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Abstract

In this paper, we present numerical techniques for one-way coupling of CFD and Popu-
lation Balance Equations (PBE) based on the incompressible flow solver FeatFlow which
is extended with Chien’s Low-Reynolds number k − ε turbulence model, and breakage and
coalescence closures. The presented implementation ensures strictly conservative treatment
of sink and source terms which is enforced even for geometric discretization of the internal
coordinate. The validation of our implementation which covers wide range of computa-
tional and experimental problems enables us to proceed into three-dimensional applications
as, turbulent flows in a pipe and through a static mixer. The aim of this paper is to high-
light the influence of different formulations of the novel theoretical breakage and coalescence
models on the equilibrium distribution of population, and to propose an implementation
strategy for three-dimensional one-way coupled CFD-PBE model.

1. Introduction

Population balances may be regarded either as an old subject that has its origin in the
Boltzmann equation more than a century ago, or as a relatively new one in light of the
variety of applications in which engineers have recently put population balances to use.
Population balance equations (PBE) are essential to researchers of many distinct areas.
Applications cover a wide range of dispersed systems, such as solid-liquid (crystallization
systems), gas-solid, gas-liquid (aerobic fermentation) and liquid-liquid (food processes)
dispersions. Analysis of separation and reactor equipments and dispersed phase reactors,
they all involve population balance models [40].

In practical applications, a single bubble size model, as reported by numerous re-
searchers [36, 22], cannot properly describe the interfacial interactions between the phases,
and analytical solutions of the PBE are available just for very few and specific cases.
Hence, the use of appropriate numerical techniques is unavoidable in order to deal with
practical problems. There are several numerical methods satisfying the necessary require-
ments with respect to robustness and realizability: the quadrature method of moments
[34, 33], the direct quadrature method of moments (DQMM) [10], parallel parent and
daughter classes (PPDC) [4] and the method of classes [18, 19], which is in the scope of
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this study.

In the literature, there are several noticeable breakup and coalescence models. These
two competing mechanisms for static conditions finally lead the distribution to a certain
dynamic equilibrium. Thus, it is important to have compatible kernels for coalescence and
breakage. If one of these kernels is dominant with respect to the other, the achievement
of an equilibrium distribution can be unrealistic. Therefore, the breakage and coalescence
kernels are usually modeled together. Chen and his co-workers [6] studied the effect of
different breakage and coalescence closures and they showed that incompatible kernels
produce poor results. Certain experimental and theoretical models for breakage and
coalescence kernels are regarded as milestones for the evolution of population balances
in the framework of liquid/gas-liquid dispersed phase systems and the evolution of these
models is presented in detail by [15].

Most of the present models for coalescence kernels were derived analogously to kinetic
theory of gases [9, 45, 39, 30]. In kinetic theory of gases, collisions between molecules
are considered while in the process of coalescence, bubble (droplet)–bubble (droplet) and
bubble/droplet–eddy collisions count. Thus, various coalescence models show similar
trends, that is a monotonous increase in the specific coalescence rate with increase in
the bubble/droplet diameter [5]. The coalescence kernel function adopted in this work
is the one proposed by Lehr et al. [28] which is implemented according to the technique
developed by Buwa and Ranade [5].

In the case of breakup, most of the published studies on bubble/droplet breakup are
derived from the theories which are outlined by [12] and [16]. All these models have their
own advantages and weak points which makes them dramatically different. Nevertheless,
they have similar phenomenological interpretations: bubble/droplet breakage occurs due
to turbulent eddies colliding with the bubble/droplet surface. If the energy of the incom-
ing eddy is higher than the surface energy, deformation of the surface happens, which may
result in breakup of a bubble/droplet into two or more daughter bubbles/droplets. The
colliding eddies that are larger than the bubble/droplet result in spatial transportation.
Thus, collisions between bubble/droplet and eddies which are smaller than or equal in
size to the bubble/droplet, give rise to breakage. The main differences among the avail-
able models are due to their predictions of daughter size distributions (DSD). Some of
the models assume a uniform or a truncated normal distribution which is centered at the
half of the bubble/droplet size. In other words these models are based on the assumption
of equal-sized breakage [2, 26, 47]. In contrast, some others presume unequal breakup
which means a bubble/droplet breaking into a large and a smaller one [2, 31, 45]. The
developed model by [27] is able to combine the features of these significantly different
breakage closures. Their model is based on the theoretical findings of [31]. The breakage
kernel is derived from the frequency of arriving eddies onto the surface of a bubble and
from the probability that collisions lead to breakage. Accordingly, their model predicts an
equal-sized breakage for relatively small bubbles/droplets and an unequal-sized breakage
for large ones. In fact, their approach appears even intuitively to be reasonable: large
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bubbles/droplets firstly collide with large turbulent eddies so that a large and smaller
daughter bubble/droplet exists while for small bubbles/droplets equal-sized breakage is
easier due to high interfacial forces (large and small are relative to stable bubble size
under given conditions). A comprehensive comparison of the noticeable coalescence and
breakage models is given by [48]. The comparison shows that the model proposed by
[28] is generally superior to other available breakup closures which makes it a suitable
candidate for the choice of our breakage kernels.

There are many hydrodynamic variables which affect the efficiency of multiphase reac-
tors. However, one should be able to resolve the flow field in the reactor in order to calcu-
late the necessary breakup and coalescence kernels to solve the population balance equa-
tions, that means to solve the transport problems in the internal (size of drops/bubbles)
and external (spatial) coordinates. This attempt will involve an inevitable coupling be-
tween CFD and PBE which can lead to irrational computational cost and many difficulties
in numerics if the problem is not tackled properly.

