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Abstract

We present a finite element (FE) scheme based on a flux-corrected transport
(FCT) algorithm for solving the ideal MHD equations. The two main ingredients
of the FCT scheme are the definition of a low-order scheme and the limiting
strategy. For the low-order scheme we use an artificial viscosity operator based
on scalar dissipation proportional to the fast wave speed. The accuracy of
the low-order solution can be improved using a shock detector which allows to
scale the amount of viscosity in such a way that a larger amount is used near
discontinuities. The presented limiting strategy constrains the thermal pressure
and the density leading to a synchronized correction factor for all conservative
variables. For the 2d case we describe two predictor-corrector strategies for
divergence cleaning where the FCT solution is used as predictor. The first
follows the concept of unstaggered constrained transport where the magnetic
vector potential is updated. The other strategy takes into account the concept
of exact sequences and defines the divergence-free magnetic field in the Raviart-
Thomas FE space. The proposed methods are applied to some standard test
problems for ideal MHD to show their accuracy.

Keywords: ideal MHD equations, limiting, flux-corrected transport, finite
elements, continuous Galerkin method

1. Introduction

The flux-corrected transport (FCT) technique was first introduced by Boris
and Book [7] in the context of finite difference schemes for solving the transient
continuity equation. The basic idea is to switch between a high-order method
which can produce non-physical oscillations and a nonoscillatory, positivity pre-
serving low-order method. Therefore, antidiffusive fluxes which define the dif-
ference between the low and high-order scheme are limited in such a way that
no unphysical extrema occur. If no limiting is done, the high-order scheme is
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obtained, whereas the low-order scheme is obtained if all antidiffusive fluxes are
canceled. Besides hydrodynamic problems [6, 28] also magnetohydrodynamic
(MHD) problems [11, 27] have been considered in the context of FCT finite dif-
ference schemes. As with other methods considering MHD equations the main
difficulty is to keep the magnetic field divergence-free [8, 26]. Tóth [27] used
Powell’s [21] corrective terms, i.e. terms proportional to ∇ ·B, to stabilize the
FCT solution. DeVore [11] used staggered grids and divided the antidiffusive
fluxes into components which are limited independently.

FCT for the finite element method was first considerd in [20] for scalar ad-
vection. Further extensions to the Euler and Navier-Stokes equations can be
found e.g. in [17, 18, 14, 15]. The high-order scheme is given by the standard
Galerkin finite element method. To derive the low-order scheme an artificial
viscosity operator is added and the consistent mass matrix of the fully discrete
scheme is replaced by its lumped counterpart. In the case of a single equation
the limiting can be directly performed by Zalesak’s algorithm [28]. Considering
a system of equations there are different strategies for the limiting process (see
e.g. [14]). The probably most popular approach is to synchronize the correc-
tion factors of the antidiffusive fluxes for all conservative variables, where the
individual correction factors can be calculated by Zalesak’s algorithm.

In this paper we will extend the FEM-FCT scheme for the Euler equations
[14] to MHD equations. Therefore we will first describe a predictor-corrector
FCT approach and present an artificial viscosity operator leading to scalar dis-
sipation proportional to the fast wave speed. This viscosity operator can be
scaled using a shock detector which allows to use the full amount of diffusion
near discontinuities and less in cells where the solution is smooth or constant.
The limiting strategy is adopted from [16] and constrains the density and the
thermal pressure in a synchronized way. This already leads to a usable MHD
algorithm in 1d. In 2d we have to add an additional step for divergence clean-
ing. Here we consider two approaches: the first follows the unstaggered con-
strained transport (CT) algorithm of [22], where the magnetic potential A has
to be updated in each step such that the magnetic field can be calculated by
B = ∇×A. The second approach takes into account FE spaces forming exact
sequences within the framework of the discrete de Rham complex [5] and defines
the magnetic field in the Raviart-Thomas FE space.

