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Abstract. A set of stable �nite element spaces for the mixed formula-
tion of twobody contact problems on non matching meshes is presented.
The stabilisation of the mixed problem is achieved by balancing the
spaces with respect to the mesh size and the polynomial grade of the
�nite element functions. A numerical convergence study is done, which
con�rms the estimated convergence order.

1. Introduction

This paper presents a scheme to create stable discretizations for twobody
contact problems on non matching meshes. The use of non matching meshes
is of advantage in many applications where a matching contact boundary can
not be aquired. The idea is to use a mixed formulation where the contact
constraints are satis�ed only in a weak sense.The use of a mixed formulation
has another advantage. The Lagrange multiplier can directly be interpreted
as an approximation of the normal contact force, which for example in engi-
neering applications, is a quantity of interest. For the choice of the Lagrange
multiplier space di�erent approaches are available like the mortar discretiza-
tion, see [2],[8], or stabilization technics for example in [7]. The mortar
technic requires additional constraints on the boundary of the contact zone
and stabilization technics naturally lead to additional terms. The choice
of discrete spaces in this paper leads to a stable mixed problem with no
additional constraints. The idea is based on an extension of the approach
suggested in [6] for contact with a rigid obstacle. For the two dimensional
case with piecewise constant functions for the Lagrange multiplier the two-
body contact problem has also been studied in [10]. Here we will cover also
the three dimensional case and, following the ideas for one sided contact in
[11], we will show stability also for higher order spaces so that hp-methods
can be applied.
The paper is organized as follows: After introducing the necessary nota-
tion we state the problem. Next we explain the stability argument. Finally
several numerical examples are given to show the estimated order of conver-
gence.

2. problem setting

We refer to the contact problem between two linear elastic bodies. The
domains are given by Ωl ∈ Rd with l = 1, 2 and d = 2, 3. On the boundary
Γl = ∂Ωl subsets Γl

D,Γl
N ,Γl

C are given where Dirichlet or Neumann data are

applied. The possible contact area is given by Γl
C . These three subsets are

assumed to be disjoint and to have positive measures.
1
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The linearized strain operator is given by ε(ul) := 1
2

(
∇ul +∇(ul)T

)
, where

∇ul is the gradient of the displacement ul. The stress σ(ul) of linear elasticity
depends on Young's modulus of elasticity El and on the Poisson ratio νl.
Let nl(x) be the outer normal vector of x ∈ ∂Ωl. The displacement on the
boundary in normal direction is given by γn(ul), and σn(ul) = (nl)T σ(ul)nl

is the stress in normal direction on the boundary. We de�ne the tangential
contact stress by σt(ul) = σ(ul) · nl − σn(ul) · nl, see [9] for details.
The displacements are assumed to posess weak derivatives in (L2(Ωl))d and
thus are in the Sobolev spaces H1(Ωl) := (H1(Ωl))d.
The subspaces

H1
D(Ωl) =

{
v | v ∈ H1(Ωl), v |Γl

D
= 0

}
are used to apply homogeneous dirichlet boundaries and we set H1

D :=
H1

D(Ω1)×H1
D(Ω2).

Scalar products are written in the form (·, ·)2,Ωl := (·, ·)(L2(Ωl))d and (·, ·)1,Ωl :=
(·, ·)H1(Ωl) with the induced norms

‖v‖2
2,Ωl = (v, v)2,Ωl and ‖v‖2

1,Ωl = (v, v)1,Ωl .

The norm for H1
D is given through

|||u|||2 :=
∥∥u1

∥∥2

1,Ω1 +
∥∥u2

∥∥2

1,Ω2 ,

where u := (u1, u2).
Following the common notation we denote the trace space on Γl

C ⊂ ∂Ωl of

H1(Ωl) as H
1
2 (Γl

C) and dual by H− 1
2 (Γl

C), see [9].
We de�ne the norm for functions λ ∈ H1/2(ΓC) by:

||λ||1/2 = inf{‖u‖1,Ωl | u ∈ H1(Ωl) and γn(u) = λ}

and the norm of its dual space is given by

||µ||−1/2 = sup
v∈H1

D(Ωl)

< µ, γn(v) >− 1
2
, 1
2

||v||1,Ωi

,

where < ·, · >− 1
2
, 1
2
is the dual pairing between (H−1/2)(ΓC) and H1/2)(ΓC).

If the two domains are in contact in the reference con�guration then there
exists a common contact boundary ΓC with ΓC = Γ1

C ∩ Γ2
C and the contact

conditions can be directly applied on this part of the boundary: At the con-
tact interface the two bodies may come into contact but must not penetrate
each other which leads to the non-penetration condition

[u · n] (x) = u1(x) · n1(x) + u2(x) · n2(x) ≤ 0.