The dynamics of gas/liquid-liquid dispersed flows has been a topic of research for the
last several decades and many different methods were developed. Numerical simulation of
flow fields in column reactors, which is a cumbersome problem due to high complexity of
the flow field, is possible by adopting the Euler-Euler or Euler-Lagrange approaches. For
practical reasons like high numerical efforts and computational costs which are related to
tracking and calculating the motion of each bubble individually in the flow field, the for-
mer method is restricted to be applied on lean dispersions or when low volume fractions of
the dispersed phase are considered, while the latter method requires comparatively small
efforts in both numerics and computation. Nevertheless, both of the methods lead to the
same results if the problems are handled with adequate computational effort as it has
been reported by [44]. Sokolichin and Eigenberger went on with their studies and they
elucidated the behavior of flow fields in bubble columns. Numerical simulations which
assume the flow to be laminar are not able to produce mesh independent results. The finer
the grid, the more vortices are resolved. That is more typical for turbulent flows. Hence,
they performed extensive numerical calculations and conducted several experiments after
which they concluded that turbulence models are more convenient to describe flow fields
in bubble columns [3, 43].

Turbulence models which are applicable to produce results with an acceptable accuracy
and reasonable computational cost in general originate from the family of two-equation
eddy viscosity models. The most preferred model in this sense is related to the standard
or modified k-ε turbulence model which has been implemented in several commercial
CFD programs and in-house codes. In most of the present studies which consider im-
plementation of CFD coupled with PBE, it is preferred to work with commercial codes
like FLUENT [1, 6, 32, 38] or CFX [5, 7, 28, 27], naming just two of the most important
CFD software packages. However, a commercial code is not the only option and open-
source software packages such as FeatFlow (see http://www.featflow.de) extended with
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additional modules (such as turbulence model [20], multiphase model [22], subgrid-scale
mixing model [35] or a population balance model in the present case) possess the advan-
tages of higher flexibility and robustness.

The paper is organized as follows. In Section 2 the mathematical model of the popula-
tion balance equation with the breakage and coalescence kernels is described. In Section 3,
the arising standalone implementation of the obtained mathematical model is dealt with.
Furthermore, the description of its integration into the CFD flow solver is given in Section
4. The validation of our implementation together with the CFD coupled applications form
the content of Section 5, which is followed by our conclusions.

2. Mathematical model

The population balance equation for gas-liquid (liquid-liquid) flows is a transport equation
for the number density probability function, f , of bubbles (drops). By definition, f needs
to be related to an internal coordinate, what in most of the cases is the volume of bubbles,
υ. Therefore, the number density, N , and void fraction, α, of bubbles having a volume
between υa and υb are:

Nab =

∫ υb

υa

f dυ, αab =

∫ υb

υa

fυ dυ. (1)

The considered transport phenomena account for convection in the physical space (gov-
erned by the flow field ug), while the bubble breakage and coalescence move the bubbles
in the space of the internal coordinate. Thus, the resulting transport equation is the
following

∂f

∂t
+ ug · ∇f = B+ + B− + C+ + C−. (2)

Clearly, in case of modeling turbulent flows according to (temporal) averaging concepts
(2) has to be extended by the arising pseudo diffusion terms in analogy to the approach
of the Reynolds stress tensor

∇ · u′f ′ = −∇ · (νT
σT

∇f), (3)

where σT is the so-called turbulent Schmidt number. In (2) the superscripts ”+” and ”–”
stand for sources and sinks and the terms B and C on the right hand side represent the
rate of change of the number density probability function,

(

df
dt

)

, due to bubble breakup
and coalescence, respectively. In this study, both of these processes are modelled in
accordance with the two most popular models of Lehr and his colleagues [27, 28] adopting
some modifications with respect to an implementation introduced by [5]. According to
these studies:

• the breakage of parent bubbles of volume υ into bubbles of volume υ̃ and bubbles
of volume υ − υ̃ is associated with a rate rB(υ, υ̃)f(υ),
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• the coalescence of parent bubbles of volume υ̃ with bubbles of volume υ− υ̃ forming
bubbles of volume υ is associated with a rate rC(υ − υ̃, υ̃)f(υ̃)f(υ − υ̃),

where rB and rC are the so called kernel functions of breakup and coalescence. Substi-
tution of the breakage and coalescence terms into (2) results in the following transport
equation

∂f

∂t
+ ug · ∇f =

∫

∞

υ

rB(υ, υ̃)f(υ̃) dυ̃ − f(υ)

υ

∫ υ

0

υ̃rB(υ̃, υ) dυ̃

+
1

2

∫ υ

0

rC(υ̃, υ − υ̃)f(υ̃)f(υ − υ̃) dυ̃ − f(υ)

∫

∞

0

rC(υ̃, υ)f(υ̃) dυ̃,

(4)

which still needs to be closed by the specification of the kernel functions rB and rC .
According to [27] the coalescence kernel function is defined by

rC(υ, υ̃) =
π

4
(d+ d̃)2min(u′, ucrit), (5)

with d and d̃ denoting the diameter of bubbles of υ and υ̃. The characteristic velocities
u′ and ucrit are computed as follows

u′ =
√
2ε1/3(dd̃)1/6, (6)

ucrit =

√

Wecritσ

ρldeq
with deq = 2(d−1 + d̃−1)−1, (7)

where ε is the turbulent dissipation rate, σ is the surface tension of the liquid phase, ρl
is the density of the liquid phase, and Wecrit is the critical Weber number being equal to
0.06 for pure liquids [28]. Alternatively, it is also common to assume u′=0.08m/s instead
of considering u′ to be a function of υ and υ̃ as it was done in the study of Lehr and
his colleagues [28]. However, under certain conditions this assumption seems to lead to
unphysical results which are shown and explained in the following section. Additionally,
the chosen coalescence kernel (5) shows similar trends (monotonous increase in the specific
coalescence rate with increase in bubble diameter) in relation to experimental observations
and as most of the other models in the literature [5].

Regarding the breakup kernel there are various different formulations which yield
significantly different results. For that reason, it is hard to say that one model can
highlight all the features of the given process. A comparison of the most remarkable
breakup kernels in the literature is carried out by [48]. In pursuit of the mentioned study
it is shown that the model presented by [28] is more comprehensive than any other model
in the literature. The model in question [28] is based on the practical formulation of the
theoretical findings reported by [31] which therefore forms the fundamental basis of many
other relevant breakage models.