We perform some 1d experiments to compare the numerical solutions calcu-
lated by scaled and not scaled artificial viscosity operators. In 2d we compare
the numerical results of both divergence cleaning schemes. All examples show
that rarefaction waves, shocks and contact discontinuities are resolved very well.

2. Element-based FEM-FCT scheme for MHD

The system of ideal MHD equations can be written in generic divergence
form

∂U

∂t
+∇ · F = 0. (1)
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The conservative variables U and the fluxes F are given by

U =


ρ
ρu
ρe
B

 , F =


ρu

ρu⊗ u + ptotI −B⊗B
ρeu + ptotu−B(u ·B)

u⊗B−B⊗ u

 , (2)

where ρ is the density, u = (ux, uy, uz) is the velocity, ρe is the total energy and
B = (Bx, By, Bz) is the magnetic field. The total pressure ptot is given by the
sum of thermal and magnetic pressures

ptot = p+
1

2
|B|2. (3)

The thermal pressure p is defined by the equation of state

p = (γ − 1)

(
ρe− ρ|u|2

2
− 1

2
|B|2

)
, (4)

where γ is the adiabatic constant depending on the physical properties of the
fluid. We use the group finite element formulation [12] to approximate U and
F

Uh =
∑
j

Ujϕj , Fh =
∑
j

Fjϕj , (5)

where ϕi are continuous basis functions associated with the space of linear finite
elements. Substituting these approximations into the Galerkin variational form
of the MHD system, integrating by parts and using the Crank-Nicolson scheme
to discretize in time, we obtain the fully discrete problem

1

∆t
MC

(
Un+1 − Un

)
− 1

2

[
K(Un+1) +K(Un)

]
− S(Un)︸ ︷︷ ︸

=:GH(Un+1)

= 0, (6)

where MC is the consistent mass matrix, K(U) is the vector of volume integrals
associated with the discretization of∇·F and S(U) is the vector of corresponding
surface integrals. When it comes to enforcing discrete maximum principles
within the framework of algebraic flux correction [13, 14], the discrete problem
(6) is decomposed into a monotone low-order part and an antidiffusive term.
Introducing the lumped mass matrix ML and an artificial viscosity operator
D(U), which will be defined later, we obtain the equivalent representation

ML

∆t

(
Un+1 − Un

)
− L(Un+1)− S(Un)︸ ︷︷ ︸

=:GL(Un+1)

−F (Un+1, Un) = 0 (7)

where L(U) := K(U) +D(U)U is the nonoscillatory part of K(U) and

F (Un+1, Un) :=
1

∆t
(ML −MC)

(
Un+1 − Un

)
+

1

2

[
K(Un+1) +K(Un)

]
− L(Un+1)

(8)
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is the antidiffusive term assembled from massless element contributions

Fi(U
n+1, Un) =

∑
el

Fel,i,
∑
i

Fel,i = 0. (9)

To enforce monotonicity constraints, each element vector Fel is multiplied by a
solution-dependent correction factor αel. The details of the limiting procedure
will be provided later.

Our predictor-corrector FCT approach to solving the ideal MHD equations
is as follows:

1. Calculate the solution UL of the low-order nonlinear system

GL(UL) = 0. (10)

2. Assemble the limited antidiffusive term F̄ (UL, U
n) and correct the low-

order approximation

Un+1 = UL + ∆tM−1
L F̄ (UL, U

n). (11)

The accuracy of the constrained Galerkin solution Un+1 depends on the def-
inition of the artificial viscosity operator D(U) and on the algorithm for calcu-
lating the correction factors for the limited antidiffusive contributions presented
in the following.

2.1. Artificial viscosity operator
In this paper we make use of an artificial viscosity operator based on Rusanov-

like scalar dissipation. This approach has been successfully applied to the com-
pressible Euler equations [14, 15] and is now extended to the ideal MHD equa-
tions.

