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Abstract. Optimal control problems (OCP) containing both integrality and partial differential
equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach
is to first discretize the problem, resulting in huge nonlinear mixed-integer optimization problems
that can be solved to proven optimality only in very small dimensions. In this paper, we propose a
novel outer approximation approach to efficiently solve such OCPs in the case of certain semilinear
elliptic PDEs with static integer controls over arbitrary combinatorial structures. The basic idea is
to decompose the OCP into an integer linear programming (ILP) master problem and a subproblem
for calculating linear cutting planes. These cutting planes rely on the pointwise concavity of the
PDE solution operator in terms of the control variables, which we prove in the case of PDEs with a
non-decreasing convex nonlinear part. The decomposition allows to use standard solution techniques
for ILPs as well as for PDEs. We further benefit from reoptimization strategies due to the iterative
structure of the algorithm. Experimental results show that the new approach is capable of solving
the combinatorial OCP of a semilinear Poisson equation with up to 230 binary controls to global
optimality within a 5h time limit. Applied to the screened Poisson equation, problems with even
2200 binary controls are globally solvable.
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1. Introduction. Optimal control is the optimization of a system described by
partial or ordinary differential equations (PDEs/ODEs) over a control input. In a
broad range of applications, all or some of the control variables have to be consid-
ered discrete, e.g. motor- or gear-switches in automotive engineering [6, 24], state
transitions or feed locations in chemical engineering [2, 4] or – in case of PDEs –
placements of wind turbines in a wind park [35] or switches for valves or compressors
in gas or water networks [14, 16]. Consequently, the demand for efficient algorithms
to address optimal control problems with (partly) discrete controls, often referred to
as mixed-integer optimal control problems (MIOCP), mixed-integer dynamic opti-
mization (MIDO), or hybrid optimal control problems (HOCP), is very high. Most
approaches discussed in the literature consider applications where the discrete vari-
ables are dynamic, i.e. depend on time or space, while their number remains low and
no complicating combinatorial constraints are taken into account. As a typical ex-
ample, in the case of gear-switches, a single dynamic integer variable is considered.
In this paper, we address a different class of applications: we assume that the dis-
crete controls are static but many, and subject to combinatorial constraints that may
render the problem hard even in the absence of differential equations.

The most straightforward and widely used approach to address MIOCPs is to first-
discretize-then-optimize. The basic idea is to discretize the control and, if desired, the
state of the dynamic process in time or space, in order to approximate the MIOCP
by a finite-dimensional mixed-integer nonlinear programming problem (MINLP) and
then use standard techniques for solving the latter; see [5] for a recent survey on
algorithms for MINLP. Although specific MIOCPs have been successfully solved to
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(global) optimality by direct methods [17, 34, 2, 3, 13, 27], the discretization approach
often fails if applied to more general problem classes [32]. Other common methods
from optimal control theory, e.g. dynamic programming, have similar shortcomings [8].

As a consequence, various numerical methods have been developed to quickly
compute feasible, but suboptimal solutions. The most prominent heuristic is the
Sum-Up Rounding strategy [30]. It is capable of finding a feasible mixed-integer so-
lution constructed out of an integral-relaxed NLP solution, the latter being obtained
by a direct method, so that the relaxed and rounded state are arbitrarily close (de-
pending on the OCP discretization). Sum-Up Rounding can also be applied to time-
dependent controls in MIOCPs with PDE constraints [20]. As general combinatorial
constraints cannot be considered within the rounding scheme, the Combinatorial Inte-
gral Approximation (with a focus on restrictions on the number of switches) has been
proposed [31], where the relaxed control is tracked by an integer control. It leads to
a quickly solvable mixed-integer linear programming problem (MILP) and may serve
as a first upper bound for other MINLP solution methods. However, both Sum-Up
Rounding and Combinatorial Integral Approximation are designed to address time-
dependent discrete controls and cannot handle static controls. Thus, MIOCPs with
static controls and PDE constraints are usually handled differently in the literature:
either by concentrating on linear PDEs only [11] or by linearization [14, 16].

As pointed out above, mixed-integer optimal control with static discrete controls
and combinatorial as well as PDE constraints is an open field of research, especially if
it comes to global solvers. In this paper, we consider a problem with integer decisions u
that define a linear cost function c⊤u to be minimized, subject to combinatorial con-
straints u ∈ U . We further require the state y of a semilinear elliptic PDE (depending
on u) to reach a given reference state ymin. The problem can be written as

(COCP)











































min c⊤u

s.t. y(x) ≥ ymin(x) a.e. in Ω

Ay + g(y) =
∑ℓ

i=1 ui ψi in Ω
∂y
∂nA

+ b(y) =
∑n

j=ℓ+1 uj φj on ΓN

y = 0 on ΓD

and u ∈ U .

Herein Ω denotes a bounded domain Ω ⊂ R
d, d ∈ N, and ΓD and ΓN are disjoint parts

of its boundary such that ΓD ∪ ΓN = ∂Ω. Moreover, A is a linear, elliptic operator,
and ∂/∂nA denotes the co-normal derivative associated with A. In addition, g and b
denote Nemyzki operators associated with nonlinear functions. The functions ψi,
i = 1, . . . , ℓ, and φj , j = ℓ+1, . . . , n, are given and will be called form functions in all
what follows. Finally, U ⊆ Z

n is a bounded set of (discrete) admissible controls. The
precise assumptions on the data and quantities in (COCP) are formulated in Section 2,
where we also give an application example. Generally speaking, Problem (COCP)
can model applications in areas where the optimization of a static diffusion process
is desired, subject to a given minimum state. Our algorithmic approach employs
the special structure of (COCP), in particular the state constraints y ≥ ymin. In the
context of classical optimal control problems without integrality constraints, pointwise
state constraints of this form are known to cause severe difficulties from a theoretical
as well as a numerical point of view; see [9, 1, 21, 12, 25] and the references therein.
These difficulties are mainly caused by the poor regularity of the Lagrange multipliers
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associated with the state constraints, which are only Borel measures in general, see [10]
and [26, Section 6.2]. By contrast, in our setting we benefit from the pointwise state
constraints, as our algorithmic approach exploits the particular problem structure
induced by these constraints.

