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Abstract

Population Balance is a prominent ingredient of modeling transport phenomena. Popu-
lation Balance Equations (PBEs) are coupled to Computational Fluid Dynamics (CFD) to
simulate turbulent dispersed flows. One of the arising challenges is to obtain an appropriate
discretization technique for the internal coordinate of PBEs, so the resulting equations can
lead to acceptable solutions with affordable computational costs in reasonable time scales.
On the other hand, geometries in the industrial problems can be very complex such that
pre-processing steps require great effort and time, especially for pure hexahedral meshes.
Nevertheless, instead of conventional meshing tools, a different approach based on the con-
cept of “fictitious domains”, Fictitious Boundary Method (FBM), can be employed to mesh
complex, moving and/or deforming geometries. In this study, we present efficient implemen-
tation strategies and numerical methods to couple PBEs to CFD and numerical simulation
techniques using a finite element approach in combination with FBM. The presented meth-
ods are validated with a study of Sulzer static mixer, SMVTM [1], and simulations of rigid
particulate flows [2], which were achieved in the FeatFlow environment.

Keywords: Population Balance Equations; Fictitous Boundary Method; Static mixer;
Twin-screw extruders

1. Introduction

The chemical engineering community began the first efforts of association with the con-
cepts of the population balance in the 1960s, while population balances may be regarded
either as an old subject that has its origin in the Boltzmann equation more than a century
ago. On the other hand, population balances are certainly considered as a new research
field in light of the variety of applications in which engineers have recently put population
balances to use. There is an intensive ongoing research in this field by researchers of
many different backgrounds. Applications cover a wide range of dispersed systems, such
as crystallization systems (solid-liquid), aerobic fermentation (gas-liquid) and food pro-
cesses (liquid-liquid), and in this study will be focused on liquid-liquid dispersed systems
in complex geometries.

In practical applications, a single bubble/droplet size model, as reported by numer-
ous researchers [3, 4], cannot properly describe the interfacial interactions between the
phases, and analytical solutions of the PBE are available just for very few and specific
cases. Hence, the use of appropriate numerical techniques is unavoidable in order to
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deal with practical problems. There are several numerical methods satisfying the neces-
sary requirements with respect to robustness and realizability: the quadrature method of
moments [5, 6], the direct quadrature method of moments (DQMM) [7], parallel parent
and daughter classes (PPDC) [8] and the method of classes (MC) [9, 10]. Among these
available techniques, the last one is chosen to discretize the internal coordinate in this
study.

Population Balance Equations (PBEs) of liquid-liquid dispersed systems involve break-
age and coalescence kernel functions which are the mathematical formulation of all the
physics in breakup and coalescence phenomena. There are many studies available about
modeling of coalescence and modeling of breakage and a detailed review of these stud-
ies was presented by Jakobsen et al. [12]. While it is possible to gather coalescence
kernels into a unified framework, the breakage kernels show distinct behaviors and their
formulations can exhibit remarkable differences. The breakage kernels can be classified
as statistical, theoretical and phenomenological. For our purposes, we had chosen a the-
oretical kernel which is derived from one of the most well known theoretical breakage
kernel by Luo and Svendsen [13], is valid for a wide range of operating conditions and
has a good convergence behavior for the solution of PBE. Most of the present models for
coalescence kernels were derived analogously to kinetic theory of gases [14, 15, 16, 17]. In
kinetic theory of gases, collisions between molecules are considered while in the process of
coalescence, bubble (droplet)–bubble (droplet) and bubble/droplet–eddy collisions count.
The coalescence kernel adopted in this work is the one proposed by Lehr et al. [18] which
is implemented according to the technique developed by Buwa and Ranade [19]. Both
breakage and coalesence kernels involve terms which are hydrodynamic variables and are
obtained from the result of CFD calculations. (For further discussion of breakage kernels
and coalescence kernels adopted in this study the reader is referred to Bayraktar et al.
[1].)

In order to solve the PBEs one should be able to firstly resolve the flow field in the
computational domain. Therefore, PBEs should be coupled to the governing equations
of turbulent fluid dynamics. This inevitable coupling is one of our main focus and issued
in detail by Bayraktar et al. [1]. CFD simulation of dispersed phase systems has been a
topic of research for the last several decades and many different methods were developed.
Numerical simulations which assume the flow to be laminar are not able to produce mesh
independent results. The finer the grid, the more vortices are resolved. That is more
typical for turbulent flows. Turbulence models which are applicable to produce results
with an acceptable accuracy and reasonable computational cost in general originate from
the family of two-equation eddy viscosity models. The most preferred model in this sense
is related to the standard or modified k-ε two equation turbulence model which have both
been implemented to our in-house code, FeatFlow [4].