The artificial viscosity operator based on scalar dissipation is given by

Dfast
ij (U) = max{dij , dji}I, ∀i 6= j, (12)

Dfast
ii (U) = −

∑
j 6=i

Dij(U). (13)

The scalar-valued artificial diffusion coefficients dij are defined by

dij = |gij · uj |+ |gij · cfj |, ∀i 6= j (14)

gij :=
1

2
(cji − cij), cij =

∫
Ω

ϕi∇ϕj , (15)

cfj = (cf (e1, Uj), ..., cf (edim, Uj))
T
, (16)

a = a(U) =

√
γp

ρ
, ca = ca(e, U) =

√
(B · e)2

ρ
, (17)

cf (e, U) =

1

2

a2 +
|B|2

ρ
+

√√√√(a2 +
|B|2

ρ

)2

− 4a2c2a




0.5

, (18)
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where {ei}dimi=1 is the set of unit vectors. This leads to dissipation proportional
to the fast wave speed.

To improve the accuracy of the low-order scheme we scale the artificial vis-
cosity operator in such a way that the full amount is used near discontinuities
whereas less diffusion is applied in regions where the solution is smooth or con-
stant. Therefore we make use of the following shock detector [3]

µui :=

{ |∑j∈S(i) ui−uj |∑
j∈S(i) |ui−uj | if

∑
j∈S(i) |ui − uj | 6= 0,

0 otherwise,
(19)

where ui is the nodal value of the quantity u evaluated at node xi and S(i) is
the set of nearest neighbors of node i. This detector can be used to scale the
coefficients dij of our artificial viscosity operator in the following way

dρ,ρu,ρeij = µρi |gij · uj |+ µpi |gij · c
f
j |, ∀i 6= j (20)

dBij = µB
(
|gij · uj |+ |gij · cfj |

)
, ∀i 6= j (21)

where µB = max{µBx , µBy , µBz}.
For implementation purposes we replace the condition

∑
j∈S(i) |ui − uj | 6= 0

in (19) by
∑
j∈S(i) |ui− uj | >

ε|ui|
#DOFs , where ε > 0 is a small parameter (in our

computations ε = 10−4).

2.2. Limiting strategy

At the corrector step of the FCT scheme, the element contributions Fel to the
antidiffusive term

Fi(UL, U
n) = (fρi ,f

ρu
i , fρei ,fB

i )T (22)

are limited in such a way that no over- or undershoots can occur in the quantities
of interest. Using the same correction factor αel for all variables, we obtain the
limited antidiffusive correction

F̄i(UL, U
n) =

∑
el

αelFel,i. (23)

Adopting the methodology developed in [16] in the context of synchronized
FCT limiting for the Euler equations, we first calculate provisional correction
factors αρel to constrain the density ρ and then calculate correction factors αpel
constraining the thermal pressure p. The synchronized correction factors are
then given by αel := αρelα

p
el.
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The density limiter. The density should be constrained in such a way that

ρmin
i ≤ ρi = ρLi +

1

mi

∑
el

αelf
ρ
el,i ≤ ρ

max
i (24)

where mi is the entry of the lumped mass matrix multiplied by 1
∆t . The bounds

ρmin
i and ρmax

i are defined by

ρmin
i := min

j∈N(i)
ρLj , ρmax

i := max
j∈N(i)

ρLj , (25)

where N(i) = S(i)∪{i} is the set of nodes containing i and its nearest neighbors
j 6= i.

The calculation of the correction factors αρel is based on Zalesak’s limiter [28]
and involves the following steps:

1. Compute the sums of positive/negative element fluxes

P+
i =

∑
el

max{0, fρel,i}, P−i =
∑
el

min{0, fρel,i}. (26)

2. Compute the distance to local maximum/minimum of the low-order ap-
proximation

Q+
i =

mi

∆t
(ρmax
i − ρLi ), Q−i =

mi

∆t
(ρmin
i − ρLi ). (27)

3. Compute the element-based correction factors αρel for the density ρ

R±i = min{1, Q
±
i

P±i
}, αρel,i =


R+
i if fρel,i > 0,

1 if fρel,i = 0,

R−i if fρel,i < 0,

(28)

