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Summary

In this study exemplary results on the influence of two fundamental unsteady
parameters, the reduced frequency k and the non-dimensional pitching rate
α+, on the transition from a steady to an unsteady flow field around the
reference airfoil BAC3-11/RES/30/21 are presented using experimental and
numerical techniques. The tools used are described and their results verified
with each other. On the experimental side, water tunnel experiments are
conducted using particle-image-velocimetry (PIV) and strain-gauge-balance
(SGB) measurement techniques. The experimental results are enhanced by
two-dimensional laminar unsteady numerical Navier-Stokes simulations of
the experiments with a state of the art code from the Featflow package.
The numerical simulations are found to agree well with experimental results,
despite three-dimensional effects and a relatively high Reynolds number of
Rec = 16000. An influence of the reduced frequency on the lift coefficient at
a local non-dimensional pitching rate value of α+ = 0 for the relevant range
is not detected, while for the drag and the pitching moment a decrease and
an increase respectively is observed. Nevertheless a phase difference for the
lift with increasing reduced frequency was calculated, which appears at least
above k = 0.14 and indicates unsteady effects. The same was observed for
the pitching moment. The effects of the airfoil camber are clearly seen dur-
ing the phase of negative angle of attack, inducing leading and trailing edge
separation. The flow separation regions are discussed and the formation of
a triple vortex system at the trailing edge in the pitching up motion of the
airfoil is identified in the experimental and numerical data.

1 Introduction

In the past decade aeroelasticity has been playing a fundamental role in the
development of new aircraft for various reasons and new tools have been de-
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signed to speed up the development process [1, 2]. While reliable tools for
on-design conditions exist, there is a lack of tools for off-design conditions,
where in most cases unsteady flow fields are encountered. Even though there
have been numerous studies in this field for special cases such as dynamic
stall, still many flow field conditions have not been explored. Especially the
transition process from a quasi-steady to an unsteady flow field has only
seldom been analyzed. An attempt is to be made in this study using experi-
mental and numerical techniques available.

By definition a time varying flow field is unsteady, but there are situations
where a time dependent flow field can be considered steady, thus quasi-steady.
For example in the case of flutter, the initial situation may be a steady flow
field, which due to increasing unsteady effects and airfoil motion, becomes
unsteady. It therefore goes through a transition process from a steady to an
unsteady flow field. To study this process, the model problem - the oscillat-
ing thin airfoil - is used, which has been thoroughly analyzed in the past [3].
In general the unsteady motion of oscillating thin airfoils is characterized by
the reduced frequency k, which represents the ratio between the time a par-
ticle takes to pass the chord length and the time of an oscillation cycle. As
the reduced frequency decreases the flow field becomes increasingly steady.
The aim is to determine the influence of the reduced frequency and other
parameters in the transition process from a steady to unsteady flow.

2 The Facility and Measurement Techniques

2.1 Water-Ludwieg-Tunnel

The Water-Ludwieg-Tunnel is a short duration facility for the study of un-
steady hydrodynamic phenomena, which was proposed by Akamatsu in 1978
[4]. The principle is shown schematically in Fig. 1. The Water-Ludwieg-
Tunnel is divided in two parts, a high and a low pressure section, thereby
resembling a shock tube set-up. Both are separated by a pneumatically driven
fast acting valve with a very short opening time (≈ 9ms). The high pressure
section is divided into three parts, the top being the storage tank followed by
the nozzle and the test section. The test section is 150 mm wide and 75 mm
deep and has a length of about 820 mm. The test section ends in the fast
acting valve, consisting of a perforated flat plate connected to the rod of a
pneumatic actuator. The valve opening ratio Kv can be adjusted to give the
desired free stream velocity u∞ in the test section. The low pressure section
consists of the retainment tank and a water pump, which is connected to the
storage tank and a water supply. The facility can either be controlled man-
ually or by a PC. Models are mounted onesided and 0.280 m away from the
nozzle exit in the test section. The model investigated here is the reference
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Figure 1 Schematic view of the Water-Ludwieg-Tunnel

airfoil BAC3-11/RES/30/21 with a chord length of 54 mm of the collabora-
tive research center SFB 401 ”Flow Control and Fluid-Structure Interaction
at Airplane Wings”. The measurement techniques applied are:

• digital flow visualization via particle tracking,

• digital Particle-Image-Velocimetry (PIV),

• and the measurement of forces and the pitching moment with a three-
component strain gauge balance.

