ϕh(t))−Aexact)|
Aexact

dt.

In table III the errors for the non-reinitialized standard finite element approach (NR), the Optimal
Control approach (OC) and the Convected Reinitialization approach (CR) are listed. Each of the
three methods was stabilized by means of SUPG. Throughout all refinement levels, the Eikonal
residual of OC is about one half of that for NR, while mass conservation error and L2 error are of
the same order. Note that CR was very sensitive to the choice of its parameter λ and hence may
produce better results for more carefully chosen parameters.
As the initial zero interface is not smooth, this is a very challenging test case for reinitialization
procedures as they tend to smear discontinuities. OC exhibits similar errors and rates as NR
with SUPG stabilization but with a considerably smaller residual of the Eikonal equation. On all
refinement levels the same parameter β = 2.5 · 10−2 was used. Figure 7 shows the zero level sets
of the three methods after one full revolution. We observere that both reinitialization methods have
problems resolving the sharp corners of the slot. The interface of the OC approach fits the NR
interface quite well, i. e. displacements of the interface are rather small.

(2016)
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Non-reinitialized with SUPG stabilization

`
residual Eikonal eq. eE L2 error rel. mass error emass

Rel. Error Error Order Error Order Error Order
0 3.5493514 0.0201330 0.9054 0.0035952 1.6028 0.0654459 3.2870
1 4.8105934 0.0107488 0.7546 0.0011837 1.1306 0.0067050 1.0431
2 4.1543350 0.0063710 0.8067 0.0005406 1.1789 0.0032538 2.7845
3 4.4149061 0.0036422 0.0002388 0.0004722

Optimal Control approach (β = 2.510−2) and SUPG stabilization

`
residual Eikonal eq. eE L2 error rel. mass error emass

Rel. Error Error Order Error Order Error Order
0 2.1469588 0.0121782 0.8035 0.0046831 1.7306 0.0264582 0.3438
1 3.1227208 0.0069774 0.9333 0.0014111 1.3202 0.0208488 4.8040
2 2.3825698 0.0036539 1.0769 0.0005651 0.8500 0.0007463 1.7621
3 2.0996569 0.0017322 0.0003135 0.0002200

Convected Reinitialization approach with constant λ and SUPG stabilization

`
residual Eikonal eq. eE L2 error rel. mass error emass

Rel. Error Error Order Error Order Error Order
0 9.9834836 0.0566294 1.5536 0.0316824 2.1927 0.0776932 1.2649
1 8.6336391 0.0192910 1.3191 0.0069301 1.7719 0.0323301 0.9660
2 5.0415941 0.0077317 1.1186 0.0020293 2.5003 0.0165509 3.1339
3 4.3163510 0.0035609 0.0003587 0.0018854

Table III. Errors for each method after one full revolution of the slotted disk on different refinement levels

Figure 7. Isocontours of the non-reinitialized approach (green), the Optimal Control approach (blue) and the
Convected Reinitialization approach (red)

5.3. Vortex Deformation of a Circle

In the previous test cases the zero interface of the solution coincided with the zero interface of the
initial data except for rotation and shift. In this case we apply a different velocity field that will
significantly deform the zero interface over time. The maximum deformation is reached at half time
t = T

2 , after which the sign is reversed. At final time t = T , the initial data is recovered so that we
can assess the quality of the interface and the accuracy in terms of mass conservation.
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As computational domain we used the unit square with a structured triangular mesh with h0 = 0.05,
∆t0 = 0.01 and h` = h0 · 2−`, ∆t` = ∆t0 · 2−` for ` = 1, 2, 3. The velocity field is given by

v(t,x) = cos( tπ4 )

[
sin2(πx1) sin(2πx2)
− sin2(πx2) sin(2πx1)

]
. (35)

Note that applying the standard level set method using Crank-Nicolson for time discretization will
reproduce the initial data as it is reversible (if no artificial diffusion is introduced by stabilization
techniques).
Figure 8 shows the isocontours of the Optimal Control and the Convected Reinitialization approach
at time instants i t4 , i = 1, 2, 3, 4.

`
Non-reinitialized w. SUPG Convected Reinitialization Optimal Control

rel. mass error emass rel. mass error emass rel. mass error emass

Error Order Error Order Error Order
0 0.0562404 1.3017 1.0832819 2.0221 0.0278216 1.1142
1 0.0228146 2.7551 0.2667089 3.0191 0.0128519 1.3814
2 0.0033795 2.9307 0.0329006 0.2484 0.0049330 3.1325
3 0.0004432 0.0276965 0.0005625
Table IV. Mass comparison for Optimal Contral and Convected Reinitialization approaches

Figure 8. Vortex flow zero level sets for Optimal Control (β = 10−1) in blue and Convected Reinitialization
in red: t = T

4 (top left), t = T
2 (top right), t = 3T

4 (bottom left) and t = T (bottom right)
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6. SUMMARY

We have presented a new all-at-once strategy to solve the level set transport equation while
maintaining the signed distance function property as far as possible. The problem was formulated
and the first order optimality conditions were derived and discussed. The benefits of the proposed
methodology include the preservation of the zero interface and the possibility of designing a goal-
oriented objective functional, for example in the context of shape optimization. Comparison to other
PDE-based reinitialization techniques demonstrated the potential of this approach.
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