αρel = min
i∈el

αρel,i. (29)

These first provisional correction factors αρel are now used to define the tight
density bounds

ρ̃max
i = ρLi +

1

mi

∑
el

max{0, αρelf
ρ
el,i}, (30)

ρ̃min
i = ρLi +

1

mi

∑
el

min{0, αρelf
ρ
el,i}, (31)

which we need in the definition of the bounds for the pressure (see below). Note
that ρ̃min

i is nonnegative due to the definition of αρel.
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The pressure limiter. To constrain the thermal pressure we define the local
bounds for pi as

ρ̃min
i pmin

i ≤ ρipi = ρi(γ − 1)

(
(ρe)i −

|(ρu)i|2

2ρi
− 1

2
|Bi|2

)
≤ ρ̃max

i pmax
i , (32)

pmin
i = min

j∈N(i)
(γ − 1)

(
(ρe)Lj −

∣∣(ρu)Lj
∣∣2

2ρLj
− 1

2
|BL

j |2
)
, (33)

pmax
i = max

j∈N(i)
(γ − 1)

(
(ρe)Lj −

∣∣(ρu)Lj
∣∣2

2ρLj
− 1

2
|BL

j |2
)
. (34)

Note that if we would constrain pi such that pmin
i ≤ pi ≤ pmax

i , the limiter
would cancel all antidiffusive fluxes in the regions of constant pressure. In the
presence of a contact discontinuity in the density, this would strongly smear out
the discontinuity due to the synchronized limiting. For this reason the pressure
constraint (32) is preferred.

The constrained pressure pi depends on the synchronized correction factors
αel ≤ αρel and conservatives fluxes (fρel,i,f

ρu
el,i, f

ρe
el,i,f

B
el,i) as follows:

ρipi
(γ − 1)

=

(
ρLi +

1

mi

∑
el

αelf
ρ
el,i

)(
(ρe)Li +

1

mi

∑
el

αelf
ρe
el,i

)

− 1

2

(
(ρu)Li +

1

mi

∑
el

αelf
ρu
el,i

)2

− 1

2

(
ρLi +

1

mi

∑
el

αelf
ρ
el,i

)(
BL
i +

1

mi

∑
el

αelf
B
el,i

)2

=
ρLi p

L
i

(γ − 1)
+

1

mi

∑
el

αel

(
ρLi f

ρe
el,i + (ρe)Li f

ρ
el,i − (ρu)Li · f

ρu
el,i −

1

2

∣∣BL
i

∣∣2 fρel,i − ρLi BL
i · fBel,i

)

+

(
1

mi

∑
el

αelf
ρ
el,i

)(
1

mi

∑
el

αelf
ρe
el,i

)
− 1

2

∣∣∣∣∣ 1

mi

∑
el

αelf
ρu
el,i

∣∣∣∣∣
2

− 1

2
ρLi

∣∣∣∣∣ 1

mi

∑
el

αelf
B
el,i

∣∣∣∣∣
2

−

(
1

mi

∑
el

αelf
ρ
el,i

)(
1

mi

∑
el

αelB
L
i · fBel,i

)

− 1

2

(
1

mi

∑
el

αelf
ρ
el,i

)∣∣∣∣∣ 1

mi

∑
el

αelf
B
el,i

∣∣∣∣∣
2

. (35)

Considering the worst-case scenario we obtain the following estimates

m2
iQ
−,p
i

(γ − 1)
≤ R−,pi P−,pi ≤

m2
i

(
ρipi − ρLi pLi

)
(γ − 1)