2.2 Particle-Image-Velocimetry (PIV) and Flow Visualization

2.2.1 PIV-system

This PIV-system was designed to examine oscillating airfoils in an unsteady
water flow. In the past, problems accounted to phase averaging methods
used to analyze unsteady flow fields have been reported (see [5]). At the
same time Wernert et al. [6] have demonstrated, that vector plots from sev-
eral oscillations go aside with having non-reproducible results concerning the
unsteady flow field of an airfoil in deep stall. Therefore the main aim for
this PIV-system was to extract 10 vector plots from one single oscillation,
in order to attain as much information as needed to examine the unsteady
behaviour of the flow without having to use phase averaging methods or to
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assemble PIV-recordings from several oscillations. The number of oscilla-
tions is restricted by the short testing time in the Water-Ludwieg-Tunnel,
making it impossible to employ phase averaging techniques with accuracy.
The recording technique was kept as simple as possible, but at the same time
able to generate high resolution pictures by using a digital CCD-camera. A
digital recording was favoured to reduce postprocessing time. For a detailed
description of the fundamentals concerning the PIV-technique, the reader is
referred to [7, 8, 9]. Here a short overview of the underlying methods used
in this PIV-system will be given. In PIV, a laser beam is expanded into a
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∆s
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Figure 2 Single pulse multi-frame mode operation of the PIV-system

light sheet and is introduced into the flow seeded with particles (see Fig. 3).
The light is scattered by the particles and can be recorded perpendicular to
the plane of the light sheet. In this case a CCD-camera is used to record two
sequential frames a ∆t apart of the flow field. The frames contain images of
particles suspended in the flow, which are chosen in a way so that they follow
the local flow as accurately as possible. The displacement can therefore be
calculated by:

u =
∆s

M∆t
. (1)

Where M is the magnification. For these studies highly unsteady flow fields
were expected, therefore only a recording of multiple single exposure frames
was considered which also has the advantage of removing directional ambi-
guity encountered using multiple exposure frames, illustrated in Fig. 2. In
this mode the analysis is performed using cross-correlation [9, 10]. For this
purpose the frames are divided into subspaces called interrogation regions
32×32 or 64×64Pixels wide. The spacing between the interrogation regions
is varied from 50% to 75% overlap respectively. Cross-correlation requires a
sufficient number of particles N > 10 − 20 in the interrogation region. The
laser pulse length is 200µs and laser pulse separation is 1000µs.
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Figure 3 A view of the PIV system

Illumination

Illumination is achieved by using a continuous wave Argon-ion laser model
Spectra-Physics 2000-05 with a maximum power output of 5 Watts in multi-
line mode. The laser power during experiments was adjusted to be typically
between 2.5 − 4.2W . The laser aperture was opened at its maximum and
was directed straight at the test section to have its full power available. The
laser beam is aligned with an electro-optical shutter of type Dantec/Invent
80x41, a cylindrical lens and a vertical aperture to create a light sheet with
a thickness of 2mm.

Particles

Vestamid 1111 particles are used which have a diameter of about 100µm.
Seeding is done manually by measuring the volume of the particles about
to be dispensed in the water (∼ 150ml). The density is a little lower than
that of water. It is therefore inevitable to run the test water several times
through the facility in order to have a homogeneous seeding. The size of the
particles is chosen to give an approximate particle image on the CCD-chip of
1 − 3 pixels, depending on the size of the flow region recorded.

Evaluation

The PIV-system was evaluated by measuring the velocity in the empty test-
section and comparing the results with Laser-doppler-anemometry used to
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measure the free-stream velocity. The mean error is roughly 2%, which is the
overall error to be expected from such a system. Figure 4 shows the values
plotted against each other and a good agreement can be found.
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Figure 4 Comparison of the free-stream velocity measured by the PIV-system
with the conventional method (LDA)

2.2.2 Flow Visualization

Digital visualization is achieved by recording the particles illuminated by a
light sheet in the mid-section of the test section with a CCD Camera. The
same device is a component of the PIV-system installed. Exposure times are
15 ms to generate relatively long particle lines in order to compare them well
with numerical data visualization. Total frame time is 32 ms allowing for a
good contrast and the frame rate is 10 Hz.