Note that for x ∈ ΓC there holds n1(x) = −n2(x).
If the two bodies are not in contact we assume a bijective mapping Φ : Γ1

C →
Γ2

C between the two possible contact surfaces to be given. Further we de�ne

nΦ =

{
Φ(x)−x
|Φ(x)−x| , if x 6= Φ(x)

n1(x) = −n2(x), if x = Φ(x)
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as the normal vector in the contact area. The non-penetration condition for
x ∈ Γ1

C then reads as:

[u · n]Φ (x) = u1(x) · nΦ(x)− u2(Φ(x)) · nΦ(x) ≤ g.

Here g de�nes the gap function and is given via Φ by:

Γ1
C 3 x → g(x) = |x− Φ(x)| ∈ R.

Under certain assumptions on Φ and on the geometry of the deformed con�g-
uration the above de�ned non-penetration condition is a close approximation
of the geometrical non-penetration condition, see [4]. We will call [u · n]Φ
the jump of the displacements.

Problem 2.1. The strong formulation of the problem is given by: Find u
with

−div σ(ul) = f l in Ωl

ul = 0 on Γl
D,

σ(ul)nl = pl on Γl
N ,

σt(ul) = 0
σnΦ(u1) = −Φ∗σnΦ(u2) ≤ 0

[u · n]Φ ≤ g on Γl
C

σnΦ(u) · ([u · n]Φ − g) = 0

In this paper we assume that the gap g = 0. That means we do not need
the mapping Φ and we have Γ1

C = Γ2
C . However we will de�ne the multiplier

on one domain only, the choice is of course arbitrary.
The strong problem can be formulated as a mixed variational problem where
the contact condition is satis�ed in a weak sense, see e.g. [6]. In the mixed
formulation the Lagrange multiplier can be interpreted as the normal force
in the contact area. Therefore we de�ne the bilinear form a(·, ·) as

(2.1) a(v, w) =
∑

k=1,2

∫
Ωl

σ(vl) : ε(wl) dx, v, w ∈ H1
D

The weak contact condition is now de�ned by:

(2.2) b(λ, u) =< λ, [u · n]Φ >− 1
2
, 1
2

.

With this notation the mixed formulation of problem 2.1 is given by

Problem 2.2. Find (u, λ) ∈ H1
D ×H

− 1
2

+ (ΓC) with

a(u, v) + b(λ, v) = (f, v) ∀v ∈ H1
D

b(µ− λ, u) ≤ < µ− λ, g >− 1
2
, 1
2

∀µ ∈ H
− 1

2
+ (ΓC)

The existence and uniqueness of this problem is given, see e.g. [6].
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3. discretization

As usual in mixed formulations the choice of the discrete spaces is critical.
They need to be balanced so that a discrete inf sup condition holds.
We assume a �nite element mesh T l

h consisting of rectangles in 2d and hex-

adrals in 3d with a meshwidth hl on each domain Ωl. On the contact bound-
ary a �nite element mesh TC,H consisting of lines or rectangles with a mesh-
width H is given.
Let Ψl

T : [−1, 1]d → T ∈ T l
h ,ΨC,TC

: [−1, 1]d−1 → TC ∈ TC,H be bijective and

su�ciently smooth transformations and let pl
T , pC,TC

∈ N be degree distri-

butions on T l
h and TC,H , respectively. Using the polynomial tensor product

space Sq
k of order q on the reference element [−1, 1]d, we de�ne

Sp
l (T l

h) := {v ∈ H1
D(Ωl) | ∀T ∈ T l

h : v|T ◦Ψl
T ∈ SpT

k }.

With this de�nition the space for the displacements in Ωl is given by:

(3.1) V pl
hl

:= {u ∈ H1(Ωl) | ui
|Th

∈ Sp
l (T l

h)}

And for the Lagrange multiplier we have :

(3.2) MpC
H := {ν ∈ L2(ΓC) | ∀TC ∈ TC,H : ν|T ◦ΨC,TC

∈ S
pC,TC
k−1 }

For q = 0 we use the space of piecewise constant discontinous function on
a trinagulation TH . The index H implies a possibly coarser triangulation
on the boundary for the Lagrange multiplier. We denote Vh as the product
space

Vh = V p1

h1
× V p2

h2
.

And set the space of the Lagrange multiplier as ΛH := MpC
H . We have the

following

Lemma 3.1. Let hl,H, pl, q be chosen such that

c :=
(

1− c1

2

(
max{1, q}r

p1

h1

H

)ε

+
c2

2

(
max{1, q}r

p2

h2

H

)ε)
> 0

independent of the meshwidth, then

c ||λH ||−1/2 ≤ sup
vh∈Vh

b(λH , vh)
|||vh|||

,

holds.