≤ R+,p
i P+,p

i ≤ m2
iQ

+,p
i

(γ − 1)
, (36)
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where

P+,p
i = mi

∑
el

max

{
0, αρel

(
ρLi f

ρe
el,i + (ρe)Li f

ρ
el,i − (ρu)Li · f

ρu
el,i −

1

2

∣∣BL
i

∣∣2 fρel,i − ρLi BL
i · fBel,i

)}
+
∑
el1

∑
el2

max
{

0, αρel1f
ρ
el1,iα

ρ
el2f

ρe
el2,i

}
+
∑
el1

∑
el2

max
{

0,−αρel1f
ρ
el1,iα

ρ
el2B

L
i · fBel2,i

}

+
1

2mi

∑
el1

max

0,−αρel1f
ρ
el1,i

∣∣∣∣∣∑
el2

αρel2f
B
el2,i

∣∣∣∣∣
2
 (37)

P−,pi = mi

∑
el

min

{
0, αρel

(
ρLi f

ρe
el,i + (ρe)Li f

ρ
el,i − (ρu)Li · f

ρu
el,i −

1

2

∣∣BL
i

∣∣2 fρel,i − ρLi BL
i · fBel,i

)}

+
∑
el1

∑
el2

min
{

0, αρel1f
ρ
el1,iα

ρ
el2f

ρe
el2,i

}
− 1

2

(∑
el

αρel

∣∣∣fρuel,i∣∣∣
)2

− 1

2
ρLi

(∑
el

αρel
∣∣fBel,i∣∣

)2

+
∑
el1

∑
el2

min
{

0,−αρel1f
ρ
el1,iα

ρ
el2B

L
i · fBel2,i

}
+

1

2mi

∑
el1

min

0,−αρel1f
ρ
el1,i

∣∣∣∣∣∑
el2

αρel2f
B
el2,i

∣∣∣∣∣
2


(38)

Q+,p
i = ρ̃max

i pmax
i − ρLi pLi , Q−,pi = ρ̃min

i pmin
i − ρLi pLi , (39)

R+,p
i = min

{
1,

m2
iQ

+,p
i

P+,p
i (γ − 1)

}
, R−,pi = min

{
1,

m2
iQ
−,p
i

P−,pi (γ − 1)

}
. (40)

The correction factor αpel is then given by

αpel = min
i∈el

αpel,i, αpel,i = min{R+,p
i , R−,pi }. (41)

This yields the synchronized correction factor

αel = αpelα
ρ
el. (42)

3. Divergence cleaning

The equation for the magnetic field B

∂B

∂t
+∇ · (u⊗B−B⊗ u) = 0, (43)

can be written in an equivalent form

∂B

∂t
+∇× (B× u) = 0. (44)

Taking the divergence of this equation and assuming that the initial magnetic
field is divergence-free, we obtain

∇ ·B = 0. (45)
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Numerical schemes which do not satisfy this “constraint” may give rise to insta-
bilities and nonphysical solutions [8]. Note that this constraint implies that Bx
is constant in 1d. Therefore, the following divergence cleaning techniques are
only necessary for the 2d case.

In this paper we follow the approach of divergence cleaning based on the
unstaggered constrained transport (CT) algorithm introduced by Rossmanith
[22] in the context of a discontinuous Galerkin (DG) method. We have

B = ∇×A, (46)

where A is the magnetic vector potential satisfying the weakly hyperbolic trans-
port equation

∂A

∂t
+ B× u = 0. (47)

The unstaggered CT approach to divergence cleaning leads to the following
correction procedure:

1. Use the FCT predictor B? to update the nodal magnetic potentials

An+1
i = An

i −∆t(B?
i × un+1

i ). (48)

2. Overwrite B? by the (constrained) L2 projection of ∇ × An+1
h into the

nodal P1 space

Bn+1 = PCAn+1 (49)

where C is the discrete curl operator and P is the operator associated
with the L2 projection into the continuous linear finite element space.