2.3 Strain-Gauge-Balance (SGB)

The three-component strain-gauge-balance is constructed out of commer-
cially available load cells. Figure 5 shows the setup of the strain-gauge-
balance. The load cell section is sealed by a rubber bellow reaching from the
model mount to the back flange. The influence of the rubber bellow in con-
stant pressure conditions is negligible, while for varying pressure conditions
the measured values have to be corrected. It measures the normal and axial
forces and the pitching moment in strain-gauge-balance coordinates (SGB),
which are rotated relatively to the model coordinate system (AM) in order to
optimize the actual force components acting in the load cell direction. The
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pitching moment is equal in all coordinate systems. The aerodynamic forces
in the aerodynamic coordinate system are given by:

L = NSGB cos(ε − α) + TSGB sin(ε − α) (2)

D = −NSGB sin(ε − α) + TSGB cos(ε − α),

where ǫ is equal to 45◦ and α is the angle of attack. During the post-
processing the signals are transformed and filtered to erase noise and vi-
brational influences occurring during the measurement. The forces acting on
the SGB are very small and in the order of ∼ 10−1 N and the pitching mo-
ment even smaller in the order of ∼ 10−4 Nm. Therefore force and moment
measurements have to be taken with care as they are easily influenced by
external laboratory vibrations.

load cells

model mount

seal and bearings

casing

Figure 5 Schematic view of the strain-gauge-balance

2.4 Experimental Conditions

The experiments in this study were performed with the test section conditions
in Tab. 1. The kinematic parameters of the model pitching motion were
varied according to Tab. 2. The Reynolds number was chosen to suppress
the generation of turbulence while at the same time generating enough force
and moment for the strain-gauge-balance to measure properly. Lower reduced
frequencies are not possible in the experiments, as the minimum number of
oscillations was set to 2 in the available time.
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Table 1 Experimental conditions in the test section

Description Variable Value

Free-stream velocity u∞ 0.3 m/s
Characteristic acceleration time τ ∼ 17 ms

Deceleration ∂u
∂t

0.0032 m/s2

Model Reynolds number Rec 16000

Table 2 Kinematic parameters of the model motion

Description Variable Value

Mean angle of attack αM 0◦

Amplitude angle of attack αA 3 and 6◦

Frequency f 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 Hz
Reduced frequency k 0.14 − 0.28

3 Numerical Techniques

3.1 The Navier-Stokes Solver

The modified flow code PP2DMOV solves the unsteady 2-dimensional Navier-
Stokes equations in an Arbitrary Lagrangian-Eulerian (ALE) formulation on
a region Ω. It essentially is based on the discrete projection type solver PP2D
from the FEATFLOW package, which was modified to simulate incompress-
ible two-dimensional flows with moving boundaries in an efficient way. Here
only a short description will be given of the PP2D solver. For a detailed
description of the numerical background the reader is referred to [11, 12].
The incompressible Navier-Stokes equations can be given by:

∂u

∂x
+

∂v

∂y
= 0

ρ
∂u

∂t
+ ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= ρν

(

∂2u

∂x2
+

∂2u

∂y2

)

−
∂P

∂x
+ fx (3)

ρ
∂v

∂t
+ ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

= ρν

(

∂2v

∂x2
+

∂2v

∂y2

)

−
∂P

∂y
+ fy.

Using p = P
ρ
, they can be written in a more compact form:

ut − ν△u + u · ∇u + ∇p = f , ∇ · u = 0 , in Ω × [0, T ] . (4)

Equation 4 is solved by first introducing a time discretization, in this case
the robust Fractional-step-θ-scheme which is of second order accuracy. In
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general form in each time step the following Quasi-Navier-Stokes problems
are solved:

Given un and the time step k = tn+1 − tn, then solve for u = un+1 and
p = pn+1

u − un

k
+ θ [−ν△u + u · ∇u] + ∇p = gn+1 , ∇ · u = 0, (5)

with the right hand side

gn+1 = θfn+1 + (1 − θ) fn − (1 − θ) [−ν△un + un · ∇un] (6)

The parameter θ is chosen according to the time step scheme used. Discretiza-
tion in space is achieved by using finite elements. Starting from a variational
formulation, the region Ω is divided by a finite mesh of quadrilaterals, where
trial functions for velocity and pressure are defined. The quadrilateral used
in PP2DMOV uses nonparametric piecewise rotated bilinear shape functions
for the velocities spanned by 〈x2−y2, x, y, 1〉 and piecewise constant pressure
approximations. This gives us an element where the velocities are defined
as mean nodal values on the element edges with a cell-centered nodal value
for the pressure. In finite element terms this element pair Q̃1/Q0 is non-
conforming. The non-linear 1-step projection solution process is accelerated
with a multigrid technique. PP2D has successfully taken part in the DFG-
Benchmark Computation within the DFG priority Research Program ”Flow
Simulation on High Performance Computers” [13].