Motivated by the wide diversity of available breakage models presented in the litera-
ture, we extended our scope by consideration of a second breakage model developed by
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Figure 1: Dimensionless daughter size distribution.

[27]. This model also originates from the pioneering theoretical formulation introduced
by [31], that enables us to compare the same theoretical model from the point of view
of two different practical interpretations. Additionally, both of the breakage models have
the following definition in common

rB(υ, υ̃) = KBΦ(υ, υ̃), (8)

where KB is the total breakage rate and Φ(υ, υ̃) is the probability of breaking bubbles of
volume υ into bubbles of volume υ̃. The choice of our first breakage closure was influenced
by the demonstrated excellent properties of the breakage kernel developed by [27]. As a
result of this work, the total breakage rate KB is defined as

KB = 1.5(1− αg)
(ρl
σ

)2.2

ε1.8. (9)

The aforementioned excellent properties of the adopted breakage kernel are hidden in the
definition of the daughter size probability distribution function φ(υ, υ̃), which naturally
provides equal and unequal size distributions for the daughter bubbles (see Fig. 1). Such
a behavior of the distribution function is achieved by the following formula

φ(υ, υ̃) = max

(

ω1/3

ω̃4/3

(

min
(

ω̃7/6, ω̃−7/9
)

− ω−7/9
)

, 0

)

for
ω̃

ω
∈ (0, 0.5〉

with ω̃ = υ̃
π

6

σ1.8

ρ1.8l ε1.2
and ω = υ

π

6

σ1.8

ρ1.8l ε1.2
.

(10)

According to the implementation technique developed by [5], the substitution of the di-
mensionless bubble volume fBV = ω̃

ω
= υ̃

υ
into (10) results in

φ(υ, υ̃) = max
(

ω−1f
−4/3
BV

(

min
(

(fBV ω)
7/6 , (fBV ω)

−7/9
)

− ω−7/9
)

, 0
)

for fBV ∈ (0, 0.5) ,
(11)
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and makes it possible to analytically integrate the DSD in arbitrary limits. Being consis-
tent with the assumption that the breakup process results in a pair of daughter bubbles
of volume υ̃ and υ − υ̃, this requires symmetry of the function φ(υ, υ̃) = φ(υ, υ − υ̃) for
fBV ∈ (0.5, 1) (see Fig. 1). Finally, the mean probability of breaking a bubble of volume
υ into a bubble between (υ̃ −∆υ) and (υ̃ +∆υ) can be obtained as follows

Φ(υ, υ̃) =
υ

2∆υ

∫ υ̃+∆υ
υ

υ̃−∆υ
υ

φ(υ, υ̃) dfBV . (12)

The second adopted breakage kernel is the one proposed by [28]. Both, the total breakage
rate KB and the breakage probability Φ(υ, υ̃) are defined as a function of the following
time and length scales

T =

(

σ

ρL

)0.6
1

ε0.4
and L =

(

σ

ρL

)0.4
1

ε0.6
. (13)

Introducing the dimensionless bubble diameter d∗ = d/L and bubble volume υ∗ = υ/L3

gives rise to:

KB =
d∗5/3

2T
exp

(

−
√
2

d∗3

)

(14)

φ(υ, υ̃) =
6

(

L
√
πd̃∗
)3

exp

(

−2.25
(

ln
(

22/5d̃∗
))2

)

1 + erf
(

ln (21/15d∗)
1.5
) for υ̃∗ ∈ (0, 0.5〉 (15)

and φ(υ, υ̃) = φ(υ, υ − υ̃) for υ̃∗ ∈ (0.5, 1) (16)

The phenomenological models involve several parameters in their formulations which are
strictly depending on the operating conditions and the system. Thus, they are specific
to the problem as in the study of [45], whereas in theoretical models formulations do
not consist of these empirical parameters; therefore they are supposed to be applicable
in a wide range of operating conditions. The explained theoretical breakage closures are
chosen due to their applicability in a broad range of operating conditions and similarities
in the outline of their formulations, and to show how the peculiarities of these models
influence the results of numerical simulations in the validation process.

3. Implementation of PBE

In this study, the discretization of the population balance equation (4) is carried out
by the method of classes (with piecewise constant approximation functions). The fixed
pivot volume of the classes is initialized by specifying the bubble volume of the smallest
”resolved” class υmin and the discretization factor q, such that

υi = υminq
i−1 with i = 1, 2, ...n (17)
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where n is the number of classes. The class width ∆υi is defined by the difference of the
upper υU

i and lower υL
i limit of the given class i:

∆υi = υU
i − υL

i with υU
i = υL

i+1 and υU
i−1 = υL

i . (18)

The limits are fixed and initialized such that in the case of q = 2 the pivot volume υi is
centered in the class

υU
i = υi +

1

3
(υi+1 − υi), υL

i = υi −
2

3
(υi − υi−1). (19)

The discretized transport equation (4) of the i-th class’ number density probability, fi,
results in

∂fi
∂t

+ ug · ∇fi =
n
∑

j=i

rBi,jfj∆υj −
fi
υi

i
∑

j=1

υjr
B
j,i∆υj

+
1

2

i
∑

j=1

rCj,kfjfk∆υj − fi

n
∑

j=1

rCj,ifj∆υj for i = 1, 2, ...n.