Another approach we would like to present here takes into account finite
element spaces forming exact sequences within the framework of the discrete de
Rham complex [5]. Therefore, we consider the electric field

E = B× u, E = (E1, E2, E3) (50)

and write equation (44) as

∂B

∂t
+∇×E = 0, (51)

where E ∈ H(curl) and B ∈ H(div). In 3d those spaces can be discretized
using Nédélec and Raviart-Thomas elements. In 2d we only have to consider
the first two components of B and therefore, equation (51) can be written as

∂Bx
∂t

+
∂E3

∂y
= 0, (52)

∂By
∂t
− ∂E3

∂x
= 0, (53)

9



where E3 = Bxuy −Byux. Using the 2d definition of the curl operator

curlE3 = (
∂E3

∂y
,−∂E3

∂x
)T , (54)

we have E3 ∈ H(curl) and (Bx, By)T ∈ H(div). For the discretization of those
spaces we use the continuous Lagrange finite element space and the Raviart-
Thomas finite element in 2d which form an exact sequence (see, e.g. [1, 10]).
This yields the following steps for divergence cleaning:

1. Use the FCT predictor B? to obtain

E3 = P (B? × un+1). (55)

2. Update the reduced magnetic fieldBRT = (Bx, By) of the Raviart-Thomas
finite element space

Bn+1
RT = Bn

RT −∆tcurlE3. (56)

3. Overwrite (B?x, B
?
y) by the L2 projection of Bn+1

RT into the nodal P1 space

(Bn+1
x , Bn+1

y )T = PBn+1
RT . (57)

Since the divergence of a curl is identically zero, we obtain a divergence-free (in
the weak sense) magnetic field Bn+1

RT if Bn
RT is divergence-free in the weak sense.

In the following we will refer to the first approach as "potA" approach and
the second as "RT" approach.

4. Numerical results

In this section we will present numerical results for 1d and 2d test problems.
The algorithms described above are implemented using the software of the FEn-
iCS project [2]. In the case that we do not have an exact solution of our test
problem, we will compare our results with those obtained by the Athena project
[25], which uses CT algorithms in the context of a finite volume method.

4.1. 1d Brio-Wu problem
At first we consider the Brio-Wu shock tube problem [9] which is an extension

of Sod’s shock tube problem [24] to MHD. The initial data is given by

(ρ, ux, uy, uz, p, By, Bz)
left = (1.0, 0, 0.0, 0., 1, 1, 0),

(ρ, ux, uy, uz, p, By, Bz)
right = (0.125, 0, 0.0, 0., 0.1,−1, 0), (58)

and Bx = 0.75, γ = 2..
In Fig. 1 the numerical solutions computed by the FCT scheme and the

low-order scheme (10) with and without the shock detector scaling (’+µ’) are
shown. The reference solution is computed by the Athena code [25] on a grid
with 100,000 zones. Looking at the density from the left to the right we have

10



a rarefaction wave, a compound wave, a contact discontinuity, a shock, and a
rarefaction wave. In the first and third row, we see that the low-order solution
computed with the µ-scaled artificial viscosity operator (20) is more accurate
than without that scaling. The FCT solutions are shown in the other rows and
are more accurate than the low-order solutions. Comparing the FCT solutions
computed with and without the shock detector scaling we see that those do not
much differ from each other. However, the use of the µ-scaled artificial viscosity
operator eliminates the spurious kink in Fig. 1(i).

(a) Density ρ (b) Thermal pressure p (c) By

(d) Density ρ (e) Thermal pressure p (f) By

(g) Velocity component ux (h) Velocity component uy

(i) Velocity component ux (j) Velocity component uy

Figure 1: Numerical solutions of the Brio-Wu problem using the viscosity oper-
ator (14) and its scaled version "+µ" (20) at Tend = 0.1 (h = 1