To provide a little insight to the solution process commonly used in PP2D
and hence in PP2DMOV, the nonlinear 1-step projection scheme will be
presented in the following section. Again, for detailed information on the
algorithms and approaches used, the reader is referred to [12].
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Nonlinear 1-step projection scheme:

Given: Iterates un−1 = u(tn−1) and pn−1 = p(tn−1) from time level
n − 1

Perform: 5 sub-steps to obtain un and pn on the new time level n

1. Solve for an intermediate velocity ũn the corresponding nonlin-
ear momentum equation. The right hand side has the vector of
time level tn and the last gradient of the pressure pn−1,

2. Solve a pressure-poisson problem for a right hand side fp with
the divergence from ũ,

3. Update the pressure by additionally applying a diffusive pre-
conditioner,

4. Finally update the new velocity un to satisfy the continuity
equation.

PP2DMOV is basically just an extension of PP2D by introducing the mesh
velocity in the convective term of the incompressible two-dimensional Navier-
Stokes equations (see Eq. 7). In the literature this is referred to as an
Arbitrary Lagrangian-Eulerian (ALE) formulation. Note that mesh velocities
uG do not appear in the continuity equation, as a pressure-poisson equation
is solved to satisfy the continuity equation in an outer loop. Care has to
be taken to satisfy the geometric conservation law (GCL), where the mesh
velocity uG must be equal to the movement of the mesh ∆x during the time
step k.

ut − ν△u + (u − uG) · ∇u + ∇p = f , ∇ · u = 0 , in Ω × [0, T ] . (7)

The following modifications were performed on PP2D:

• auxiliary routines to update the matrices in every sub time step accord-
ing to the new position of mesh nodes,

• handling of meshes, such as interpolation and a local refinement process
in the vicinity of boundaries,

• and changes in the upwinding scheme to satisfy the GCL.

No changes were made in algorithmic solution process. An update of the
corresponding matrices according to the new mesh position is performed,
allowing a very efficient time dependent handling of the mesh and the corre-
sponding boundary conditions.
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3.2 Moving Mesh

3.2.1 Mesh Interpolation

In order not to change the algorithmic approach of PP2D, the mesh is refined
for the multigrid driver in every sub-step of the time scheme used. Therefore
changes to the mesh are applied at coarse grid level only, before all other
levels are created. This procedure is certainly not optimal in respect to the
computational cost, but leaves many possibilities for moving the mesh. The
method used in this study is very simple and uses blending functions to
interpolate a mesh between two fixed positions, the original and the rigidly
transformed mesh, in this case a rotation about the 1/4 chord point of the
airfoil for a given angle of attack. The blending functions are constructed
as polynomials and use the closest distance to the boundaries as input. The
method is derived from [14], where it has been successfully used for structured
grids. Figures 6 and 7 show the original and the resulting rotated mesh for
an angle of attack of 6◦. Mesh deformations without cross-overs up to large
angles of attack of 40◦ are possible using this method. The elements near to
the airfoil are moved nearly rigidly with the airfoil in order to preserve the
quality of the mesh in these regions.
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Figure 6 Coarse mesh at α = 0◦
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Figure 7 Coarse mesh at α = 6◦

3.2.2 Boundary Mesh Refinement

Normally, the mesh in the FEATFLOW solvers is refined for the multigrid
driver with a common h/2 refinement, which means that a quadrilateral is
refined to into four new elements using the midpoints of the edges and the
cell-centered node. Using such a refinement with the interpolation method
would result in a poor spatial resolution of the boundary layers. Therefore
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the refinement strategy was modified to resolve this problem. A coefficient,
which can be chosen by the user, determines the position of the new points
on the edges attached to boundaries creating the new four elements. Figure 8
illustrates the process. The spacing ∆s between the node on the boundary
and the first node in the flow can be given by:

∆sNL
= c

(NL−NLMIN
)

B · ∆sNLMIN
, (8)

where cB is a constant factor smaller than 0.5. Equation 8 can also be used to
incorporate an adaptive refinement for each edge, where the distance ∆sNL

is given and cB is calculated accordingly.