From the discrete point of view, (COCP) is a nonlinear combinatorial optimiza-
tion problem: the objective is to minimize a linear function over the combinatorial
variables u ∈ U , where the state variables y implicitly define an infinite number of
additional nonlinear constraints on the feasible set. Under the assumptions listed in
Section 2, in particular the convexity of the functions g(x, .) and b(x, .) for almost
all x, we are able to show that the latter constraints actually define a convex set, and
derive valid linear cutting planes in the discrete controls u; see Section 3. These cut-
ting planes form the basis of an outer approximation algorithm for Problem (COCP)
devised in Section 4. Due to the iterative structure of the algorithm, we apply reopti-
mization strategies to efficiently resolve the PDE for updated candidate solutions u;
see Section 5.

Finally, in Section 6 we perform extensive numerical experiments to demonstrate
the benefits of our algorithm and its dependence on the problem parameters. It turns
out that our new approach is capable of solving the combinatorial OCP of a semilinear
Poisson equation with up to 200 binary controls to global optimality within a 5h time
limit.

2. Standing Assumptions and Known Results. We start with the precise
assumptions on the data and quantities in (COCP). Throughout the paper Ω ⊂ R

d,
d ∈ N, denotes a bounded domain, i.e. bounded, open, and connected set, with regular
boundary Γ = ∂Ω. For the precise definition of a regular boundary we refer to [15,
Def. 1.17, Lem. 1.27]. Furthermore, ΓN and ΓD are disjoint parts of Γ such that
Γ = ΓD ∪ ΓN . We define the space V as the linear subset of H1(Ω) given by

V = {v ∈ H1(Ω) : v = 0 a.e. on ΓD}

equipped with the standard H1-norm. Furthermore, V ∗ denotes its dual space. The
operator A : V → V ∗ is given by the following linear elliptic differential operator of
second order

Ay = −
d

∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
y(x)

)

+

d
∑

i=1

βi(x)
∂

∂xi
y(x) + a0(x)y(x),

where aij , βk, a0 ∈ L∞(Ω), i, j, k = 1, . . . , d, are such that A is coercive on V , i.e., we
have

(2.1) 〈Av, v〉V ∗,V ≥ α ‖v‖2V ∀ v ∈ V

for some constant α > 0. To keep the discussion concise, we restrict ourselves to
coercive bilinear forms, satisfying (2.1). Depending on the particular structure of the
nonlinearities, this assumptions can be weakened, see Example 1 below. By ∂/∂nA
we denote the co-normal derivative associated with A, i.e.,

∂y

∂nA
=

n
∑

i,j=1

ni aij
∂y

∂xj
,

where n : Γ → R
d is the outward unit normal on Γ. Moreover, we require that the

nonlinear functions g : Ω×R → R and b : ΓN×R → R satisfy the following conditions:
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1. Both g and b satisfy the Carathéodory condition, i.e., g(., y) is measurable
for every fixed y ∈ R and g(x, .) is continuous for almost every x ∈ Ω, and
analogously for b.

2. Both g(x, .) and b(x, .) are non-decreasing for almost every x ∈ Ω and almost
every x ∈ ΓN , respectively.

3. The mappings g(x, .) and b(x, .) are differentiable for almost every x ∈ Ω and
almost every x ∈ ΓN , respectively. Their derivatives are denoted by g′(x, .)
and b′(x, .) and are assumed to satisfy the Carathéodory assumption as well.

The form functions ψ and φ satisfy ψi ∈ Lr(Ω) with r > d/2 for all i = 1, . . . , ℓ
and φj ∈ Ls(ΓN ) with s > d− 1 for all j = ℓ+ 1, . . . , n.

We are now in the position to introduce the notion of weak solutions to the PDE
appearing in (COCP). For this purpose let us define the space

Y := V ∩ L∞(Ω).

A function y ∈ Y is said to be a weak solution if it satisfies

(2.2)

〈Ay, v〉V ∗,V +

∫

Ω

g(x, y) v dx+

∫

ΓN

b(x, y) v ds

=
ℓ

∑

i=1

∫

Ω

ψi v dx ui +
n
∑

j=ℓ+1

∫

ΓN

φj v dx uj ∀ v ∈ V.

Proposition 2.1.

(i) For every u ∈ R
n there exists a unique weak solution y ∈ Y of (2.2). We

denote the associated solution operator by S : Rn → Y .
(ii) The operator S is continuously Fréchet differentiable from R

n to Y and its
derivative η = S′(u)h in direction h ∈ R

n is given by the solution of the
linearized PDE

(2.3)

〈Aη, v〉V ∗,V +

∫

Ω

g′(x, y)η v dx+

∫

ΓN

b′(x, y)η v ds

=

ℓ
∑

i=1

∫

Ω

ψi v dx hi +

n
∑

j=ℓ+1

∫

ΓN

φj v dx hj ∀ v ∈ V .

Proof. The proof is standard. Nevertheless we shortly recall the main arguments
for convenience of the reader.

(i) First one shows by means of the Browder-Minty-theorem that there is a unique
solution to the weak formulation provided that the nonlinearities g and b are trun-
cated. Then the well-known Stampacchia technique yields an L∞-estimate for the
solutions of the truncated problems, which is independent of the truncation thresh-
olds [23, Chapter II, Appendix B]. The positivity of the trace operator yields the
same L∞-bound for the trace; see [23, Prop. 5.2]. By setting the truncation thresh-
olds larger than the L∞-bound we find a solution of the original problem. Uniqueness
follows from coercivity of A. For details we refer to [33, Section 4.2].

(ii) Due to the monotonicity of g and b and the coercivity of A, the left hand
side of (2.3) defines a coercive and bounded bilinear form on V for every y ∈ L∞(Ω)
so that the Lax-Milgram lemma gives the unique existence of solutions to (2.3). The
boundedness of η and its trace again follows from the Stampacchia argument and
the positivity of the trace. Since the Nemyzkii operators associated with g and b
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are continuously Fréchet-differentiable in L∞(Ω) and L∞(ΓN ), respectively [18], the
implicit function theorem gives the result, see [29, Theorem 2.9]. For details we refer
to [33, Section 4.5].

Remark 1. Under mild additional assumptions on the problem data, in particular
the coefficient function aij and the domain, it can be shown that the state is even
continuous and the same holds true for the linearized state, i.e., the solution of (2.3),
see [19]. However, as the continuity of the state is not mandatory for our algorithmic
approach, we do not impose these additional assumptions. We point out that no
additional regularity assumptions on the form functions are needed for this continuity
result.