(20)

The choice of fixed bubble pivot volumes and fixed class widths offers the advantage of
expressing the discretized transport equation (20) in terms of class holdups αi instead
of the number probability density, fi = αi

υi∆υi
(see (1)). Doing so enforces only mass

conservation, however the bubble number density may not be conservative. Regarding the
arising inconsistency we subscribe to the argument of [5], who reported that the difference
in the predicted values of interfacial area and Sauter mean bubble diameter obtained
with only mass conservation and obtained with mass and bubble number conservation
was less than 1%. Multiplying equation (20) with υi∆υi results in conservative source
and sink terms, since the overall gas-holdup cannot be changed due to coalescence or
breakup procedures

1

. Additionally, any sink (source) term of a given rate associated to a
particular breakup or coalescence procedure induces a source (sink) term with the same
rate but in a different class. This enables us to assemble only the sink terms while the
same contribution is applied to the corresponding source term in the resulting class. Let
us for example consider a breakup of bubbles of class i into bubbles of classes j and k.
Such a procedure will result in the following right hand sides

i : −
(

υjr
B
i,j∆υj

fi
υi

)

υi∆υi −
(

υkr
B
i,k∆υk

fi
υi

)

υi∆υi = −rBi,jαi
υj∆υj

υi
−rBi,kαi

υk∆υk
υi

j : +
(

υjr
B
i,jfi∆υi

)

υj∆υj = rBi,jαi
υj∆υj

υi

k : +
(

υkr
B
i,kfi∆υi

)

υk∆υk = rBi,kαi
υk∆υk

υi
∑

= 0

where υk = υi − υj.

However, if we consider the coalescence of bubbles/droplets of the j’th and the k’th
class to form bubbles/droplets of the i’th class, to show the conservation of void fraction
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is a little bit more tricky. The losses in the k’th and j’th classes due to coalescence with
each other are as follows:

j : −
(

fjr
C
j,kfk∆υk

)

υj∆υj = −rCj,kαjfk∆υk
k : −

(

fkr
C
k,jfj∆υj

)

υk∆υk = −rCk,jαkfj∆υj

The gain in the i’th class due to coalescence of the k’th and j’th classes is:

i : 1
2

(

rCj,kfjfk∆υj + rCk,jfkfj∆υk
)

υi∆υi

If we assume that the discretization is equidistant, that means ∆υi = ∆υj = ∆υk, and
recalling that υi = υj + υk then the following relation is obtained

1

2

(

rCj,kfjfk∆υj + rCk,jfkfj∆υk
)

(υj + υk)∆υi = rCj,kαjfk∆υk + rCk,jαkfj∆υj

which shows that the sink and source terms of coalescence are also conservative in terms
of void fraction. In this study, geometric grids (for the internal coordinate) with varying
discretization constants are employed. Therefore, instead of calculating individual sink
and source terms due to coalescence, only sink terms for each possible pair of classes are
calculated and their sum is added to the resultant bubble class. Accordingly, conservation
of mass is enforced from the point of view of coalescence, too.

4. Integration of PBE into CFD

Before proceeding to the description of the developed numerical algorithm, let us recall the
problems related to the integration of PBE into a CFD solver. The main problem which
has to be clarified at the very first place is based on the identification of the coupling effects
between the individual parts of the model (see Fig. 2). Besides the internal coupling of the
Navier-Stokes equation (C1 and C2) in case of turbulent flow simulations supported by
two-equation eddy viscosity models such as k − ε models, additional coupling has also to
be taken into account (C5). At the same time, as a consequence of multiphase modeling,
one has to be aware of even more complex coupling effects due to buoyancy (C7) and
enhanced turbulence effects (C8). Furthermore, the turbulence and the multiphase model
is coupled by means of the flow field with the Navier-Stokes equation (C5 and C7). Last
but not least, internal coupling takes place in all the three subproblems (C1, C3 and C4)
resulting in a rather interlocking structure. To cope appropriately with the described
strongly coupled system is quite challenging, and may result in unavoidably increased
computational cost. Therefore, in this work the coupling effects are relaxed by not taking
into account the influence of the turbulence induced by the secondary phase (also known as
bubble induced turbulence in gas-liquid systems) and by neglecting the buoyancy forces.
Accordingly, the description of a one-way coupled implementation follows which is valid
for a) pressure driven and b) shear induced turbulence dominating systems.

9



Figure 2: Sketch of the coupling effects inside the complete model.

In this work the motion of fluid flow is governed by the Reynolds Averaged Navier Stokes
(RANS) equations of the following form

∂u

∂t
+ u · ∇u = −∇p+∇ ·

(

(ν + νT )[∇u+∇uT ]
)

,

∇ · u = 0,
(21)

where ν depends only on the physical properties of the fluid, while νT (turbulent eddy
viscosity) is supposed to emulate the effects of the unresolved velocity fluctuations u′.
According to Chien’s Low-Reynolds Number modification of the k − ε model the eddy
viscosity has the following definition

νT = Cµfµ
k2

ε̃
with ε̃ = ε− 2ν

k

y2
, (22)

where k is the turbulent kinetic energy, ε is the dissipation rate and y is the closest
distance to the wall[8]. Clearly enough, for computations of k and ε the above PDE
system is to be complemented by two additional mutually coupled convection-diffusion-
reaction equations [25]. For our purposes, it is worthwhile to introduce a linearization
parameter γ = τ−1

T = ε̃/k, which is related to the turbulent time scale τT and which
makes it possible to decouple the transport equations as follows [29]

∂k

∂t
+∇ ·

(

ku− νT
σk

∇k

)

+ αk = Pk, (23)

∂ε̃

∂t
+∇ ·

(

ε̃u− νT
σε

∇ε̃

)

+ βε̃ = γC1f1Pk. (24)

The involved coefficients in (23–24) are given by

α = γ +
2ν

y2
, β = C2f2γ +

2ν

y2
exp(−0.5y+), Pk =

νT
2
|∇u+∇uT |2,

fµ = 1− exp(−0.0115y+), f1 = 1, f2 = 1− 0.22 exp−
(

k2

6νε̃

)2

.

(25)
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The discretization in space is performed by a finite element method on unstructured
grids. The incompressible Navier-Stokes equations are discretized using the nonconform-
ing Q̃1/Q0 element pair, whereas standard Q1 elements are employed for k and ε̃. After an
implicit time discretization by the Crank-Nicolson, Fractional-step θ scheme or Backward
Euler method, the nodal values of (v, p) and (k, ε̃) are updated in a segregated fashion
within an outer iteration loop.