512 )
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4.2. 1d Ryu-Jones problem
In this test case we consider the Riemann problem "2a" from [23]. The initial

data is given by

(ρ, ux, uy, uz, p, By, Bz)
left = (1.08, 1.2, 0.01, 0.5, 0.95,

3.6√
4π
,

2√
4π

),

(ρ, ux, uy, uz, p, By, Bz)
right = (1.0, 0, 0., 0., 1.,

4√
4π
,

2√
4π

), (59)

and Bx = 2√
4π

, γ = 5
3 . The solution consists of a contact discontinuity from

which fast shocks, rotational discontinuities and slow shocks propagate.
In Figures 2 and 3 we show the numerical solutions computed by the FCT

scheme and the low-order scheme. The first and the third row of Fig. 2 and the
first row of Fig. 3 show the low-order solutions, whereas in the other rows the
solutions computed by the FCT scheme are displayed. As before we see that
the low-order solution computed with the µ-scaled artificial viscosity operator is
more accurate than the not-scaled version. The FCT solutions are again more
accurate than the low-order solutions. We see here also that the scaled version
of the viscosity operator leads to a more accurate FCT solution, which can be
seen very well in the density and pressure component.

If we have a look at the third component of the magnetic or velocity field,
we see that the regions of rotational discontinuities are strongly smeared. The
reason for that behaviour lies mainly in our limiting strategy. We only constrain
the density and the thermal pressure and therefore, in regions where those are
constant the antidiffusive fluxes are canceled and the values of the low-order
solution are adopted. If the low-order solution would resolve the rotational
discontinuities (e.g. by using a finer grid), the FCT solution would be less
smeared in those regions.

Table 1 presents the L1 error for the numerical solutions and the experimen-
tal order of convergence (EOC) defined by EOC = log2

(
‖u−u2h‖L1

‖u−uh‖L1

)
. It can be

seen that using the µ-scaled artificial viscosity operator yields higher accuracy
than the not-scaled operator. The EOC varies between 0.48 and 0.8 which are
reasonable orders for discontinuous solutions.

FCT FCT + µ
h L1 error EOC L1 error EOC

1/128 0.11655 - 0.0985344 -
1/256 0.0713027 0.71 0.0566824 0.80
1/512 0.0444526 0.68 0.0328456 0.79
1/1024 0.0293975 0.60 0.0213667 0.62
1/2048 0.018919 0.64 0.014432 0.57
1/4096 0.0131282 0.53 0.0103488 0.48

Table 1: L1 error for the Ryu-Jones problem
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(a) Density ρ (b) Thermal pressure p

(c) Density ρ (d) Thermal pressure p

(e) By (f) Bz

(g) By (h) Bz

Figure 2: Numerical solutions of the Ryu-Jones problem using the viscosity
operator (14) and its scaled version "+µ" (20) at Tend = 0.2 (h = 1

512 )

4.3. 2d - rotor problem
The first 2d problem is a variation of the well known rotor problem [4, 26].

The domain is a unit square (0, 1) × (0, 1) and we will use the following initial

13



(a) ux (b) uy (c) uz

(d) ux (e) uy (f) uz

Figure 3: Numerical solutions of the Ryu-Jones problem using the viscosity
operator (14) and its scaled version "+µ" (20) at Tend = 0.2 (h = 1

512 )

data

(uz, Bx, By, Bz, p) = (0.,
2.5√
4π
, 0, 0, 0.5) (60)

(ρ, ρux, ρuy) =


(1, 0, 0) if r > r1

(10, 100(0.5− y), 100(x− 0.5)) if r < r0

(1 + 9f, 100f(0.5− y), 100f(x− 0.5)) otherwise
,

(61)

where r =
√

(x− 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115, γ = 5
3 and f = r1−r

r1−r0 .
In Fig. 4 the density and the thermal pressure of the numerical solution using the
different divergence cleaning approaches from section 3 and the scaled version of
the artificial viscosity operator (20) are shown. The solutions look very similar
to those of the original rotor problem found in the literature, e.g. [4, 26]. For a
better evaluation we compared the FCT solutions with and without the shock
detector scaling (’+µ’) with the reference solution computed by Athena [25]
using a third order method on a grid with 400 cells. The direct comparisons at
x = y are shown in Fig. 5. We see that the solutions are smeared out at the
peaks but overall there is a good agreement with the profile. Comparing the
results of the two divergence cleaning approaches we only have minor differences.
The solutions obtained with the µ-scaled viscosity operator are a little bit more
accurate. For the potA strategy we obtain