From the remaining quantities in (COCP) we require the following: the set U is
assumed to be bounded and given by an integer linear description

U = {u ∈ Z
n : Gu ≤ h}

with G ∈ R
m×n and h ∈ R

m, for some m ∈ N, while the vector c in the objective
function is an arbitrary vector in R

n. The reference state is supposed to satisfy
ymin ∈ L1(Ω), and we assume that the feasible set is non-empty, i.e., there is at least
one control vector u ∈ U such that S(u) ≥ ymin a.e. in Ω.

For the computation of global lower bounds we additionally require
Assumption 2.2. There exist numbers ya, yb ∈ [−∞,∞], ya ≤ yb, with

S(u)(x) ∈ [ya, yb] a.e. in Ω ∀u ∈ conv (U),

such that the functions g(x, .) : [ya, yb] → R and b(x, .) : [ya, yb] → R are convex for
almost all x ∈ Ω and almost all x ∈ ΓN , respectively.

While the above assumptions on g and b concerning their monotonicity and their
differentiability are quite standard for the discussion of semilinear elliptic PDEs in
the context of optimal control, Assumption 2.2 is fairly restrictive. Nevertheless,
the following example shows that there are application driven problems where this
assumption is satisfied.

Example 1. We consider the stationary heating of a metallic workpiece. If the
workpiece is assumed to be homogeneous and isotropic, the operator A is given by

A = −κ∆ = −κ
d

∑

i=1

∂2

∂x2i
,

where κ > 0 denotes the (constant) heat conductivity of the material. If the material
is heated up to higher temperatures, radiation has to be taken into account. This leads
to Boltzmann type radiation boundary conditions of the form

(2.4) κ∇y · n+ σ |y|dy = σ yd+1
0 ,

where σ > 0 denotes the Boltzmann radiation constant for the particular dimension d
and y0 > 0 is a fixed external temperature. The boundary condition (2.4) models
the radiation of an ideal black radiator, see [22] for details. Note that the coercivity
assumption in (2.1) is not satisfied in this example. However, this assumption is
only needed to ensure existence and uniqueness of solutions, which, in case of this
example, easily follows from the particular structure of the nonlinearity in (2.4) as
the derivative of ‖.‖d+2

Ld+2(Γ)
.
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If we assume that the workpiece is heated up by n ∈ N fixed volume sources
ψ1, . . . , ψn, generated for instance by induction heating, then the PDE in strong form
reads

−κ∆y =

n
∑

i=1

uiψi in Ω

κ∇y · n+ σ |y|dy = σ yd+1
0 on Γ.

Herein the discrete control variables u ∈ U := {0, 1}n model the switching of the heat
sources. By setting g ≡ 0, ΓD = ∅, ΓN = Γ, and b = σ(|y|dy−yd+1

0 ), this problem fits
into our general setting. If we focus on pure heating processes, then we may assume
that ψi(x) ≥ 0 a.e. in Ω for all i = 1, . . . , n. Consequently, the (weak) maximum
principle gives S(u)(x) ≥ 0 a.e. in Ω for all u ∈ U . By the positivity of the trace
operator, we obtain S(u)(x) ≥ 0 a.e. on Γ, and thus

b(S(u)(x)) = σ
(

[S(u)(x)]d+1 − yd+1
0

)

a.e. on Γ.

Thus Assumption 2.2 is satisfied in this example. If the vector c ∈ R
n in the objec-

tive function measures the cost of each source function ψi, e.g. in terms of energy
consumption, then every solution of (COCP) yields a most efficient way of switching
on the sources in order to pointwisely keep the temperature at a desired minimal tem-
perature ymin. This is of interest for the optimization of hardening processes of steel
workpieces, where it is essential to pointwisely reach the austenitic temperature.

3. Computation of Cutting Planes. In all what follows we denote by max(., 0)
the function R ∋ r 7→ max{r, 0} ∈ R, and the associated Nemyzkii operators in H1(Ω)
and L2(Γ), respectively, are denoted in the same way for the sake of convenience.

Lemma 3.1. For every v ∈ H1(Ω) we have τ max(v, 0) = max(τv, 0) a.e. on Γ,
where τ : H1(Ω) → L2(Γ) denotes the trace operator.

Proof. As Γ = ∂Ω is regular, the set C(Ω̄) := {ϕ|Ω : ϕ ∈ C∞
0 (Rd)} is dense in

H1(Ω) by [15, Lemma 1.30]. Thus v ∈ H1(Ω) can be approximated by a sequence
{vn} ⊂ C(Ω̄). Then the continuity of max(., 0) in H1(Ω) and L2(Γ), respectively, and
the one of the trace τ : H1(Ω) → L2(Γ) imply

τ max(v, 0) = τ max
(

lim
n→∞

vn, 0
)

= lim
n→∞

τ max(vn, 0)

= lim
n→∞

max(τvn, 0) = max(τv, 0),

where we used the continuity of vn up to the boundary Γ.

Lemma 3.2. Under our standing assumptions, in particular Assumption 2.2, the
mappings

conv (U) ∋ u 7→ S(u)(x) ∈ R and conv (U) ∋ u 7→
(

τS(u)
)

(x) ∈ R

are concave for almost every x ∈ Ω and almost every x ∈ ΓN .

Proof. The proof is similar to the one of the weak maximum principle. Consider
u1, u2 ∈ conv (U) and λ ∈ [0, 1]. Define yi ∈ Y , i = 1, 2, 3, by

y1 := S(u1), y2 := S(u2), y3 := S(λu1 + (1− λ)u2).
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If one subtracts the weak formulation for y3 from the sum of the ones for y1 and y2
scaled by λ and (1− λ), respectively, it follows that

(3.1)

〈Ay4, v〉V ∗,V +

∫

Ω

(

λg(x, y1) + (1− λ)g(x, y2)− g(x, y3)
)

v dx

+

∫

ΓN

(

λb(x, y1) + (1− λ)b(x, y2)− b(x, y3)
)

v ds = 0 ∀ v ∈ V,

where y4 := λy1 + (1 − λ)y2 − y3. Next we choose v = y+4 := max(y4, 0) as test
function, which is in V due to [23, Thm. A.1]. Let us define (up to sets of zero
measure)

Ω+ := {x ∈ Ω : y4(x) > 0} and Γ+ := {x ∈ ΓN : (τy4)(x) > 0}.