Boundary Edge

∆sNL+2

Nodes on Level NLMIN
New Nodes Level NLMIN+1

New Nodes Level NLMIN+2

∆sNL+1

Figure 8 Boundary mesh refinement strategy to resolve boundary layers

3.2.3 GCL and the Upwind Scheme

Weighted Samarski upwinding is used for PP2DMOV, where the mesh ve-
locities uG are subtracted and calculated according to the nodal movement
from the previous time step, thus satisfying the geometric conservation law
automatically [15]:

uG =
1

k

(

xn+1 − xn

yn+1 − yn

)

. (9)

Where k is the time step size and n denotes the time step number. The
correct implementation was tested on a classic driven cavity problem with a
moving mesh.

3.3 Boundary Conditions

The following boundary conditions are prescribed for the simulations concern-
ing the Water-Ludwieg-Tunnel [16]. At the inflow section, Dirichlet boundary
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conditions are applied, setting the velocity as a function of time:

u(t) = u∞ tanh

(

t

τ

)

+ kt , v(t) = 0. (10)

k is the deceleration factor, when the water level starts to drop in the storage
tank of the Water-Ludwieg-Tunnel. There are no slip boundary conditions
at the upper and lower tunnel wall (see Fig. 9). On the model boundary,

u,v=0

u,v=0

Outflow Boundary:
NeumannInflow Boundary:

Dirichlet
u=u(t),v=0

u,v=u(t),v(t)

f=f(t)

Figure 9 Boundary conditions applied to numerical simulations of Water-
Ludwieg-Tunnel experiments

the model rotation about a fixed point (xM , yM ) is differentiated to give the
velocities for the Dirichlet boundary condition given in Eq. 11. Thus if no
motion is prescribed (i.e. fixed angle of attack), no slip boundary conditions
apply to the model.

α(t) = αM + αA sin(2πf(t − tosc)),

α̇(t) = 2πfαA cos (2πf(t − tosc)) , (11)

u(t) = α̇(y(t) − yM ),

v(t) = −α̇(x(t) − xM ).

Further, a force acts on the fluid derived from Eq. 10 for which the acceler-
ation must be set on the right hand side of the Navier-Stokes equations in
Eq. 3 to:

fx =
u∞

τ

[

1 −

(

tanh

(

t

τ

))2
]

+ k , fy = 0. (12)

3.4 Verification of the Numerical Techniques

The correct simulation of experiments with PP2DMOV is verified with ex-
perimental data. It must be emphasized that the numerical simulation is
performed in a two-dimensional space whereas the experiments are carried
out in three dimensions. Therefore the numerical simulation does not ac-
count for three-dimensional effects such as side wall interference in form of
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a horse-shoe vortex, corner vortices and many others. The small aspect ra-
tio of the model (∼ 1.4) certainly does not improve the situation. Despite
these set-backs a good agreement between numerical and experimental data
is found, sufficient to enhance experimental results and give a greater insight
into the occurring flow phenomena.

3.4.1 BAC3-11 at αM = 6◦, αA = 0◦ and f = 0 Hz

In this case of a static airfoil the time dependent flow phenomena are ini-
tialized by the impulsive start of the flow in the tunnel (see Eq. 10). In
Figs. 10 and 11 the experimental and numerical aerodynamic coefficients are
plotted versus time and a reasonable agreement can be observed, except for
the dynamic effects in the first second. The trailing edge separation bubble
leads to a break in the development of the aerodynamic lift. The breaking
point in the form of a peak at about 0.5 s cannot be clearly detected in the
experimental values. From one second onwards a good agreement is found,
where three-dimensional effects can be clearly detected in the experimental
lift signal as trailing edge vortex shedding is disturbed in comparison with
numerical data. The mean steady aerodynamic lift and drag values agree
reasonably. The mean pitching moment coefficient is slightly smaller, but
as mentioned earlier pitching moment results at these conditions have to be
taken with care as the order of magnitude is very small. Nevertheless the
frequency of the vortex shedding process is equal in both cases. A compari-
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Figure 10 Lift and drag coefficients
from experimental and numerical data
for αM = 6◦, αA = 0◦ and k = 0
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Figure 11 Pitching moment coeffi-
cient from experimental and numerical
data for αM = 6◦, αA = 0◦ and k = 0

son of instantaneous streamlines and flow visualization reveals a good overall
agreement. Figures 12 and 13 show a good agreement of the flow phenomena
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encountered exactly at t = 0.6 s. Especially the primary trailing edge vortex
can be identified and is also situated in the same position relative to the
airfoil. The boundary layer separation point on the upper side also coincides.
In Figs. 14 and 15 a triple vortex structure can be observed in both cases,
revealing a very good agreement between experiment and numerical simula-
tion. The laminar separation point has moved upstream in comparison with
the flow at t = 0.6 s. Comparing numerical results with PIV data also shows
a good agreement (Figs. 16 and 17). Two vortices can be observed in the
PIV and numerical data at nearly the same relative position to the airfoil.