For n=1,2,... main time-stepping loop tn −→ tn+1

For k=1,2,... outermost coupling loop

• Solve the incompressible Navier-Stokes equations

For l=1,2,... coupling of v and p

For m=1,2,... flux/defect correction

• Solve the transport equations of the k − ε model

For l=1,2,... coupling of k and ε

For m=1,2,... flux/defect correction

• Solve the population balance equation

For l=1,2,... coupling of αi for i = 1, ..., s

For m=1,2,... flux/defect correction

Figure 3: Developed computational algorithm consisting of nested iteration loops.

The iterative solution process is based on the hierarchy of nested loops according to the
approach described in [22] and is presented in Fig. 3. At each time step (one n−loop step),
the governing equations are solved repeatedly within the outer k-loop which contains the
two subordinate l-loops responsible for the coupling of variables within the corresponding
subproblem. The embedded m-loops correspond to iterative flux/defect correction for the
involved convection-diffusion operators. In the case of an implicit time discretization,
subproblem (23–24) leads to a sequence of algebraic systems of the form [21, 23, 46]

A(u(k), γ(l), ν
(k)
T )∆u(m+1) = r(m),

u(m+1) = u(m) + ω∆u(m+1),
(26)

where r(m) is the defect vector and the superscripts refer to the loop in which the cor-
responding variable is updated. Flux limiters of TVD type are activated in the vicinity
of steep gradients, where nonlinear artificial diffusion is required to suppress nonphysical
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undershoots and overshoots. The predicted values k(l+1) and ε̃(l+1) are used to recompute
the linearization parameter γ(l+1) for the next outer iteration (if any). The associated
eddy viscosity νT is bounded from below by a certain fraction of the laminar viscosity
0 < νmin ≤ ν and from above by νT,max = lmax

√
k, where lmax is the maximum admissible

mixing length (the size of the largest eddies, e.g., the width of the domain). Specifically,
we define the limited mixing length l∗ as

l∗ =

{

Cµfµ
k3/2

ε̃
if Cµfµk

3/2 < ε̃lmax

lmax otherwise
(27)

and calculate the turbulent eddy viscosity νT from the formula

νT = max{νmin, l∗
√
k}. (28)

The resulting value of νT is used to update the linearization parameter

γ = τ−1
T = Cµfµ

k

νT
. (29)

The above representation of νT and γ makes it possible to preclude division by zero and to
obtain bounded nonnegative coefficients (required by physical reasons and computational
stability) without manipulating the actual values of k and ε.

In the following, remarks concerning the treatment of the convection and sink terms
in the population balance equation will be given from the point of view of positivity
preservation. Since the continuous transport equation (4) is positivity preserving for non-
negative initial and boundary conditions the same property needs to be satisfied by its
discrete counterpart (20). This can be achieved by an implicit treatment of the sink terms
resulting in the following set of equations

(

ML +
(

θK −B−

i − C−

i

)

∆t
)

α
(n+1)
i,(k+1) = (ML − (1− θ)K∆t)α

(n+1)
i,0 + (B+

i + C+
i )∆tα

(n+1)
i,(k)

where α
(n+1)
i,0 = αn

i for i = 1, 2, ...n,

(30)

with ML being the lumped mass matrix, K the discretized convection operator, B and C
the discretized breakage and coalescence terms. In case of an implicit time discretization,
such as Crank Nicolson or Fractional-step θ time stepping, subproblem (30) leads to the
algebraic system of the form [21, 23, 46]

A(u(n), ν
(n)
T , B

±(l)
i , C

±(l)
i )∆α

(m+1)
i = r(m),

α
(m+1)
i = α

(m)
i + ω∆α

(m+1)
i ,

(31)

where r(m) is the defect vector and the superscripts refer to the loop in which the corre-
sponding variable is updated (see the algorithm in Fig. 3).
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5. Numerical examples

The numerical calculations in scope of this study will be classified into two subsections.
The content of the first subsection presents the validation problems, which are supported
by experimental and computational results available in the literature. The content of the
second subsection deals with a detailed study which couples PBE and CFD in case of a
turbulent pipe flow which involves two immiscible fluids.

5.1. Validation problems

In order to validate the implementation of the presented model it is applied to a homoge-
neous stirred tank reactor in which the turbulent dissipation rate and volume fractions of
classes do not exhibit spatial variations. Therefore, transportation of bubbles (droplets)
with respect to the spatial coordinate can be neglected and the problem is independent
of the flow field. If the values of dissipation rate and gas holdup are fixed for a certain
dispersed system, the equilibrium size distribution will be unique regardless of the initial
conditions. In pursuit of the described validation technique the case studies described by
[11], [42] and [49] will be taken into consideration. Additionally, since the implemented
model does not involve any empirical parameters, it should be valid in a wide range of
operating conditions. Thus, several other comparisons between our numerical calculations
and experimental studies are performed. These experimental studies have been chosen
such that the model is tested in broad ranges of turbulent dissipation rates and volume
fractions of the secondary phase, which are the most important impact factors. Accord-
ingly, it is possible to demonstrate that the implemented model is applicable for various
operating conditions and for different two-phase systems.

The validation process given in this section begins with the problem addressed by [49].
The experimentally measured bubble size distribution corresponding to the mentioned
reference study is characterized by the following parameters:

• water-nitrogen system with total gas holdup α = 0.13,

• average superficial gas velocity ug = 0.04ms−1,

• average dissipation rate estimated as ε = gug = 0.3924m2s−3.