Then the convexity of g(x, .) by Assumption 2.2 implies for the second addend on the
left hand side of (3.1) that

(3.2)

∫

Ω

(

λg(x, y1) + (1− λ)g(x, y2)− g(x, y3)
)

y+4 dx

=

∫

Ω+

(

λg(x, y1) + (1− λ)g(x, y2)− g(x, y3)
)

y4dx

≥

∫

Ω+

(

g(x, λy1 + (1− λ)y2)− g(x, y3)
)

y4dx

≥

∫

Ω+

(

g(x, y3)− g(x, y3)
)

y4dx = 0,

where the second inequality follows from monotonicity of g(x, .) and since

λy1 + (1− λ)y2 > y3 a.e. in Ω+

by definition of Ω+. In view of Lemma 3.1, we can argue completely analogously in
case of the third addend in (3.1) to obtain

(3.3)

∫

ΓN

(

λb(x, y1) + (1− λ)b(x, y2)− b(x, y3)
)

y+4 ds ≥ 0.

All in all, thanks to ∇y+4 = χΩ+
∇y4, see [23, Thm. A.1], (3.1)–(3.3) yield

α ‖y+4 ‖
2
H1(Ω) ≤ 〈Ay+4 , y

+
4 〉V ∗,V

=

∫

Ω

[

d
∑

i=1

(

d
∑

j=1

aij
∂y+4
∂xj

∂y+4
∂xi

dx+ βi
∂y+4
∂xi

y+4

)

+ a0 (y
+
4 )

2
]

dx

=

∫

Ω

[

d
∑

i=1

(

d
∑

j=1

aij
∂y4
∂xj

∂y+4
∂xi

dx+ βi
∂y4
∂xi

y+4

)

+ a0 y4 y
+
4

]

dx

= 〈Ay4, y
+
4 〉V ∗,V ≤ 0,

and hence y+4 = max(y4, 0) = 0. The definition of y4 thus implies

λy1(x) + (1− λ)y2(x) ≤ y3(x) a.e. in Ω,
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which is the desired concavity of u 7→ S(u)(x). The result for the trace again follows
from the positivity of the trace operator.

Completely analogously one shows that u 7→ S(u)(x) and u 7→ (τS(u))(x) are
convex provided that g(x, .) and b(x, .) are concave.

Lemma 3.3. For every u ∈ conv (U) and every h ∈ R
n with u+ h ∈ conv (U) we

have

S(u+ h)(x) ≤ S(u)(x) + (S′(u)h)(x) a.e. in Ω.

Proof. The operator S is Fréchet-differentiable from R
n to L∞(Ω) →֒ Y by

Proposition 2.1(ii). For arbitrary u, h ∈ R
n we thus have

lim
t→0

S(u+ t h)(x)− S(u)(x)

t
= (S′(u)h)(x) f.a.a. x ∈ Ω.

Together with the pointwise concavity from Lemma 3.2, we obtain

S(u+ h)(x)− S(u)(x) ≤ lim
tց0

S(u+ t h)(x)− S(u)(x)

t
= (S′(u)h)(x)

for almost all x ∈ Ω.

Corollary 3.4. For all u ∈ conv (U) and almost all x ∈ Ω, the inequality

S(u)(x) + S′(u)(u− u)(x) ≥ ymin(x)

is valid for all feasible solutions of (COCP).

Note that the inequalities introduced in Corollary 3.4 are linear in the control
variables u. In the following section, we will use constraints of this type in order to
replace the (infinite) set of constraints y(x) ≥ ymin(x) within an outer approximation
scheme.

4. Outer Approximation Algorithm. Let

Ũ := {u ∈ U : S(u)(x) ≥ ymin(x) a.e. in Ω}

denote the feasible set of Problem (COCP), in terms of the control variables. Our
objective is to devise an algorithm for solving (COCP) to global optimality. Equiva-
lently, we aim at solving the problem

(COCP’)

{

min c⊤u

s.t. u ∈ Ũ .

The complexity of (COCP’) is now hidden in the definition of the set Ũ . The results of
the previous section allow us to define an outer approximation algorithm for (COCP’).
It is based on Corollary 3.4, which yields an efficient method to cut off any vector u ∈ U
violating some of the constraints

y∗(x) ≥ ymin(x)

by a cutting plane, i.e., by a linear constraint on U that is valid for Ũ .
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Outer Approximation Algorithm for (COCP)
1. Set U0 := U .

2. Minimize c⊤u over u ∈ U0, let u
∗ be the resulting optimizer.

3. Compute y∗ by solving

Ay + g(y) =
ℓ

∑

i=1

u∗i ψi in Ω

∂y

∂nA
+ b(y) =

n
∑

j=ℓ+1

u∗j φj on ΓN

y = 0 on ΓD .

4. If y∗ ≥ ymin a.e., return u∗ as optimal solution.

5. Choose some x∗ ∈ Ω with y∗(x∗) < ymin(x
∗) at random, add

y∗(x∗) + S′(u∗)(u− u∗)(x∗) ≥ ymin(x
∗)

as linear inequality in u to U0, and go to Step 2.

Theorem 4.1. The above algorithm terminates in finite time. With probability
one, it returns a globally optimal solution to Problem (COCP).

Proof. First note that in every iteration, the algorithm either cuts off a point
from U or terminates. Indeed, the left hand side of the constraint added in Step 5
agrees with S(u)(x∗) when u = u∗. The number of iterations is thus limited by |U|,
which is finite by the boundedness of U ⊆ Z

n. The correctness follows from the fact
that all added linear inequalities are valid for U0 with probability one, which was
shown in the previous section.

Remark 2. As indicated in Remark 1, the range of S and S′(u) is contained
in C(Ω) under mild assumptions on the data. The inequality in Corollary 3.4 then
holds for every x ∈ Ω rather than almost everywhere. In particular, our outer approx-
imation algorithm certainly returns a globally optimal solution in this case, not only
with probability one.

For Step 2 of the above algorithm, one can use any standard solver for integer
linear programs. Step 3 requires to solve a nonlinear PDE. We emphasize that the
PDE associated with the inequality constraint in Step 5 is linear. Thus, to evaluate
the right hand side, i.e., S′(u∗)u for a given control vector u, one solves n linear PDEs
of the form (2.3) corresponding to the n form functions and employs the superposition
principle to compute

S′(u∗)u =

ℓ
∑

i=1

ui S
′(u∗)φi +

n
∑

j=ℓ+1

uj S
′(u∗)ψj .

Therefore, we need to solve n linear PDEs to produce the cutting plane in Step 5.
In practice, the main challenge is to keep the number of outer iterations small.