Figure 12 Numerical instantaneous
streamlines at α = 6◦ and t = 0.601 s

for α = 6◦ and k = 0

Figure 13 Experimental particle vi-
sualization at α = 6◦ and t = 0.6 s for
αM = 6◦, αA = 0◦ and k = 0

3.4.2 BAC3-11 at αM = 0◦, αA = 6◦ and f = 0.25 Hz

After discovering a good agreement at a fixed angle of attack, it is necessary
to verify the agreement at a varying angle of attack. For this purpose the
experiment with the lowest reduced frequency was chosen and it must be
noted that the same agreement can be found for higher reduced frequencies.
In Figs. 18 and 19 both numerical and experimental aerodynamic coefficients
are plotted against time, revealing a reasonable agreement. The pitching
moment coincides well, except for some peaks. The lift coefficient agrees,
except for negative peak values of the angle of attack, where the vortices
on the lower side (see Fig. 22) seem to create an extra peak in the lift and
pitching moment. This is probably due to an inhomogeneous vortex field in
spanwise direction for which the three-dimensional integration of the forces
and the pitching moment by the strain-gauge-balance damps out the effect so
that they are not detected in the signal. The mean drag coefficient falls short
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Figure 14 Numerical instantaneous
streamlines at α = 6◦ and t = 1.204 s

for αM = 6◦, αA = 0◦ and k = 0

Figure 15 Experimental particle vi-
sualization at α = 6◦ and t = 1.2 s for
αM = 6◦, αA = 0◦ and k = 0

Figure 16 Numerical vectors at α =
6◦ and t = 1.204 s for αM = 6◦, αA =
0◦ and k = 0

Figure 17 Experimental vectors from
PIV at α = 6◦ and t = 1.2 s for αM =
6◦, αA = 0◦ and k = 0
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of the experimental values, but has the same appearance in time. Figures 20
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Figure 18 Lift and drag coefficients
from experimental and numerical data
for αM = 0◦, αA = 6◦ and k = 0.14

t [s]

C
M

[-]

0 1 2 3 4 5 6 7 8 9 10

-0.4

-0.3

-0.2

-0.1

0

0.1

Exp. C M [-]
Num. C M [-]

Figure 19 Pitching moment coeffi-
cient from experimental and numerical
data for αM = 0◦, αA = 6◦ and k = 0.14

and 21 show a similar situation as described for the fixed angle of attack.
The triple vortex structure and especially the primary vortex situated at the
trailing edge is represented properly in the numerical simulation. In Fig. 22
the separation bubbles at the leading and trailing edge can be identified, but
their structure is not clearly visible in Fig. 23 due to the optical overlapping
of the airfoil front edge. Nevertheless it is clear that separation occurs.

4 Results

4.1 Influence of the Reduced Frequency on the Aerodynamic Co-
efficients

As shown in the literature [19, 3, 18, 17] both the reduced frequency:

k =
πfc

u∞

, (13)

and the non-dimensional pitching rate:

α+ =
α̇c

u∞

=
2πfcαA

u∞

cos (2πf(t − tosc)) = 2kαA cos (2πf(t − tosc)) , (14)

are the dominant parameters, which influence the unsteady aerodynamic co-
efficients of an oscillating airfoil. These influences are to be discussed in the

17



Figure 20 Numerical instantaneous
streamlines at α = 5.9◦ ↓ and t =
5.208 s for αM = 0◦, αA = 6◦ and
k = 0.14 Hz

Figure 21 Experimental particle visu-
alization at α = 5.9◦ ↓ and t = 5.201 s

for αM = 0◦, αA = 6◦ and k = 0.14 Hz

Figure 22 Numerical instantaneous
streamlines at α = −5.8◦ ↓ and t =
6.911 s for αM = 0◦, αA = 6◦ and
k = 0.14 Hz

Figure 23 Experimental particle visu-
alization at α = −5.8◦ ↓ and t = 6.901 s

for αM = 0◦, αA = 6◦ and k = 0.14 Hz
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reduced frequency range of 0 to 0.28.