It should be noted, that Wilkinson’s data on bubble size distribution corresponds to
the average over the whole reactor, so it does not necessarily reflect the true equilibrium
of the bubble breakage and coalescence. Our comparison has been performed on the
basis of the bubble number fraction normalized with the group width, E(d), for both
adopted breakage models. In order to obtain mesh independent solutions (with respect
to the internal coordinate υ) the computations were performed for different values of the
discretization constant q in a range of 1.05 to 2.0 (see Fig.4). Thus, the number of ini-
tialized classes varied between 20 to 100 to cover the required range of bubble sizes. The
small differences between the distributions computed on the coarsest (q = 2.0) and finest
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(q = 1.05) mesh leads us to the conclusion that qualitatively good results can already
be obtained by means of coarse grid computations. As it can be seen from Fig. 5, our
computational predictions are in a good agreement with the experimental results of [49]
and correlate well with the computational results obtained by [5] (especially in the case
of the breakage kernel of [27]) for the same problem and for the same model.

We recall that, in order to obtain the equilibrium between bubble breakup and coales-
cence for the population balance equation, one might reduce the original system of PDE’s
to a system of ODE’s (neglecting the spatial variation). Then, the steady state solution
of such a reduced (0-dimensional) system (stirred tank reactor model) corresponds to the
required equilibrium distribution. In Fig. 6, experimentally measured data of this type
[11, 42] are presented and compared to our computational predictions. The experiments
were conducted with air-water multiphase flow for different volume fractions, α1 = 0.2
and α2 = 0.08, and for the same value of superficial gas velocities jg1 = 0.08ms−1 and
jg2 = 0.02ms−1 which corresponds to dissipation rates of 0.785m2s−3 and 0.196m2s−3,
respectively. The representative quality of the results was chosen to be the “normalized

Figure 4: Steady state bubble size distribution for α = 0.13 and ε = 0.3924m2s−3. Right:
Breakage kernel [28]. Left: Breakage kernel [27].

Figure 5: Steady state bubble size distribution for α = 0.13 and ε = 0.3924m2s−3.
Comparison of our mesh independent solution with reference data ([49] – experimental,
[5] – computational). Right: Breakage kernel [28]. Left: Breakage kernel [27].
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Figure 6: Computed equilibrium distribution for the breakage models versus experimen-
tally measured distribution [11, 42]. Experiment A: α = 0.2 and ε = 0.785m2s−3. Ex-
periment B: α = 0.08 and ε = 0.196m2s−3. Right: Breakage kernel [28]. Left: Breakage
kernel [27].

number of bubbles per fraction width“, E(d). We obtained a good agreement between the
results of our numerical calculations and the presented experimental results (see Fig. 6).
This comparison leads us to conclude that the model by [28] is a more suitable candidate
for implementation into our CFD code.

Before progressing to couple PBE with CFD, it is necessary to verify our implementa-
tion for high and low turbulent dissipation rates. Thus, two more studies are examined:
the first example has been taken from the study by [24] for high dissipation rate values,
and the latter one has been taken from the study of Olmos and his colleagues [37] for low
values of dissipation rate.

In the first study, the local bubble size distributions (BSDs) had been measured/modelled
for dense air–water and CO2–n-butanol dispersions under hydrodynamic conditions char-
acterized by high turbulent dissipation rates. The experimental [13] and simulation results
obtained in the reference study of [24] together with our simulation results corresponding
to simulation time of 50s are summarized in Tab. 1.

Table 1: Sauter mean diameters (mm)

Case Hu et al. Laakkonen et al. Our study

air-water 0.447 0.359 0.358
air-1-propanol 0.316 0.207 0.205
air-diethylene glycol 0.598 0.251 0.250

The results are in good agreement with the reference study, in fact they are almost iden-
tical. Nevertheless, some remarks are in order. The obtained equilibrium BSDs and the
Sauter mean diameters are strongly dependent on the stopping criteria of the iterative
scheme. This means that the final Sauter mean diameters may slightly change by varying
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the convergence criteria for resulting in different simulation times (stringent criterion –
longer simulation and vice versa). Accordingly, the graphs plotted in Fig. 7 show the
evolution of the Sauter mean diameter for two different time intervals.
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Figure 7: Case: air-1-propanol a) for 50 seconds b) 500 seconds

In Fig. 7(a), the convergence criteria – defined as the maximum relative change of gas
holdup of all classes – is of the order of 10−7 while in Fig. 7(b), its value has been set
to 10−8. It is apparent from the graph corresponding to long time simulation, that the
Sauter mean diameter is still changing. Such a behaviour has been already described in
the literature by [17], where the steady equilibrium state was not observed even for large
time scales. According to the mentioned study and our observations the results tabulated
in the original study of Laakkonen would have been more meaningful if the time scales
had been specified.

In the second case study, mild and low turbulent dissipation rates are considered. The
experimental and numerical results from the study by [37] and the results of our numerical
calculations are compared. The comparisons show that our calculations overestimate the

Figure 8: Comparison between experimental and calculated results by [37] and this study.

experimental results of d32 with a reasonable error and predict the same behaviour as
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observed in experiments. However, for very low turbulent dissipation rates and small gas
holdups, predictions of the model become less accurate. Instead of calculating the hydro-
dynamic variables with a 3D CFD code, as it was done in Olmos’s study, the turbulent
dissipation rate is assumed to be constant and uniform in the whole domain approximated
by the assumption adopted by the study of [27]

ε = jgg, (32)

where jg is the superficial gas velocity and g is the magnitude of gravitational accelera-
tion. So, rather than performing a detailed calculation for the flow field we only had a
rough assumption for the turbulent dissipation rate, nevertheless the obtained results are
satisfactory. On the other hand, obtaining hydrodynamic variables with a 3D CFD code
will further improve the results.