For this, it is preferable to compute more than one cutting plane per iteration, e.g.,
by considering several points x ∈ Ω. The details of our implementation are discussed
in Section 6. Moreover, the iterative structure of the algorithm suggests to use reopti-
mization techniques, in particular for initializing the solution algorithm for the PDE
in Step 3. This is exploited in the following section.
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5. Reoptimization. Due to the iterative structure of our outer approximation
algorithm presented in the previous section, the semilinear elliptic PDE in (COCP)
has to be solved many times for different values of u. Due to this, it is crucial to
develop fast reoptimization techniques that can exploit the information collected in
prior iterations. More precisely, when solving the PDE, we propose to speed up the
Newton method by deriving an initial solution from either Taylor approximations or
interpolations of S(u) in the new control vector u. Both approaches are evaluated
experimentally in Section 6.

5.1. Taylor Approximation. The first approach is to approximate S(u) for a
new control vector u by using a first order Taylor approximation in one of the vectors u
considered in an earlier iteration, assuming that

(5.1) S(u)(x) ≈ S(u)(x) + (S′(u)(u− u))(x),

see Proposition 2.1(ii). Note that in our algorithm the derivatives S′(u)h are cal-
culated anyway for the construction of cutting planes as devised in Corollary 3.4,
using the linearized PDE in Proposition 2.1; we thus obtain the Taylor approxima-
tion for free. It can easily be shown that for linear functions g and b equality holds
in (5.1). More generally, this approach can be expected to work well whenever the
PDE in (COCP) is nearly linear.

5.2. Inter-/Extrapolation. The second approach uses inter- or extrapolation.
It aims at predicting the solution S(u)(x) for a new u, if enough sample points
(u(j), y(j)), j = 1, . . . , t, are available. The approach depends on the specific semilinear
elliptic PDE. We assume in the following that the inverse function g−1(x, .) : R → R

of g(x, .) exists and restrict ourselves to the special case of ΓN = ∅ for sake of sim-
plicity. The PDE can then be written as

g(x, y) =

ℓ
∑

i=1

ui ψi(x)− (Ay)(x) .

By neglecting the term Ay, we assume that S(u)(x) depends on u in the form

g(x, S(u)(x)) ≈ a(x)⊤u+ b(x)

for each fixed x ∈ Ω and some a(x) ∈ R
ℓ, b(x) ∈ R. Within an interpolation scheme,

one first calculates the coefficients a(x) and b(x) by solving a least squares problem
based on the equations

g(x, y(j)(x)) = a(x)⊤u(j) + b(x), j = 1, . . . , t .

The initial guess for the state y in u can then be chosen as

yinit(x) = g−1
(

a(x)⊤u+ b(x)
)

.

Note that this interpolation has to be performed for all x ∈ Ω.
This approach can be accelerated further for problems where the impact of the

control variables u on Ay is low. In this case, we simply set a(x)i = ψi(x) and
construct b(x) out of the previously calculated Ay, e.g.,

b(x) = meanj∈J

(

g(x, y(j)(x))−
ℓ

∑

i=1

u
(j)
i ψi(x)

)

.

The index set J can be chosen differently from {1, . . . , t}. For example, one may
consider only the solutions u(j) nearest to the new iterate u.
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6. Experimental Results. To evaluate the potential of our algorithm experi-
mentally, we implemented it in Matlab R2014a, using Cplex 12.5 as ILP solver
(toolbox function cplexbilp for binary controls and cplexmilp for integer controls).
Cplex is run in default settings except that the parallel mode is switched off. All com-
putations have been performed on a 64bit Linux system with an Intel Xeon E5-2640
CPU @ 2.5GHz. In all experiments, we set the time limit to 5 CPU hours.

Throughout our experiments we consider a square domain Ω = [0, 1]2 and par-
tition this domain into as many parts as we have binary optimization variables, i.e.
Ω = ∪n

i Pi with pairwise disjoint Pi, i = 1, . . . , n. The test problem is defined as
follows:

(6.1)











































min c⊤u

s.t. y ≥ 0.5χ[0.1,0.9]2 a.e. in Ω

−∆y +
1

2p
yp =

ℓ
∑

i=1

100ui χPi
in Ω

y = 0 on ∂Ω

and u ∈ U .

In particular, we do not consider any Neumann boundary conditions in our experi-
ments, so that ℓ = n.

Unless stated differently, we choose n = 25, p = 2, ci = 1 for i = 1, . . . , n,
and U = {0, 1}n. Note that the above problem satisfies the conditions of Section 2.
In particular, g(x, y) = 1

2py
p is non-decreasing and convex since (6.1) is defined so

that y ≥ 0 holds for all x ∈ Ω. The factor 1
2p and the other constants are chosen in

order to avoid trivial solutions where all switches are on (or all switches are off).
For the solution of the semilinear elliptic PDE we use a finite element method. To

be more precise, we employ a standard Galerkin scheme with continuous and piecewise
linear ansatz and test functions. For the computational mesh, we use a uniform
Friedrich-Keller-triangulation with 10201 vertices. The discrete system arising in this
way is is solved by Newton’s method, which terminates successfully if the residuum
is less than 10−6. The linear systems of equations are solved by direct solvers based
on sparse LU decompositions. The computational mesh is aligned with the above
mentioned partitioning defining the sets Pi, so that these sets are resolved exactly.
In our experiments we use the kmeans algorithm with as many clusters as discrete
controls n.

6.1. Choice of Reoptimization Strategy. As described in Section 5, the solu-
tion of the semilinear elliptic PDE can be speeded up by reoptimization. We compare
the Taylor approximation and the interpolation approach with two straightforward
heuristics. The resulting four strategies differ in the choice of the initial solution for
the Newton method:
PDE ZERO: Zero vector, i.e., y(x) = 0 ∀x ∈ Ω.
PDE LINEAR: Solution of a linear PDE obtained by neglecting the term g(x, y).
PDE TAYLOR: The first order Taylor approximation of S(u), calculated in the closest

point u to u that has been considered before; see Section 5.1.
PDE INTERP: Interpolation of S(u), taking into account only the five nearest solu-

tions u(j) of u; see Section 5.2.
Whenever an initialization as described above is not applicable, e.g. in the first iter-
ation, we choose the zero vector.
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We compare the four choices above for a fixed number of n = 25 binary controls.
As the nonlinearity of g, i.e. the exponent p in (6.1), has got the highest influence on
the performance of the reoptimization methods, we evaluate the cases p ∈ {1, 2, 3, 4}.
For each p, Problem (6.1) is solved, so that each iteration of our algorithm serves as
a test instance for the reoptimization heuristics. The results (number of iterations of
the Newton method and time) are shown in Table 1. The dependence of the Newton
method on the exponent p is highly visible. In particular, the number of iterations
grows with p in a similar order for all reoptimization strategies except PDE INTERP.
The latter method clearly dominates all others for p = 2, 3, 4, needing less iterations
and CPU time. For p = 1 it is known from theory that the Taylor approximation is
exact, which leads to zero further Newton iterations.