The availability of experimental and numerical results in the literature for perfectly
stirred tank reactors made it possible to validate and verify our implementation in 0D.
Nevertheless, there were no comprehensive experimental and numerical data in the liter-
ature to verify the 3D implementation. Therefore, after our implementation is validated
in [1], we did several experiments which cover a wide range of operation conditions with
SMVTM static mixers in Sulzer Chem Tech Laboratories (Winterthur, Switzerland) to be
able to verify our implementation for different operating condition.
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The computational domain which was used in the simulation of dispersed flow through
the SMVTMstatic mixers was very complex as it is the case in most of the industrial prob-
lems. In these cases, pre-processing may require quite a bit of hand work and can be very
time consuming if it is possible at all. An alternative approach is based on the concept
of ’ficitious domains’. The idea of this Eulerian method is to simulate the presence of
an additional domain, the ’fictitious domain’, inside the computational domain. This
in turn implies the existence of a boundary between these domains which is realized by
adding appropriate terms to the mathematical model. The idea was first published by
Glowinski, Joseph, Patankar and coauthors [20, 21], who proposed an approach based on
a distributed Lagrange multiplier (DLM)/fictitious domain method for the direct numer-
ical simulation of large number of rigid particles in fluids. Our group proposed another
multigrid fictitious boundary method (FBM) based on the boundary conditions applied at
the interface between the obstacle and the fluid which can be considered as an additional
constraint to the governing Navier-Stokes equations [22, 23, 24]. An advantage of these
fictitious domain methods over the generalized standard Galerkin finite element method
is that the fictitious domain methods allow a fixed grid to be used in case of moving ge-
ometries [2]. The capabilities of this method is presented with a case study, a twin-screw
extruders.

The paper is organized as follows: In Section 2 the governing equations and their
closures are presented. The following section issues the employed numerical techniques.
The experimental set up and methodology is given in Section 4. The experimental and
numerical results are compared in Section 5. In Section 6, a case study involving twin-
screw extruders is shown which is followed by our conclusions and outlook.

2. Mathematical model

The population balance equation for liquid-liquid/gas dispersions is a transport equation
of the number density probability function, f , of bubbles (drops). By definition, f needs
to be related to an internal coordinate, what in most of the cases is the volume of bubbles
(drops), υ. Therefore, the number density, N , and void fraction, α, of bubbles having a
volume between υa and υb are:

Nab =

∫ υb

υa

f dυ, αab =

∫ υb

υa

fυ dυ. (1)

The considered transport phenomena account for convection in the spatial space (gov-
erned by the flow field ug), while the bubble breakage and coalescence move the bubbles
in the internal coordinate. Thus, the resulting transport equation is the following

∂f

∂t
+ ug · ∇f = B+ +B− + C+ + C−. (2)

Clearly, in case of modeling turbulent flows according to (temporal) averaging, the
concepts (2) has to be extended by the arising pseudo diffusion terms in analogy to the
approach of the Reynolds stress tensor

∇ · u′f ′ = −∇ · (νT
σT
∇f), (3)
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where σT is the so-called turbulent Schmidt number. In (2) the superscripts ”+” and ”–”
stand for sources and sinks and the terms B and C on the right hand side represent the
rate of change of the number density probability function,

(
df
dt

)
, due to bubble breakup

and coalescence, respectively. These terms are the closures of our governing equations and
they are adopted from the study of Lehr et al. [18] after a detailed study which focused on
the numerical behaviors and the valid range of operating conditions [1]. With introducing
the complete formulation of source and sink terms, our governing equation turns out to be
a strongly non-linear unsteady integro-differential equation whose solution is numerically
very challenging and closed with the chosen breakage and coalescence kernels:

∂f

∂t
+ ug · ∇f =

∫ ∞
υ

rB(υ, υ̃)f(υ̃) dυ̃ − f(υ)

υ

∫ υ

0

υ̃rB(υ̃, υ) dυ̃

+
1

2

∫ υ

0

rC(υ̃, υ − υ̃)f(υ̃)f(υ − υ̃) dυ̃ − f(υ)

∫ ∞
0

rC(υ̃, υ)f(υ̃) dυ̃

(4)

The fluid dynamic terms which appear in (4) exhibit a strong coupling between turbu-
lent fluid dynamics and PBEs. The turbulent model and the one-way coupling approach
of CFD-PBE which are employed in our implementation are explained in detail in our
preceding study [1].