∫
Ω
∇ · Bdx = 6.52 × 10−11 and∫

Ω
|∇ ·B| dx = 3.75 × 10−1 and for the RT strategy we obtain

∫
Ω
∇ · Bdx =

4.81 × 10−11,
∫

Ω
|∇ ·B| dx = 6.12 × 10−1 and

∫
Ω
∇ · BRT dx = 8.42 × 10−12,∫

Ω
|∇ ·BRT | dx = 1.27× 10−9.
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(a) Density ρ - RT (b) Density ρ - potA

(c) Thermal pressure p - RT (d) Thermal pressure p - potA

Figure 4: Numerical solutions of the rotor problem at Tend = 0.295 (h = 1
200 )

using different divergences cleaning approaches

4.4. 2d - Orszag-Tang vortex problem
We now consider the Orszag-Tang vortex problem [19] which is another

widely used test problem for MHD [26, 22]. The initial data is given by

(ρ, ux, uz, uz, Bx, By, Bz, p)

=

(
25

36π
,− sin(2πy), sin(2πx), 0,−B0 sin(2πy), B0 sin(4πx), 0,

5

12π

)
, (62)

where B0 = 1√
4π

and γ = 5
3 .

In Fig. 6 the numerical solutions for the density and the pressure are
shown. Comparing the RT and the potA approach we see that the RT so-
lutions are a little bit smoother than the potA solutions. As before we com-
pare our results with the reference solution computed by Athena [25] using a
third order method on a grid with 400 cells (see Fig. 7). The numerical so-
lutions differ from each other a bit but overall they exhibit the same profile.
The solutions obtained with the RT version and with the µ-scaled viscosity
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(a) Density ρ at x = y - RT (b) Density ρ at x = y - potA

(c) Thermal pressure p at x = y - RT (d) Thermal pressure p at x = y - potA

Figure 5: Comparison of the numerical solutions of the rotor problem at Tend =
0.295 (h = 1

200 ) using the viscosity operator (14) and its scaled version "+µ"
(20)

operator seem to be the most accurate ones. For the potA strategy we ob-
tain

∫
Ω
∇ · B dx = 2.18 × 10−17 and

∫
Ω
|∇ ·B| dx = 1.24 and for the RT

strategy we obtain
∫

Ω
∇ · Bdx = −1.11 × 10−17,

∫
Ω
|∇ ·B| dx = 1.12 and∫

Ω
∇ ·BRT dx = −1.25× 10−17,

∫
Ω
|∇ ·BRT | dx = 3.60× 10−2.

5. Conclusion

In this paper we extended the FCT scheme for the Euler equations to the
MHD equations. We presented a scaled artificial viscosity operator and showed
by numerical experiments that this scaling can lead to more accurate solutions
than without it. To obtain a divergence-free magnetic field in 2d we presented
two predictor-corrector strategies where the FCT solution is used as a predictor.
One strategy takes into account the magnetic potential which has to be updated
in each time step and the other defines the magnetic field in the Raviart-Thomas
FE space. Both strategies lead to similar results whereas the solutions of the
second strategy seems to be a bit more accurate. Also from an analytical point
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(a) Density ρ - RT (b) Density ρ - potA

(c) Thermal pressure p - RT (d) Thermal pressure p - potA

Figure 6: Numerical solutions of the Orszag-Tang vortex problem at Tend = 0.5
(h = 1

200 ) using different divergence cleaning approaches

of view the use of the Raviart-Thomas FE space is reasonable since it provides
a discrete version of H(div) which is the right space for the magnetic field. In
future work we will study how the limiting strategy of the FCT scheme can be
improved since it can resolve contact discontinuities and shocks very well but
smears out rotational discontinuities.
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