Based on these results, we choose the interpolation strategy of Section 5.2 through-
out the following experiments.

PDE ZERO PDE TAYLOR

p iter cpu time [s] iter cpu time [s]

1 1 / 1 / 1.0 0.25 / 0.26 / 0.26 0 / 0 / 0.0 0.06 / 0.08 / 0.07

2 17 / 20 / 19.1 3.19 / 3.72 / 3.43 9 / 19 / 13.8 1.64 / 3.35 / 2.49

3 26 / 32 / 29.5 4.97 / 6.28 / 5.69 16 / 27 / 22.3 3.10 / 5.33 / 4.34

4 34 / 44 / 39.7 7.09 / 9.71 / 8.33 22 / 38 / 30.8 4.56 / 7.82 / 6.43

PDE LINEAR PDE INTERP

p iter cpu time [s] iter cpu time [s]

1 1 / 1 / 1.0 0.26 / 0.26 / 0.26 1 / 1 / 1.0 0.26 / 0.28 / 0.27

2 16 / 19 / 18.1 2.92 / 3.42 / 3.23 3 / 7 / 5.4 0.61 / 1.35 / 1.02

3 25 / 31 / 28.5 4.77 / 5.99 / 5.52 3 / 8 / 6.5 0.67 / 1.70 / 1.34

4 33 / 43 / 38.7 6.85 / 9.06 / 8.14 3 / 10 / 7.5 0.72 / 2.22 / 1.63

Table 1

Comparison of different reoptimization heuristics for the solution of the semilinear elliptic PDE
for four different exponents p. Entries are split up into minimum, maximum, and mean. For the
minimum and mean the first trivial solution with zero iterations is neglected.

6.2. Choice of Cutting Planes. The inequalities of Corollary 3.4, which form
the basis of our outer approximation algorithm, are valid for almost all x ∈ Ω. This
allows to add, for any infeasible u ∈ U , as many cutting planes as there are vertices x∗i
of the finite element discretization that violate y(x∗i ) ≥ ymin(x

∗
i ). We noticed, however,

that nearby points often lead to inequalities cutting off the same vectors from U , and
thus have a negative influence on the efficiency of the overall algorithm since the
solution of the ILPs is slowed down. Therefore we choose some minimal distance r
and enumerate all points x∗i in descending order according to the violation of the
constraint y(x∗i ) ≥ ymin(x

∗
i ), adding the corresponding cutting plane if and only if

no point closer than r to x∗i has been used before to produce a cutting plane. In
particular, we obtain a set J ⊆ {i : y∗(x∗i ) < ymin(x

∗
i )} such that

∥

∥x∗i − x∗j
∥

∥

2
≥ r i, j ∈ J, i 6= j .

The influence of the choice of r on the performance of our algorithm is shown in
Figure 1 and Figure 2, for p = 2 and p = 3, respectively. As expected, the difficulty
of solving the ILPs decreases with growing r, as the number of constraints becomes
smaller, whereas the number of iterations (and hence the total time needed to solve the
PDEs) increases, as less vectors from U are cut off in one iteration. When combining
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Fig. 1. Comparison of different radii r for the choice of cutting planes with p = 2.
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Fig. 2. Comparison of different radii r for the choice of cutting planes with p = 3.

these two effects in terms of the overall CPU time, it turns out in our experiments that
the minimum is attained at r ≈ 0.04. Although it may not be the optimal choice for
arbitrary parameters, we choose r = 0.04 in the following for sake of comparability.

6.3. Example 1: Uniform Costs and Binary Controls. We first investigate
the case of uniform costs and binary variables, i.e. we keep ci = 1 for all i = 1, . . . , n
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0 20 40 60 80 100 120 140
0

0.5

1

iteration

n
o
d
e
s

p = 3, N = 50

p = 4, N = 30

Fig. 3. ILP nodes needed in each major iteration for the solution of (6.1) with p = 3, n = 50
and p = 4, n = 30. The number of nodes is scaled by the maximum number of nodes.

and U = {0, 1}n. In other words, sources can be switched on or off and we minimize
the number of sources we need to switch on in order to reach the pointwise minimum
temperature. In our experiments, we vary the number of discrete controls n as well
as the exponent p, in order to illustrate the influence of both the problem size and
the nonlinearity. The results are listed in Table 2, where we report the number of
major iterations of the outer approximation algorithm, the number of added cutting
planes, the number of nodes and the CPU time required by the ILP solver, as well as
the number of iterations and the CPU time required by the PDE solver; all figures
are summed up over the major iterations. The last column states the total running
time in order to solve the instance to global optimality.

We are able to solve the problem with up to 230 (p = 1), 110 (p = 2), 50 (p = 3)
and 30 (p = 4) binary controls. For growing n (and fixed p), the computation times
of the ILP solves, the PDE solves and thus of the overall process increase. While the
computation time for solving the PDE is dominant for small problems, the time for
solving the ILPs becomes dominant for larger problems. In fact, while the size of the
discretized PDE does not depend on n, the ILP solution time can be expected to grow
exponentially in n for reasons of complexity. Furthermore, the nonlinearity of the PDE
– varied through the exponent p – has a significant influence on the number of Newton
iterations, as already known from Section 6.1, but also on the number of nodes within
the ILP solves and major iterations of the outer approximation algorithm. Both
increase with the exponent p. This leads to the conclusion that the cutting planes’
quality is reduced for stronger nonlinearities.

When investigating the solution process over the major iterations of the outer
approximation, it can be noticed that the number of nodes and computation time
required of the ILP solver is not equally distributed. In fact, for most of the problems,
the most difficult ILPs are those in the middle of the process, while the ILPs in the
beginning and in the end are relatively easy to solve. This behavior is plotted in
Figure 3 for p = 3, n = 50 and p = 4, n = 30. A possible explanation is the following:
while in the beginning the growing number of cutting planes makes the problem harder
to solve, the smaller number of remaining feasible solutions leads to a faster solution
of the ILPs towards the end.