3. Numerical methods

Solutions of PBE involve the solution of integro-differential equations. In 0D, that means
ideally stirred tank reactors, when the equation is discretized in time, one is left with
the evaluation of integral equations. However, in 3D, even after time discretization, the
equation is still an integro-differential equation which has to be numerically treated very
carefully. The employed numerical tools have to be chosen in a way that the required
computational time and computational cost is minimum while the numerical scheme is
robust and the results are accurate.

The main numerical challenges in the solution of coupled CFD-PBE problems are the
same with the one in turbulent flow problems and additionally, difficulties involved in the
solution of PBE. Since the equations are coupled and eventually (4) is needed to solve, the
challenge of developing a positivity preserving bounded numerical scheme arises in order
to solve a transport problem where the transported quantity is non-diffusive or with a very
low diffusivity which can be less than even numerical diffusivity added to the solution due
to the spatial discretization and/or stabilization scheme of the convective term. These are
difficulties considering the accuracy, on the other hand the chosen numerical ingredients
have to match to establish a robust and efficient scheme. For example, to have upwind
stabilization scheme with a MC discretization of PBE can be working fine; however, it is
a question if it would work with MoM.

The employed numerical techniques to establish a positivity preserving bounded scheme
and to have a robust turbulence model with the appropriate time discretization scheme
are given in [1, 26, 25]; here, we discuss the numerical techniques to discretize the PBE
and how to mesh complex boundaries with pure hexahedral cells.
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3.1. Discretization of the internal coordinate

As analytical solutions of PBEs are available in very few cases, numerical techniques
are essential in most practical applications. Such techniques are sought to be accurate
with a relatively low computational cost. There are several available numerical methods
satisfying the accuracy requirement. Among them are the Monte Carlo method [27], the
methods of classes (MC) [9, 10], the quadrature method of moments (QMOM) [5, 6],
the direct quadrature method of moments (DQMOM) [7], parallel parent and daughter
classes (PPDC) [8] and the standard method of moments (SMM) in some simple cases.
These techniques can be classified as class based and moment based methods. First we
will discuss these techniques in 0D and 3D then the discrete reformulation of (2) will be
presented in terms of void fractions.

In 0D, when the interest is on some statistical values of droplet population as, d32, d30,
d23, moment based methods are clearly superior to class based methods. The conservation
of higher order of moments and requirement of less arithmetic operations for the same
problem are the advantages of moment based methods. However, if one needs to know the
droplet size distribution (DSD), it has to be reconstructed from the available appropriate
techniques and most of the time it is a question: does the reconstruction techniques lead
us to the physical distribution. The available reconstruction techniques and their detailed
discussion are given by John et al. [28].

In 3D, additional to the reconstruction problem of DSD, the transport of moments
has to be calculated very accurately. The product difference algorithm [29] which is used
in PPDC or QMOM is ill conditioned and small perturbations on the values of moments
can deteriorate the solution and the whole scheme fails due to unphysical values, negative
droplet sizes or negative void fractions. And in complex geometries or when flow field
changes rapidly (existence of steep gradients), the accurate transport of moments turns
out to be very cumbersome if it is possible at all. For an acceptable accuracy, one has
to reduce the time step size and employ computationally costly numerical techniques,
algebraic flux correction schemes [26]. Otherwise, added numerical diffusion may perturb
the actual values of moments and the implementation fails in product difference algo-
rithms. Even though all the appropriate numerical ingredients are gathered together,
nothing guarantees that the implementation with moment based methods will be robust.
Therefore, our choice of discretization technique for the internal coordinate was mostly
influenced by the robustness criterion which was clearly in favor of class based methods.