The proof follows the argument in [6] and [11] for the simpli�ed Signorini
problem and extends it for the unilateral contact problem. Here we assume
that the domains are in contact in the reference state, thus we do not need
the mapping Φ. We use an approximation result for higher-order �nite ele-
ment methods(3.3) and a result for an inverse inequality for negative norms
(3.4).

For every µ ∈ H−1/2(ΓC) we de�ne a Neumann problem:
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Problem 3.2. Find v̄ ∈ Hl
D with

(v̄, w)1 =< µ, γn(w) >− 1
2
, 1
2

∀w ∈ Hl
D,

For the solution v̄ of problem 3.2 then holds:

||µ||−1/2 = ||v̄||1,Ωl

We call problem 3.2 regular, if v̄ ∈ H1
D(Ωl) ∩H1+ε

D (Ωl) and

||v̄||1+ε,Ωi ≤ C||µ||− 1
2
+ε.

for all µ ∈ H−1/2+ε(ΓC)

Lemma 3.3. Let µ ∈ L2(ΓC) and uµ ∈ H1
D(Ωl) ∩H1+ε

D (Ωl) be the solution
of 3.2, then there exists a function uµ

I ∈ Sl
p(T l

h and a constant C > 0,
independent of uµ, h and p, such that

||uµ − uµ
I ||1,Ωl ≤ C

hε

pε
||uµ||1+ε,Ωl .

Proof: See[[1], Thm. 4.6].

Lemma 3.4. There exists a constant C > 0 which is independent of H and
pC , such that

(3.3) ||µH ||− 1
2
+ε,ΓC

≤ C
max{1, pC}2ε

Hε
||λH ||−1/2

for all µ ∈ MpC
H .

Proof. See [[5],Thm. 3.5, Thm. 3.9] and [12].

Now we regard again the Neumann solution v̄i of problem 3.2: For a given
λH on the domain Ωi and a �nite element solution v̄i

hi
∈ V pi

hi
of problem 3.2

holds:

||λH ||− 1
2

= ||v̄i||1,Ωi ≤ ||v̄i
hi
||1,Ωi + ||v̄i − v̄i

hi
||1,Ωi

In the next step we expand the �nite element solution v̄i
hi

of problem 3.2 to
the other domain in the following way

v̂i
h :=

{
v̄i
hi

(x) , x ∈ Ωi

0 , x ∈ Ωj \ ΓC , i 6= j

Obviously for v̂i
h

|||v̂i
h||| = ||v̄i

hi
||1,Ωi

holds.
Further we have:

Lemma 3.5. For v̄i
hl
∈ Vh

pl
l

holds:

||v̄i
hi
||1,Ωi ≤ sup

vh∈Vh

b(λH , vh)
|||vh|||

.
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Proof:

||v̄i
hi
||1,Ωi =

< λH , γi
n(v̄i

hi
) >− 1

2
, 1
2

||v̄i
hi
||1,Ωi

=
< λH , γi

n(v̄i
hi

) >− 1
2
, 1
2

+ < λH , γj
n(0) >− 1

2
, 1
2

|||v̂i
h|||

, i 6= j

=
b(λH , v̂i

h)
|||v̂i

h|||

≤ sup
vh∈Vh

b(λH , vh)
|||vh|||

Now we are able to state the proof of Lemma 3.1: For a given λH ∈ ΛH

and solutions v̄1 ∈ H1
D and v̄2 ∈ H2

D of the problem 3.2 we have:

||λH ||− 1
2

=
1
2
||v̄1||1,Ω1 +

1
2
||v̄2||1,Ω2

≤ 1
2
(||v̄1

h1
||1,Ω1 + ||v̄1 − v̄1

h1
||1,Ω1)

+
1
2
(||v̄2

h2
||1,Ω2 + ||v̄2 − v̄2

h2
||1,Ω2)