6.4. Example 2: Randomly Distributed Costs and Binary Controls. In
addition to Example 1, we consider a problem with randomly distributed costs c.
Therefore, in every problem instance, each ci, i = 1, . . . , n, is chosen independently
in the interval (0, 1) using a uniformly distributed random number generator. The
results are shown in Table 3 for different p and increasing n, starting at the largest
possible n of Table 2.

It turns out that with randomly distributed costs problem (6.1) can be solved
much more efficiently than with uniform costs, resulting in less computation time for
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ILP solve PDE solve

p n obj iter #cuts nodes time [s] iter time [s] time [s]

1 10 10.00 2 323 0 0.07 0 0.09 1.20

30 23.00 4 332 0 0.14 3 0.86 6.56

50 26.00 3 325 0 0.07 2 0.56 6.57

70 31.00 6 357 636 0.28 5 1.27 20.12

90 31.00 8 360 6809 0.98 7 1.79 37.09

110 30.00 7 356 5929 1.16 6 2.11 41.84

130 32.00 11 381 11079 2.65 10 2.92 79.85

150 34.00 12 374 59658 6.90 11 2.91 97.26

170 34.00 8 362 38561 5.29 7 1.79 71.05

190 36.00 14 400 134121 17.43 13 3.36 151.25

210 38.00 21 414 1205120 125.40 20 5.17 356.43

230 39.00 17 434 4895172 643.05 16 4.10 844.04

250 - - - - - - - > 5h

2 10 10.00 9 1214 19 0.34 42 8.06 13.30

20 20.00 15 2113 119 0.68 74 15.03 32.11

30 26.00 19 2446 481 1.57 93 18.53 49.71

40 24.00 25 3250 1919 7.40 129 30.54 96.41

50 27.00 28 3624 3296 13.03 151 30.49 116.41

60 33.00 36 5048 15599 49.18 195 38.78 197.11

70 43.00 39 4955 31156 74.94 216 42.47 251.47

80 47.00 55 6870 136625 313.88 295 57.59 592.31

90 43.00 52 6637 422640 756.62 281 54.00 1045.21

100 41.00 62 7867 2916648 6708.09 338 64.84 7084.63

110 40.00 64 8206 4424287 12230.87 358 69.06 12658.52

120 - - - - - - - > 5h

3 10 10.00 12 1702 35 0.45 59 13.06 20.36

20 20.00 29 5142 447 3.45 195 42.53 79.82

30 23.00 54 9588 5163 49.69 358 78.74 221.28

40 23.00 85 14696 59028 359.29 567 121.18 669.36

50 26.00 124 20198 376184 2016.61 818 172.36 2521.54

60 - - - - - - - > 5h

4 10 10.00 24 3979 153 1.28 132 29.79 46.00

20 20.00 49 8439 862 8.35 356 78.30 143.63

30 18.00 128 20777 89147 546.52 998 218.24 975.05

40 - - - - - - - > 5h

Table 2

Results for different numbers n of binary controls and different exponents p. The number of
added cuts (#cuts), the number of B&B nodes and the time for ILP solution, as well as the number
of iterations and the time for the PDE solution are summed up over the major iterations. All times
are CPU times in seconds.

the same number of binary controls n, e.g., 65.03s instead of 844.04s (p = 1, n = 230)
or 334.04s instead of 975.05s (p = 4, n = 30). On the one hand – which is the main
factor here – the ILPs can be solved more efficiently. In fact, in discrete optimization,
uniform objective functions often lead to harder problems in practice as they admit
more feasible solutions with similar or equal objective function values. On the other
hand, the outer approximation algorithm needs less major iterations compared to the
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ILP solve PDE solve

p n obj iter #cuts nodes time [s] iter time [s] time [s]

1 230 12.97 6 355 3504 1.10 5 1.33 65.03

300 10.36 5 361 2187 0.93 4 1.09 65.78

400 12.17 8 381 19111 6.07 7 1.83 153.48

500 11.69 9 396 26921 8.59 8 2.09 216.31

600 11.48 9 373 8771 6.16 8 2.08 257.13

700 10.99 7 388 227584 57.32 6 1.53 267.01

800 9.06 5 375 27855 8.77 4 1.05 174.01

900 10.22 10 403 1209536 362.98 9 2.30 787.69

1000 10.47 10 423 3806043 1261.92 9 2.33 1727.43

1100 8.98 8 421 816158 278.18 7 1.80 664.26

1200 8.39 7 399 297526 86.89 6 1.55 467.00

1300 10.37 9 425 1480619 617.35 8 2.06 1159.90

1400 9.41 11 437 2763061 1136.97 10 2.62 1870.41

1500 8.32 11 426 34749222 14125.29 10 2.58 14910.34

1600 8.93 10 425 22317320 9968.18 9 2.36 10718.31

1700 7.86 10 417 2637934 983.20 9 2.30 1755.28

1800 9.32 8 436 23222795 10947.27 7 1.85 11598.10

1900 - - - - - - - > 5h

2000 6.95 7 420 4901397 1836.15 6 1.49 2424.99

2100 - - - - - - - > 5h

2200 7.79 7 433 11392770 6348.67 6 1.55 7042.11

2300 - - - - - - - > 5h

2 110 16.30 35 4585 69439 199.54 184 36.16 427.60

160 15.38 51 4996 257748 1010.15 259 50.24 1470.00

170 14.30 52 6099 295986 1503.51 264 51.12 2002.70

180 14.73 72 5930 1084171 4769.91 347 66.88 5489.70

190 15.84 58 6371 907184 4077.83 299 57.60 4696.08

200 16.33 63 6699 3056593 13606.88 314 59.66 14295.82

210 14.43 55 6740 1059472 5063.15 286 53.13 5676.58

220 15.18 73 6449 4085796 16659.66 363 69.07 17521.25

230 15.85 60 5926 1101797 6104.15 307 59.80 6849.80

240 - - - - - - - > 5h

3 50 10.96 73 9183 10766 103.52 452 95.06 388.18

60 12.61 89 10978 132101 560.70 569 118.75 958.42

70 10.87 97 14534 541775 3540.78 618 127.82 4022.44

80 9.04 74 9035 82003 681.40 447 92.42 1075.49

90 - - - - - - - > 5h

4 30 7.08 84 9884 7267 63.06 583 130.16 334.04

40 6.45 133 15993 134260 915.58 937 208.77 1418.82

50 4.19 126 17825 45593 799.74 826 183.96 1312.61

60 - - - - - - - > 5h

Table 3

Results for different numbers n of binary controls and different exponents p with randomly
distributed costs c. The number of added cuts (#cuts), the number of B&B nodes and the time for
ILP solution, as well as the number of iterations and the time for the PDE solution are summed up
over the major iterations. All times are CPU times in seconds.
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ILP solve PDE solve

n umax obj iter #cuts nodes time [s] iter time [s] time [s]