The discretization of the PBEs (4) with MC is carried out by adopting the fixed pivot
approach:

∂fi
∂t

+ ug · ∇fi −∇ · (
νT
σT
∇fi) =

n∑
j=i

rBi,jfj∆υj −
fi
υi

i∑
j=1

υjr
B
j,i∆υj

+
1

2

i∑
j=1

rCj,kfjfk∆υj − fi
n∑
j=1

rCj,ifj∆υj for i = 1, 2, ...n

(5)

The fixed pivot volume of the classes is initialized by specifying the bubble volume of
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the smallest class and the discretization factor. The choice of fixed bubble pivot volumes
and fixed class widths offers the advantage of expressing the discretized transport equation
(5) in terms of class holdups αi instead of the number probability density, fi = αi

υi∆υi
(see

(1)). Doing so enforces mass conservation, however the bubble number density may
not be conservative. Regarding the arising inconsistency we subscribe to the argument
of Buwa and Ranade [19], who reported that the difference in the predicted values of
interfacial area and Sauter mean bubble diameter obtained with only mass conservation
and obtained with mass and bubble number conservation was less than 1%. Then the
discretized transport equation of the i-th class’ void fraction reads:

∂αi
∂t

+ ug · ∇αi −∇ · (
νT
σT
∇αi) =

n∑
j=i

rBi,j
αj
υj
υi∆υi −

αi
υi

i∑
j=1

υjr
B
j,i∆υj

+
1

2

i∑
j=1

rCj,k
αj
υj

αk
υk∆υK

− αi
n∑
j=1

rCj,i
αj
υj

for i = 1, 2, ...n

(6)

However, when (6) is discretized in time and space within a finite element approach,
the discrete system of equations to be solved is slightly different. To be able to have a
positivity preserving scheme the sinks term are treated implicitly on the left hand side
with the unknowns and source terms are treated explicitly on the right hand side with the
initial guess/solution. For the details of complete implementation the reader is referred
to [1].

3.2. Fictitious boundary method

The multigrid FEM fictitious boundary method (FBM) [30, 31, 32] is based on a multigrid
FEM background grid which covers the whole computational domain and can be chosen
independent of the geometry of interest. It starts with a coarse mesh which may already
contain many of the geometrical details, and it employs a fictitious boundary indicator (see
[30]) which sufficiently describes all fine-scale features. Then, all fine-scale features are
treated as boundaries such that the corresponding components in all matrices and vectors
are modified according to the assigned boundary condition. The considerable advantage
of the multigrid FBM is that the total mixture domain does not have to change in time,
and can be meshed only once.

Traditionally geometries used in this approach are restricted to analytically described
ones. This restriction limits this powerful tool to be used for few cases; however, it is
possible to use FBM for general geometries with our approach. This is accomplished by
representing the geometry as a surface triangulation, which is basically a piecewise linear
approximation of the geometry’s surface. This type of geometry is widely used in CAD,
CAGD and computer graphics in general. In preliminary work our group developed
efficient techniques for solving the geometric problems and showed that the geometry
discretization error has no significant influence on the error of the numerical solution
because the error due to the spatial discretization of the domain is significantly larger
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than the error of the geometry discretization [34, 33]. The details of our implementation
are given within a framework of particulate flow [2].

4. Experimental studies

The experiments are designed to simulate the effect of void fraction and turbulent dissipa-
tion rate on the resulting size distribution of the dispersed phase. In experimental set-up,
Figure 2, Sulzer static mixers SMVTM (DN25) was used to exploit the mixing quality for
different flow rates. In all experiments, water and oil were the primary and the secondary
phases, respectively, with the following physical properties,

• density of water, ρw = 1000 kg m-3;

• density of oil, ρo = 847 kg m-3;

• viscosity of water, µw = 1 mPa s;

• viscosity of oil, µo = 32 mPa s;

• interfacial tension, σwo = 0.043 N m-1.

Figure 1: The geometry of case 1SMV.

The test rig, Figure 2, was designed modularly allowing to alter the position of the
measurement section, Liquid-Liquid In-Line Sizing Apparatus (LLISA). LLISA owes en-
hanced magnification abilities to microscope objectives. In this measurement technique,
the underlying assumption is: time integrated count of bubbles/droplets which are cap-
tured in the photographed volume represent time averaged size distributions of population
in the cross section where LLISA is placed. Thus, the gap between the two windows of
LLISA (at the bottom of the hallow threads where the flash and camera are placed) should
always be more than a certain width in order not to have a filtering effect for the large
droplets.
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Figure 2: Experimental set-up in Sulzer Chem Tech laboratories.

The camera and the flash of LLISA are triggered simultaneously and the taken pictures
are sent to a computer so to be saved in disc drive of the computer. Then, the pictures
are processed manually to evaluate the droplet size by ”Bubble Count” software which is
provided by Sulzer Chem Tech.