=
1
2
||v̄1

h1
||1,Ω1 +

1
2
||v̄2

h2
||1,Ω2 +

1
2
Σ2

i=1||v̄i − v̄i
hi
||1,Ωi

≤ sup
vh∈Vh

b(λH , vh)
|||vh|||

+
1
2

2∑
i=1

||v̄i − v̄i
hi
||1,Ωi using 3.5

≤ sup
vh∈Vh

b(λH , vh)
|||vh|||

+
1
2

2∑
i=1

ci
hε

i

pε
i

||v̄i||1+ε,Ωi using 3.3

≤ sup
vh∈Vh

b(λH , vh)
|||vh|||

+
1
2

2∑
i=1

ci

(
max{1, pC}r

pi

hi

H

)ε

||λH ||−1/2 using 3.4

�nally we combine all terms containing λH and gain(
1− c1

2

(
max{1,pC}r

p1

h1
H

)ε
− c2

2

(
max{1,pC}r

p2

h2
H

)ε)
||λH ||−1/2

≤ supvh∈Vh

b(λH ,vh)
|||vh|||

which proofs Lemma 3.1.
Remark: One drawback of this stability condition is, that it does not pro-
vide an indicator for which choice of spaces the discretization is stable. In
numerical tests though one can detect stable behaviour for the Lagrange
multiplier, as for unbalanced spaces the a checkerboard behaviour occurs.
For example a choice pl = 1, q = 0 and H u 2hl implies stable behaviour.
In contrast to the mortar discretization technic we cut the projection step.
This leads to a dependency on both discretizations, but equilibrating the
mesh size for both domains in the contact area is not complicated.
Of course the choice of a coarser mesh for the Lagrange multiplier is done
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by cl
1 · hl ≤ H ≤ cl

2 · hl with cl
1, c

l
2 independent of hl.

We conclude by citing a priori error estimates for the discretization:

Lemma 3.6. For the choice pl = 1, q = 0 ,cl
1 · hl ≤ H ≤ cl

2 · hl and

ul ∈
(
H2(Ωl

)d
, an a priori estimate of for (uh, λH) of order

|||u− uh|||V + ||λ− λH ||− 1
2
,ΓC

≤ c(u)h
3
4

can be established.

The proof can be found in [10].
Remark: By assuming a stronger regularity for the jump of the displace-
ments [u] on the boundary this estimate can be improved to O(h) follwing
the arguments in [3].

4. Numerical Examples

In our numerical examples we will make use of the stable set of spaces:
pl = 1, q = 0, with 2h = H and pl = 2, q = 1 with h = H, where h = hl

and Ωl being the domain on which the Lagrange multiplier is de�ned. As
mentioned before the stability relies on the discretization on both domains,
so we need also h1 = c · h2 with a constant c so that the problem remains
stable.
We should mention that the assumption on regularity made in [3] will usually
not be satis�ed in applications, so that optimal convergence order can not
be expected. However, we start the numerical investigation with a smooth
example to show that asymptotical optimal order can be estabplished. This
example is taken from [8] where it is used for the mortar discretization tech-
nic.
As a reference solution we use solution on a �ner mesh with href ≤ 1

4h.
example 1: In this example we consider the problem shown in �gure
(number). The two domains are given in their reference con�guration by
Ω1 = [0, 10] × [0, 10] and Ω2 = [0, 10] × [10, 20]. A Neumann force of
(104,−105) on the left and (−104,−105) on the right side of Ω1 is applied
and the lower boundary is clamped. On the upper boundary of Ω2 inhomo-
geneous Dirichlet data is given by (0,−5 · 10−4). The material parameters
are E = 15 · 108 and ν = 0.2 for Ω1 and E = 20 · 108 and ν = 0.4 for Ω2. In

(a) domains on level 1 (b) normal stress by λH on refer-
ence solution

Figure 4.1. problem setting / resulting contact stress
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picture 4.1 (a) the reference state is illustrated, on the right side the stress
�eld provided by the Lagrangemultiplier is shown. The displacement in y-
direction is given in picture 4.2 for the two domains. As the displacements
on domain 2 are bigger, the domains are shown separately.

(a) displacements in uy-direction
for domain 1

(b) displacements in uy-direction
for domain 2

Figure 4.2. resulting diplacements in uy-direction

Error in H1-seminorm and L2-norm for the p1,q0 discretization:
Degrees of energy conv L2 conv
Freedom

124 2.357103E-1 - 4.941582E-2 -
456 1.315057E-1 0.841889 1.680251E-2 1.556297
1744 7.049462E-2 0.899540 2.832984E-3 2.568282
6816 3.750949E-2 0.910257 7.355484E-4 1.945430
26944 1.973351E-2 0.926608 2.879982E-4 1.352761
107136 1.007051E-2 0.970511 6.448745E-5 2.158969

Error in H1-seminorm and L2-norm for the p2,q1 discretization:
Degrees of energy conv L2 conv
Freedom

352 7.212148E-2 - 5.322303E-3 -
1328 3.707915E-2 0.959821 1.457529E-3 1.868526
5152 1.960744E-2 0.919207 3.964319E-4 1.878379
20288 1.043609E-2 0.909819 1.319053E-4 1.587570
80512 5.383400E-3 0.954992 4.932157E-5 1.419212

The error of the Lagrangemultiplier measured in the L2-norm on ΓC can be
seen in picture 4.3.
We see that for this example our discretization yields an asymptotically op-
timal order for the displacements. As the error for the Lagrange multiplier
is estimated in the L2-norm here, we cannot expect an optimal behavior as

the suited norm would be the H− 1
2 -norm. The reference solution has 525312

degrees of freedom on domain one and 1181184 on domain 2.