20 1 20.00 6 1049 0 0.14 30 5.86 11.81

10 12.00 7 1470 20 0.20 22 4.53 11.97

100 11.40 7 1659 579 0.37 14 3.04 10.69

40 1 40.00 6 964 22 0.19 27 5.74 17.02

10 24.00 8 1466 144 0.29 27 5.55 21.55

100 22.80 8 1679 26259 9.38 18 3.93 29.74

60 1 54.00 7 1206 24 0.24 37 7.07 25.24

10 32.50 7 1491 314 0.38 28 5.54 24.80

100 30.86 8 1662 223196 78.02 26 5.32 105.41

80 1 52.00 6 1086 84 0.23 30 5.71 25.21

10 32.00 7 1429 72057 9.58 27 5.24 38.43

100 30.25 8 1731 7309074 3089.59 23 4.58 3121.86

100 1 68.00 7 1165 58 0.31 34 6.49 36.56

10 40.90 7 1430 300436 50.29 26 5.03 85.25

100 - - - - - - - > 5h

Table 4

Results for different numbers n of integer controls for p = 2. The number of added cuts (#cuts),
the number of B&B nodes and the time for ILP solution, as well as the number of iterations and
the time for the PDE solution are summed up over the major iterations. All times are CPU times
in seconds.

uniform case, e.g., 35 instead of 64 (for p = 2 and n = 110) or 84 instead of 128
(for p = 4 and n = 30). In summary, we are able to solve problems with up to 2200
(p = 1), 230 (p = 2), 80 (p = 3) and 50 (p = 4) binary controls in this example.

6.5. Example 3: Uniform Costs and Integer Controls. In the next ex-
ample, we apply our algorithm to an optimal control problem with integer controls.
Therefore, we set U = {0, . . . , umax} with umax ∈ N. In order to avoid trivial solutions,
the PDE in (6.1) is altered to

(6.2)

y ≥ 15.0χ[0.1,0.9]2 a.e. in Ω

−∆y +
1

2p
yp =

100

umax

ℓ
∑

i=1

ui χPi
in Ω

y = 0 on ∂Ω.























Moreover, the objective function is scaled by u−1
max for sake of comparibility.

Table 4 lists the results for n ∈ {20, 40, 60, 80, 100} and umax ∈ {1, 10, 100},
where umax = 1 is the binary case for comparison. Apart from the case n = 100
for umax = 100 all instances could be solved within the 5h CPU time limit. When
comparing the results for different umax, it becomes clear that the increase of the
integer domain has low influence on the outer approximation algorithm (increase
of approximately 2 iterations), but high influence on the ILP solves, which lead to
unsuccessful terminations in the above mentioned case. However, the expansion of the
discrete set U through enlarging the integer domain instead of an increase of variables
is less computationally demanding, e.g. compare the case p = 2, n = 60 in Table 2 (36
iterations, 197.11s) with the case n = 20, umax = 10 in Table 4 (7 iterations, 11.97s).
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6.6. Example 4: Stationary Heating of a Metallic Workpiece. We finally
show some results for the application mentioned in Section 2, i.e., the stationary
heating of a metallic workpiece. We solve the problem in two dimensions, which
requires to adapt the Boltzmann type radiation boundary condition to

κ∇y · n+ σ y3 = σ y30

with σ = 1.92·10−10. The workpiece is given as [0, 1]2 and the heat sources correspond
to 0.02 by 0.02 squares arranged on a k × k-grid regularly covering the workpiece,
each one equipped with a power of 2500W. We consider uniform costs again, thus
aiming at a minimal number of sources switched on. The surrounding temperature
is chosen as 293K. In Figure 4, optimal temperature distributions are depicted for
ymin ≡ 1000K, for the cases k = 5 (12 sources needed, 195 CPU seconds) and k = 15
(11/3501). Figure 5 shows optimal solutions for k = 15 with ymin ≡ 750K (5/1152)
and ymin ≡ 1250K (20/6767).
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Fig. 4. Optimal states for k = 5 (left) and k = 15 (right) with ymin ≡ 1000K.
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Fig. 5. Optimal states for k = 15 with ymin ≡ 750K (left) and ymin ≡ 1250K (right).

7. Conclusions and Future Directions. We have presented an outer approxi-
mation approach for solving a large class of semilinear elliptic optimal control problems
with static combinatorial controls, yielding globally optimal solutions in finitely many
iterations. The algorithm exploits the pointwise concavity of the solution operator in
terms of the control variables in order to generate valid linear cutting planes.

The basic idea of the algorithm can be easily extended to the case of mixed-
integer controls, since the resulting cutting planes remain valid in this case. However,
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in the presence of continuous control variables, we cannot expect finite convergence
anymore, and more care is needed in the selection of cutting planes. Another possible
extension is to replace the linear objective function by a quadratic or more general
nonlinear function in the control variables. This requires that a sufficiently fast solver
for the resulting class of (mixed-)integer nonlinear programs is at hand. Note that
convexity is not required here as long as the mixed-integer problem can be solved to
global optimality in practice.

As observed in our experiments, most of our algorithm’s running time is spent
for solving ILPs, particularly for larger instances. A significant speed-up can thus
be expected from a more sophisticated solution strategy for these ILPs, exploiting
the iterative structure of the algorithm again. For this, one could use general ideas
discussed for outer approximation algorithms such as branch-and-cut-based outer ap-
proximation [28, 7].

An open question is how to deal with pointwise upper bounds on the state instead
of pointwise lower bounds. In this case, the concavity of the solution operator cannot
easily be exploited for producing cutting planes, since the tangent inequalities do not
give rise to valid inequalities on the control variables anymore. A related question is
how to deal with tracking-type objective functions. This is left as future work.
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