The measured radii are in the unit of pixel and they have to be converted to ac-
tual sizes with a conversion factor. The required factor was obtained by taking several
pictures of calibration slide. Then, the mean value and standard deviation of these mea-
surements were calculated in order to determine the conversion factor and the accuracy
of our measurements. The conversion factor and the standard deviation were found to
be 2.5× 10−6 m px-1 and 2 px which is equal to 5× 10−6 m. After obtaining the conver-
sion factor, the mean diameter and standard deviation of the mean is calculated for each
case. Moreover, we suggest a post-processing without adding any more assumptions to
the problem. The measured droplets (vm) are assigned to certain classes (with vmini and
vmaxi being lower and upper limit of the i’th class, respectively) as it is done in numerical
simulations,

if vm ∈ [vmini , vmaxi ), vm = nimvi (7)

where nim is the weight factor of droplet vm for i’th class. Then, the volume of the
measured droplets added to their corresponding classes. Finally, we obtain a volume
distribution for an arbitrary volume of the secondary phase. However, we know that
this arbitrary volume should actually be the integrated volume of the secondary phase
in a certain control volume in time, because all the measurement set-up was developed
based on this assumption. This knowledge leads us to calculate a discrete probability
distribution (DPD) of the holdup (or volume, DPD is the same for both). Dividing the
volume assigned to each class by total volume leads to the following definition of DPD.
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Pri =
vTi
vT
,
∑

viPr(X = vi) = 1 (8)

Then, the holdup distribution of i’th class is calculated as:

αi = Priα (9)

As a consequence, the measured droplet sizes are evaluated in a way which allows to
compare the hold up distribution obtained in numerical simulations and experiments.

5. Results and discussion

In this section, we present the numerical and experimental results. First, the results of our
numerical studies on the simulation of oil in water dispersions through SMVTMstatic mixer
are given and compared with experimental results which is followed by our discussion.
Later, a case study of twin-screw extruders is presented in order to give an insight to the
capability of our FEM-FBM implementation.

5.1. SMVTM static mixer

We designed the experiments and corresponding numerical simulation in order to show
the effect of flow field and the effect of void fraction of the secondary phase on the final
DSD, for a certain holdup value we studied different flow rates and vice versa. The studied
holdup values are 5%, 10%, 15% of the secondary phase and values of inlet velocity are 1
ms-1, 1.25 ms-1 and 1.5 ms-1. The physical properties of the fluids are given in Section 4
where the experimental setup is described.

We adopted a stationary one-way coupled CFD-PBE approach to reduce the extensive
computational cost. First, a quasi-stationary flow field solution is obtained since there
is no true stationary flow field solution in turbulent regime. Then, these solutions are
interpolated to a coarser mesh, the grid size which is used for turbulent flow calculations
is unnecessarily fine to solve PBE. The discrete internal coordinates which are used in
evaluation of experimental results are the same with the ones in numerical studies in
order to compare experimental results and numerical results. Nevertheless, since the
internal coordinates which are used for the numerical computations are too fine for the
experimental results, both results are mapped onto a coarser grid which has doubled grid
size of the finer one. The following plots, Figure 3, show the experimental and numerical
results.
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Figure 3: 1SMV; inlet velocity: 1.00, 1.25, 1.50 m s-1, holdup: 0.05, 0.10, 0.15; rows: increasing holdup, columns: increasing
velocity.
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When the plots at the first row and the first column in Figure 3 are considered,
the agreement in the results is more than being satisfactory. Nevertheless, this is an
expected consequence that the discrepancies between the results would be small for lean
dispersions and less turbulent flows. There are mainly two reasons. First, the models are
mostly developed for lean dispersions and their prediction capabilities get worse with an
increase of the secondary phase fraction. Second, the CFD results of less turbulent flows
are more accurate because as the Reynolds number increase, the effect of the unresolved
subgrid scales becomes more influential on the main flow. However, these are not the
only reasons which can explain the differences between the results. For instance, a single
phase model was used in CFD calculations so the effect of change of the holdup value on
the flow field could not be simulated. Although the physical qualities of the fluids are
very similar, the assumption will certainly become rougher with an increase secondary
phase fraction. Moreover, the experimental results have some accuracy problem inherited
in the experimental setup and these may have a significant role in the disagreement of
results. First of all, the pictured droplets can be more accurately evaluated for low hold
up and velocity values since the taken pictures for these cases are more clear and sharper.
Additionally, the distance between the flash and camera windows of LLISA should be
small to obtain clear pictures in case of high holdup and/or high flow rates, and this
can result in a filtering effect for the large droplets and they are not captured in the
shots. This argument is supported with our experimental and numerical results. While
the largest bubble size increasing with an increase of the holdup for the same flow rate,
in experimental results, this is not the case. When the experimental results in the second
row (Figure 3) are compared, this consequence is visible.