Error of the Lagrange multiplier in L2-norm for the p1,q0 discretization:
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(a) error of displacements (b) error of λ in L2-norm

Figure 4.3. error in u and λ

Degrees of cellwise conv nodal conv
Freedom

2 1.0 - 9.984870E-1 -
4 7.983950E-1 0.324825 7.880209E-1 0.341510
8 4.507542E-1 0.824762 4.642795E-1 0.763240
16 3.083806E-1 0.547629 1.991357E-1 1.221242
32 1.823256E-1 0.758195 8.711818E-2 1.192706
64 9.204464E-2 0.986111 5.153962E-2 0.757292

Error of the Lagrange multiplier in L2-norm for the p2,q1 discretization:
Degrees of cellwise conv
Freedom

5 4.715783E-1 -
9 2.040376E-1 1.208662
17 7.882273E-2 1.372152
33 8.404037E-2 -0.092471
65 2.917438E-2 1.526381

For a second example we take a 3d-setting similiar to the �rst exam-
ple. The upper block (being domain 1) is clamped on it's upper boundary
and subjected to a Neumann force q := (0, 0, 106) − 106 · n at it's sides,
where n is the outer normal vector. The lower block (which is domain
2) is clamped on it's lower boundary. The blocks are overlapping in ref-
erence con�guration and de�ned by Ω1 := [0.3, 1.7] × [0.3, 1.7] × [2, 3.4]
and Ω2 := [0, 2] × [0, 2] × [0.003, 2.003]. The possible contact boundary
is given by the lower side of the upper block and the upper side of the
lower block. As we see, the boundaries of the possible contact zones do not
have to match to provide a stable discretization. For this example we use
the p = 1, q = 0, with 2h = H discretization which results in (tri-)linear ele-
ments for the displacements on domain one and two and piecewise constant
elements for the Lagrange multiplier. The multiplier is de�ned on the possi-
ble contact boundary of the upper block Again the material parameters are
E = 15 · 108 and ν = 0.2 for Ω1 and E = 20 · 108 and ν = 0.4 for Ω2. The
deformed domains are shown in �gure 4.4
For an analysis we use a reference solution on level 5 with 811200 degrees
of freedom on each domain and 1024 cells for the Lagrange multiplier, again
we see asymptotically optimal order (Though we only have three levels to
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(a) Displacement on level 3 (b) von Mises Stress on level 3

Figure 4.4. example 2 in deformed state

measure - the fourth level is only one re�nement away from the reference
solution, so this has to be handled with caution !).

Error of the displacements
Degrees of H1 conv L2 conv
Freedom norm norm

600 2.844037E-1 5.463880E-2
3888 1.517031E-1 0.9066897 1.334490E-2 2.0336369
27744 7.858908E-2 0.9488498 3.960204E-3 1.7526420
209088 3.632390E-2 1.1134098 8.240026E-4 2.2648542

Again we measure the error of the Lagrangemultiplier in the L2-norm of the
boundary. In the third column we use a nodal interpolation of the cellwise
constant multiplier, the resulting stress �elds are shown in picture 4.6.

Error of the Lagrange multiplier in the L2 norm
Degrees of constant conv nodal conv
Freedom

4 5.532055E-1 5.416035E-1
16 4.365887E-1 0.8877480 2.927135E-1 0.9066897
64 2.763904E-1 1.0074179 1.456061E-1 0.9488498
256 8.891592E-2 1.4293355 5.406383E-2 1.1134098

On level 1 the contact stresses are constant over the whole boundary. A good
resolution can be found for for �ner meshes. For completeness we mention
that the second example can also be discretized with quadratic elements. The
Lagrange multiplier is chosen as piecewise bilinear on the contact boundary.
The resulting stress �eld of such a computation can be seen in picture 4.5.
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(a) Level 1 cellwise (b) Level 1 nodal

(c) Level 2 cellwise (d) Level 2 nodal

(e) Level 3 cellwise (f) Level 3 nodal

(g) Level 4 cellwise (h) Level 4 nodal

(i) Level 5 cellwise (j) Level 5 nodal

Figure 4.6. contact stress �elds via λH