All these explained studies validate and verify our implementations. However, there
are also some important contradictions between our findings and the reference studies of
[27] and [28]. In both of these studies, it is claimed that for high superficial gas velocities
and gas holdups, a bimodal BSD is observed (that is a BSD with two peaks which are for
small and large bubbles). Fig. 9 shows the accumulated gas holdups for one of the cases
which involve the bimodal BSD.
In Fig. 9, it is apparent that the largest bubbles are in the largest classes. This result

Figure 9: Simulation result of [28] including a bimodal distribution.

may be acceptable but the following question should be also considered: if the size of the
largest class in the discretization had been even larger, the evolution of the BSD would
have continued and unphysically large bubbles would have occurred. The results of our
simulations show that if the model of [28] is considered and ucrit equals to 0.08m/s then
the obtained BSDs have the same features as in the reference study. Accordingly, the
BSDs always tend to consist of the largest possible classes, even if the size of the largest
classes is unphysically large. Also, the approximation for ucrit = 0.08m/s holds reasonably
only for the small bubbles, as it was verified by experimental results in the same study
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[28], and generalization of this approximation to large bubbles causes unrealistic results
such as having bimodal BSD.
In Fig. 10, it is shown that for the first few seconds, it is possible to have a bimodal
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Figure 10: a) bimodal BSD b) bimodal integrated gas holdups

BSD which is not in equilibrium, and by time a certain fraction of the gas holdup travels
to larger and larger classes to form unreasonably large bubbles. The main idea is if ucrit

is approximated by 0.08m/s then the coalescence dominates the breakage and as a result
certain fractions of bubbles coalesce until they reach the largest classes allowing the BSD
to reach an equilibrium. However, if ucrit is evaluated according to (7), this decreases the
rate of coalescence of large bubbles and a true dynamic equilibrium is obtained.

5.2. Coupling with CFD

Up to our knowledge there is no published benchmarked computational result for full three
dimensional problems combining CFD and PBE thus first, we restricted our focus to the
geometrically most simple 3D problem which involved a turbulent pipe flow and later, an
industrial problem, dispersed flow through a Sulzer static mixer SMVTM was studied to
show capabilities of the developed computational tools. Simple pipe problem offers the
advantage of validation of the flow field and distribution of turbulent quantities, such as
the dissipation rate of the turbulent kinetic energy, ε, which the coalescence and breakage
models are most sensitive to. Therefore, in subsection 5.2.1, we aim to reconstruct the
underlying turbulent flow field as a prerequisite for a subsequent population balance
modeling in the framework of dispersed flows. For this reason, the open-source software
package FeatFlow extended with Chien’s Low-Reynolds number k−εmodel was utilized
to perform the flow simulations, which has already been successfully validated for channel
flow problems (Reτ = 395) [20].

5.2..1 Turbulent pipe flow

The flow considered here is characterized by the Reynolds number, Re = dw
ν

= 114, 000
(w stands for the bulk velocity), what was influenced by the study of [14] focused on one
dimensional dispersed pipe flow modeling. All computational results presented in this
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section are obtained by means of an extruded (2D to 3D) unstructured mesh employing
1344 hexahedral elements in each of its layers. The computationally obtained radial
distributions of the temporally/spatially developed velocity and turbulent quantities are
given in Fig. 11. The turbulent flow field – obtained as described above – was subjected
to subsequent three dimensional dispersed flow simulations in a 1m long pipe of diameter
3.8cm. Unfortunately, one has also to say that the computational results following in this
section are not compared against any reference data. Hence, our investigation gives just an
insight into three dimensional population balance modeling without justified confidence of
the obtained results. The considered primary phase was water which contains droplets of
another immiscible liquid phase with similar physical properties to water (such as density
and viscosity). This assumption together with the fact that the flow is not driven by
buoyancy but by the pressure drop enabled us to

• neglect the buoyancy force,

• approximate the dispersed phase velocity with the mixture velocity.
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Figure 11: Radial profiles of the axial velocity component (left), turbulent dissipation
rate (middle) and turbulent viscosity (right).

Figure 12: Sauter mean diameter distribution cuts of the dispersed phase at different
locations, x = {0, 0.06, 0.18, 0.33, 0.6}.

The CFD-PBE simulations involved 30 classes initialized by the discretization factor
q = 1.7, which according to the previous 0D convergence studies turned out to be fine
enough to reach mesh independent solutions. The feed stream was modeled as a circular
sparger of a diameter of 2.82cm containing droplets of a certain size (din = 1.19mm) and
of a certain holdup, αin = 0.55. Such an inflow holdup condition after reaching developed
conditions ensures a flat total holdup distribution of a value αtot = 0.30.
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Moreover, according to the developed conditions – as a result of equilibrium between
coalescence and breakup – an equilibrium droplet size distribution is reached. This dis-

tribution in terms of class holdups vs. droplet size is plotted in Fig. 13. To visualize
2

the evolution of the droplet size distribution in the pipe, Sauter mean diameters of the
droplets are plotted (see Fig. 12). Both, the Sauter mean diameter and the droplet size
distributions reached the equilibrium at a short distance with respect to length of the pipe.
Additionally, as expected, larger droplets are formed in the middle of the pipe (where ε
is relatively small), while smaller droplets prevail close to the wall (where ε is relatively
high). This fact can be better understood by means of visualization of the representative
small/large droplet class-holdup distributions, in Fig. 15. In the mentioned figure the

holdup distributions of classes 10, 17 and 23 are depicted
3
.

5.2..2 Static Mixer SMVTM

Static mixers are tabular internals with optimized geometries to obtain desired disper-
sions or mixtures while the pressure driven flow is passing through the stationary mixer
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Figure 15: Holdup distributions of certain classes.

elements. Dispersion by static mixers is industrially preferable to dispersion by rotat-
ing impellers because it is mechanically simpler and frictional energy dissipation in the
packing is more uniform, favoring a more uniform drop size distribution [41]. Narrow size
distribution of liquid droplets can be achieved due to the relatively homogeneous flow-field
in static mixers so to optimize and control chemical processes. The Sulzer SMVTM mixing
elements consist of intersecting corrugated plates and channels, which leads an efficient
and rapid mixing action in turbulent flow through the mixer. Therefore, they are ideal for
a distributive and homogeneous dispersive mixing and blending action in the turbulent
flow regime.

In the literature there are many experimental and computational studies on static
mixers in laminar and turbulent flow regimes, a detailed review about static mixers is given
by [50]. In our scope, the SMVTM static mixer is studied in order to show the capabilities
of the developed computational tools. Therefore, this subsection should be considered
as a simple case study rather than a detailed study of a static mixer or verification of
implemented models. The verification of developed computational tools which requires
intensive experimental work is left as a future study in cooperation with Sulzer Chemtech
Ltd..