The following figures show the influence of the reduced frequency on the
aerodynamic coefficients at an instantaneous pitching rate of α+ = 0, which
corresponds to the peak values at αA = α = 6◦. In Fig. 24 no significant
influence of the reduced frequency can be detected for the range of reduced
frequencies investigated. The lift stays constant at approximately the static
value. This behaviour can be observed for both experimental series, as well
as for the numerical data, which coincides well. The variation in the static lift
coefficient for αA = 6◦ is of experimental nature and is attributed to three-
dimensional unsteady effects in the test section. For the drag coefficient at
αA = 6◦, a gradual decrease can be observed up to k = 0.14 (see Fig. 25).
From k = 0.14 to 0.28 the drag is constant. For αA = 3◦ the drag seems
to be constant for the whole range of reduced frequencies. In the numeri-
cal simulations a lower drag coefficient is calculated, although the tendencies
are equal. The numerical and experimental absolute pitching moment for
αA = 3◦ shows at first an increase and then slight decrease with greater
reduced frequencies (see Fig. 26). For αA = 6◦ the absolute experimental
values show a gradual increase with frequency from k = 0.14 onwards, while
the numerical data seems to reach a constant value. Experimental and nu-
merical data is equal in this case for k = 0.28. Further numerical simulations
are needed to confirm the results and detect a tendency. It must be empha-
sized that the pitching moment is very sensitive and is strongly influenced by
the reduced frequency, far more than the lift or drag coefficients.
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Figure 24 Numerical and experimental lift coefficient at αA = 3◦ and 6◦ as a
function of the reduced frequency
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Figure 25 Numerical and experimental drag coefficient at αA = 3◦ and 6◦ as a
function of the reduced frequency
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Figure 26 Numerical and experimental pitching moment coefficient at αA = 3◦

and 6◦ as a function of the reduced frequency
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4.2 Influence of the Pitching Rate on the Aerodynamic Coeffi-
cients

Figures 27 and 28 show the influence of the instantaneous positive pitching
rate at α = 3◦ for αA = 6◦ in comparison with the peak values for the same
angle of attack, hence αA = 3◦ and α+ = 0. For the lift and the pitching
moment coefficient, dynamic effects are apparent. The lift is increased in
comparison to the α+ = 0 values. Here the experimental data shows a
greater gain in lift than the numerical data. The tendency with increasing
pitching rate is equal in both data sets. For the pitching moment the results
are not quite clear. For greater reduced frequencies k > 0.14 the absolute
value is slightly increased, while the numerical data for k = 0.07 is smaller
than the corresponding value at αA = 3◦. Overall a positive non-dimensional
pitching rate increases the lift, which corresponds to results presented by
other researchers [17, 18] for large angles of attacks.
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Figure 27 Influence of the non-dimensional pitching rate at α+ =
√

3kαA for
αA = 6◦ and α+ = 0 for αA = 3◦ on the lift coefficient

4.3 Hysteresis of the Lift and Pitching Moment Coefficient Hys-
teresis Loops

Figures 29 to 32 show the lift and pitching moment coefficients plotted against
the instantaneous angle of attack. With increasing reduced frequency the
phase difference between the aerodynamic coefficients and the airfoil motion
becomes apparent. In Fig. 29 the lift values show no hysteresis for large
positive angles of attack. The lift travels along a straight line, even though
trailing edge separation occurs. For a negative angle of attack a strong influ-
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Figure 28 Influence of the non-dimensional pitching rate at α+ =
√

3kαA for
αA = 6◦ and α+ = 0 for αA = 3◦ on the pitching moment coefficient

ence of the leading and trailing edge separation occurring on the lower side of
the airfoil can be seen (see Fig. 23), creating large fluctuations in the lift co-
efficient. The separation grows once the airfoil pitches up and vanishes when
a positive angle of attack of about α = 3◦ is reached. In contrast in Fig. 31
for higher reduced frequencies a hysteresis can be observed from k = 0.14
onwards. The effect is also evident in the pitching moment in Figs. 30 and
32. For an angle of attack between α = 0◦ and −6◦ fluctuations are observed
for k < 0.28 and a peak value in the range of α = 0◦ to −2◦ for k = 0.14 and
0.28. The fluctuations disappear for k = 0.28, where the pitching moment
decreases gradually from the value at α = −6◦ to a peak at −2◦. Vortex shed-
ding on the lower side of the airfoil is suppressed in this case. At this reduced
frequency k = 0.28, steady separation phenomena are strongly influenced by
the motion of the airfoil.