5.2. Twin-screw extruder simulations

Figure 4: Left: classification of twin-screw elements. Right: real elements available on
the market.

Twin-screw extruders are material processing units especially used in the industry
related to plastics extrusion. In this case of application the process commonly starts with
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feeding dried plastic pellets into the feed screw. The polymer resin is then heated to molten
state by a combination of heating elements and shear heating from the extrusion screw.
For this reason there are different sections identified during the extrusion process starting
with the solids conveying section, continuing with the melting section and finishing with
the melt-conveying section. From the CFD simulational point of view the last section is
the most interesting where the highly viscous (and in most of the cases shear thinning)
polymeric materials are already flowing (forming a continuum) and completely fill up the
free space between the outer shell and the extruder elements. Simulation of the given
process becomes then very challenging due to the following reasons:

• the geometry of interest is complex: it may include sharp edges and due to the
rotation of the screws it changes,

• due to the small gaps (between the outer shell and mixing elements or mixing
elements and mixing elements) small irregularities are present in the flow,

• the fluid exhibits non-Newtonian and temperature dependent rheological behavior,

• presence of hot spots due to local heat dissipation caused by extreme shear rates.

Figure 5: Employed computational meshes for the simulations of the twin-screw extruders.

While the first two points affect resolution and meshing related strategies the next
two influence the model and its implementation and the resulting convergence. In this
contribution we focus only on the mesh and resolution related issues and their respective
treatment by the Fictitious Boundary Method (FBM). According to the given method,
independently of the exact shape description (for a more consistent overview see Fig. 4,
which contains a basic classification of twins-screw elements in comparison with the in-
dustrially used ones) of the modeled elements a general coarse grid is generated. The
generated mesh only captures the (static) outer shell of the twin-screw extruder and in-
cludes the pre-refined regions where the highest resolution is required. Such generated
meshes in 2D and their subsequent ’extrusion’ into 3D are given in Fig. 5. According
to the FBM an identifier field is generated at every time step with respect to all degrees
of freedom (dof), which evaluates the presence of fluid or fictitious domain. Then, in
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the fluid domain the Navier-Stokes equations are solved with the underlying rheological
models, while in the fictitious domain rotational Dirichlet boundary conditions are to be
imposed. As next a short demonstration of the FBM based approach follows on the ex-
ample of polyamid extrusion in conveying two-flighted twin-screw extruder. In this case
the prescribed mass flow is set to be 70 g/s and the angular rotation of the screws is set
to 10 Hz. The extruded material is described with the Carreau model of the following
type:

µ =
61.2

(1 + 0.0005 ‖ γ̇ ‖)0.3201 [Pa s]

The resulting distribution of pressure and velocity for a given instance is given in
Fig. 6.

Figure 6: Resulting velocity magnitude (up) and pressure (down) distributions at X, Y
and Z normal cross sections.

6. Conclusion

The dynamics of liquid-liquid flow in Sulzer static mixer SMVTM were studied using ex-
periments as well as CFD simulations. A population balance equation was employed to
predict bubble-size distributions by modeling the breakup and coalescence processes of
bubbles. The experimental data is evaluated with the suggested method and the ex-
perimental and numerical results were compared. The main findings are as follows: the
implemented model has good predictions for low turbulent dissipation rate and lean dis-
persions, for high holdup and/or high flow rates, there is a certain disagreement of the
results. The reasons and possible improvements were discussed in section Results and
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Discussion. Consequently, our population balance implementation is verified with this
numerical and experimental study.

Numerical simulation of twin-screw extruders is studied in order to show the capa-
bilities of FBM. The rotating complex geometry was a challenging and comprehensive
test case for FBM, handling complex and moving geometries. With this case study, it
is shown that the fine scale geometrical features can be captured; since FBM does not
require re-meshing of fluid domain, no mapping of solutions from one time step to next,
it is computationally very efficient; and the flow is accurately simulated.

The FBM is shown to be a powerful computational tool to be employed while working
with complex arbitrary and/or moving geometries. This computational tool and the
population balance implementation should be combined so that industrial or academic
problems involving dispersed flows in complex geometries can be efficiently and accurately
solved. This attempt requires efficient parallelization of the implementation of population
balance model and FBM, which is our possible future work.
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