The static mixer SMVTM is chosen due to its very challenging geometry which makes
it a difficult test case for our developed tools. A snapshot of the computational domain
which is decomposed into ≈50,000 hexahedral elements, is given in Figure 16.

The inflow condition is a flat velocity profile of value 1 m/s. Do-nothing and no-slip
boundary conditions are prescribed at the outlet and on the walls, respectively. The
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Figure 16: Geometry of SMVTM static mixer.

mixture is oil in water with 0.1 volumetric ratio of oil to mixture. In CFD simulation,
the mixture is considered as a single phase whose physical property is weighted average
value of phases’ physical properties with weight factors being volumetric ratios. Physical
properties of the phases are given in Table 2.

Table 2: Physical properties of the phases

Physical properties Water Oil

ρ (kgm-3) 1000 847
ν (kgm-1s-1) 1x10-3 32x10-3

σ (Nm-1) 72x10-3 21x10-3

d32 (m) – 1x10-3

Due to high computational costs, a stationary one-way coupled CFD-PBE approach is
adopted for calculations. First, the turbulent flow field is simulated and a quasi-stationary
solution is obtained, Figure 17.
Then, PBEs are calculated on this stationary flow field with 45 classes where discretization
constant q is 1.4 and the smallest class has the size of 0.5 mm. Figure 18.

Time and space averaged experimental data are provided at the cross section right
after the mixer element by Sulzer Chemtech Ltd.. Measured droplets are assigned to
corresponding classes of the numerical calculation. Since the number of classes in the
numerical calculation is too large to obtain representative number of droplets per each
class, both numerical results and experimental results are mapped to a coarser internal
coordinate which covers the same interval with 15 classes; both results are given in Figure
19.

We can conclude that the experimental result could be predicted within the same order
of magnitude by the developed computational tools. Result of the numerical simulation
can be improved with more detailed CFD analysis and some minor modifications to the
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Figure 17: Velocity in z direction (right) and turbulent dissipation rate (left).

Figure 18: d32 values of the droplet ensembles (left). Droplet ensembles with d32 =
[0.62, 0.63] mm (right).
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Figure 19: Experimental and numerical results for holdup distribution of dispersed phase
with 45 (left) and 15 (right) classes.

implemented population balance model like, an additional term to suppress the coales-
cence. However, these issues are subscribed to our future studies. With this case study,
it is shown that implemented models are valid and the developed computational tools
can be employed to elaborately study liquid/liquid dispersed phase systems in complex
geometries as, static mixers.

6. Conclusions

In this work, the population balance equation describing two phase dispersed flows was
integrated into our in-house CFD software package FeatFlow enriched with the low
Reynolds k–ε turbulence model. The models of two breakage and one coalescence kernels
were implemented and validated for simple 0D examples. The obtained results are in good
agreement with the computational and experimental results previously reported (Fig. 4,
Fig. 5). Finally, 3D computational studies were performed for turbulent flows in a simple
pipe and through the Sulzer SMVTM static mixer. The extensive computational costs for
the calculation of the hydrodynamic variables coupled with PBE may require alternative
approaches in future. First of all, the use of PPDC or DQMM may reduce the compu-
tational cost for solving the transport equation of PBE in the internal coordinate, while
parallelization of the implemented model in terms of domain decomposition will enable us
to obtain results in considerably shorter time. Moreover, instead of solving all the trans-
port equations on the same mesh, a coarser one may be used to obtain mesh independent
solution for the PBE. For this purpose, one can take advantage of multigrid techniques im-
plemented in FeatFlow. Additional to our concerns of computational performance, we
consider extending our implementation to include two-fluid and/or multifluid approaches
and take into account buoyant forces in order to have a more comprehensive model. So
that, turbulent dispersed flows can be elaborately studied in complex geometries.
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Thesis, University Aachen, Germany, 1976.

[43] Sokolichin A. and Eigenberger G., Applicability of the standard k-ε turbulence model
to the dynamic simulation of bubble columns. Part I: Detailed numerical simulations,
Chemical Engineering Science, 54, 1999, pp.2273-2284.

[44] A. Sokolichin, Eigenberger G., Lapin A. and Lbert A., Dynamical numerical sim-
ulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange, Chemical
Engineering Science, 52-5, 1997, pp.611-626.

[45] Tsouris C. and Tavlarides L. L., Breakage and coalescence models for drops in tur-
bulent dispersions, AIChE Journal, 40, 1994, pp.395-406.

[46] Turek S. and Kuzmin D., Algebraic Flux Correction III. Incompressible Flow Prob-
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Nomenclature

A global operator
B source/sink terms due to breakup
C source/sink terms due to coalescence
C1, C2 model constants
d diameter
f number density probability function
fBV bubble/droplet volume fraction
f1, f2, fµ damping functions
g gravitational acceleration
k turbulent kinetic energy
K rate (with superscript)
K discrete convective operator
l∗ limited mixing length
L length scale
ML lumped mass matrix
n number of classes
N number density
q discretization factor
r kernel
T time scale
u velocity
u′ characteristic velocity
u′ fluctuating velocities
ucrit critical velocity
Wecrit critical Weber number
y closest distance to wall

Greek letters
α void fraction
γ linearization parameter
∆υ class width
ε turbulent dissipation rate
θ Fractional-step parameter
ρ density
νT eddy viscosity
σT turbulent Schmidt number
τT turbulent time scale
υ volume
σ surface tension
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φ probability distribution function
Φ breakage probability
ω dimensionless bubble/droplet volume

Subscripts
a, b lower, upper limits
ab interval between a and b
g gas
i, j class indices
l liquid

Superscripts
B,C breakage, coalescence
~ daughter bubble/droplet
+,− source, sink
l, u lower,upper limit of classes
+,− source, sink
∗ dimensionless variables
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