4.4 Trailing Edge Separation on the Pitching BAC3-11/RES/30/21
Airfoil

The Figs. 33 to 38 present the evolution of the flow in the pitching up phase
of one oscillation cycle. During the pitching up manoeuver, the separation on
the lower side of the airfoil vanishes and a new separation bubble establishes
itself on the upper side near to the trailing edge. The effects of the lower side
separation bubble where shown in Sec. 4.3. Unfortunately the experimental
data in Fig. 33 does not show the lower side separation bubble seen in the
numerical data. The reason is that the front profile edges of the airfoil cover
areas near to the airfoil due to the optical arrangement. The separation on

22



α [°]

C
L

[-]
-6 -4 -2 0 2 4 6

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

bac17: Re [-]=16200, αM [°]= 0, αA [°]= 6, k [-]= 0.07
bac18: Re [-]=16199, αM [°]= 0, αA [°]= 6, k [-]= 0.05

Figure 29 Lift coefficient plotted ver-
sus angle of attack for αM = 0◦,
αA = 6◦, k = 0.05 and k = 0.07
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Figure 30 Pitching moment coeffi-
cient plotted versus angle of attack for
αM = 0◦, αA = 6◦, k = 0.05 and
k = 0.07
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Figure 31 Lift coefficient plotted ver-
sus angle of attack for αM = 0◦, αA =
6◦, k = 0.14 and k = 0.28
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Figure 32 Pitching moment coeffi-
cient plotted versus angle of attack for
αM = 0◦, αA = 6◦, k = 0.14 and
k = 0.28
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the upper side is started by a flow reversal region, with a primary clockwise
vortex developing (see Fig. 36). The primary vortex induces the growth
of a counterclockwise secondary vortex, which again stimulates the creation
of third clockwise vortex. This triple vortex system grows as seen in Fig.
38 until the primary vortex is shed into the wake. This process is repeated
periodically. It must be emphasized that the same process takes place at
a static angle, where vortices are shed at about a frequency of 10 Hz into
the wake (see Fig. 15). For the oscillating airfoil the separation is usually
smaller. This becomes obvious comparing Figs. 15 and 37 or 14 and 38.

Figure 33 Experimental velocity vec-
tors and vorticity for αM = 0◦, αA = 6◦

and k = 0.14 at α = 0◦ and t = 4.1 s

Figure 34 Numerical streamlines for
αM = 0◦, αA = 6◦ and k = 0.14 at
α = 0.2◦ and t = 4.108 s

5 Conclusions

In the context of this project both experimental and numerical tools have
been developed, which allow the study of flow fields around oscillating airfoils
for various kinematic and geometric parameters in an acceptable amount of
time. The numerical tool has been successfully verified with experiments
and allows a time efficient computation of cases which cannot be run in
the experimental facility and thus enhances the experimental data very well.
This combination is very promising for this kind of investigation, despite the
fact of the relatively high Reynolds number and different space dimensions.
Promising results are presented, showing the primary influence of two well
known parameters, the reduced frequency and the non-dimensional pitching
rate, for two amplitude angles of attack of αA = 3◦, 6◦ and for a relevant
range of reduced frequencies for the reference airfoil BAC3-11/RES/30/21.
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Figure 35 Experimental velocity vec-
tors and vorticity for αM = 0◦, αA = 6◦

and k = 0.14 at α = 2.7◦ and t = 4.4 s

Figure 36 Numerical streamlines for
αM = 0◦, αA = 6◦ and k = 0.14 at
α = 2.9◦ and t = 4.408 s

Figure 37 Experimental velocity vec-
tors and vorticity for αM = 0◦, αA = 6◦

and k = 0.14 at α = 5.9◦ and t = 5 s

Figure 38 Numerical streamlines for
αM = 0◦, αA = 6◦ and k = 0.14 at
α = 6◦ and t = 5 s
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An increasing reduced frequency has little effect on the peak values of the
aerodynamic coefficients, while the flow field is gradually affected. The non-
dimensional pitching rate influences the aerodynamic coefficients, which for
positive values results in an increase in lift. The flow field due to the motion
of the airfoil is overlayed by separation regions of the type encountered at a
static angle of attack and are influenced by the unsteady motion. Further
investigation is required in order to complete the study for many variations
of the kinematic and geometric parameters. The same experiments have
been already conducted for other airfoil models and it will be interesting to
discover the differences arising.
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