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PRESSURE ROBUST FINITE ELEMENT DISCRETIZATIONS OF
THE NONLINEAR STOKES EQUATIONS

LARS DIENING, ADRIAN HIRN, CHRISTIAN KREUZER, AND PIETRO ZANOTTI

Abstract. We present first-order nonconforming Crouzeix-Raviart discretiza-
tions for the nonlinear generalized Stokes equations with (r, ε)-structure. Thereby
the velocity-errors are independent of the pressure-error; i.e., the method is
pressure robust. This improves suboptimal rates previously experienced for
non pressure robust methods.

1. Introduction

In this article, we study the finite element discretization of the nonlinear Stokes
equations in a bounded domain Ω ⊂ Rd, d ∈ {2, 3},

− divA(Du) +∇p = f and divu = 0 in Ω, u = 0 on ∂Ω.(1.1)

Here u denotes the velocity, p the kinematic pressure, and f an external body force.
The symbol Du stands either for the velocity gradient ∇u or for its symmetric
part Du = 1

2 (∇u + (∇u)T ). For given r > 1, ε ≥ 0 the nonlinear function A :

Rd×d → Rd×d is supposed to have (r, ε)-structure (or more generally ϕ-structure;
see Assumption 2.3). A prototypical example is

A(Du) =
(
ε2 + |Du|2

) r−2
2 Du .(1.2)

For ε = 0 the operator corresponds to the r-Laplacian, while for ε > 0 the opera-
tor regularizes the degeneracy of the r-Laplacian as the modulus of Du tends to
zero. Equations with (r, ε)–structure arise in various physical applications, such as
in the theory of plasticity, bimaterial problems in elastic-plastic mechanics, non-
Newtonian fluid mechanics, blood rheology and glaciology; see e.g. [38, 39, 25].

The finite element (FE) approximation of equations with (r, ε)-structure has been
widely studied, see e.g. [3, 15, 19, 4, 5, 9, 27]. According to [15, 9], it is relevant to
bound the error between u and the discrete velocity uh in the so-called natural- or
F -distance ‖F (Du)− F (Dv)‖2 where F is a nonlinear vector field adapted to the
problem’s (r, ε)-structure; see (2.12) for the precise definition. This error notion is
equivalent to the quasi-norm introduced by Barrett/Liu [3, 5].

For conforming exactly divergence-free discretizations Céa-type estimates

‖F (Du)− F (Duh)‖2 � inf
div vh=0

‖F (Du)− F (Dvh)‖2(1.3)

as for the elliptic r-Laplace problem [3, Theorem 2.1] can be obtained by straight
forward application of the elliptic techniques; see e.g. [15, Lemma 5.2]. We call a
method satisfying (1.3) quasi-optimal and pressure-robust : the velocity-error mea-
sured in the natural distance is proportional to the corresponding best error and
independent of the pressure. Such discretizations have recently received much at-
tention for linear Stokes-equations; compare with [22, 23, 42, 48]. In order to
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replace the global approximation problem on the right hand side of (1.3) by lo-
cal approximation problems, usually local Fortin operators are employed; compare
with [20, §54.1]. Such operators are typically not perfectly local in the sense that
the interpolated function on a mesh element K depends on the function values in
the neighbourhood ωK of K. This results in

‖F (Du)− F (Duh)‖22 �
∑
K

inf
QK∈Rd×d

‖F (Du)−QK‖22;ωK
.(1.4)

Corresponding results for the nonlinear Laplacian can be found in [15]. Note that
in the case of the linear Stokes problem, the neighbourhood ωK can be avoided
using techniques from [43] but for r �= 2, properties of the natural distance prevent
from a direct generalisation; compare with Remark 3.4. It is also noticeable that
all above a priori bounds are limited to first order at most. Here again, the reason
is the nonlinear structure of the natural distance, in particular, the use of Jensen’s
inequality while generalising stability properties to the natural distance.

For not exactly divergence-free discretizations, it was proved in [9] that

(1.5)

‖F (Du)− F (Duh)‖22 �
∑
K

inf
QK∈Rd×d

‖F (Du)−QK‖22;ωK

+ inf
qh∈Qh

∫
Ω

(
|p− qh|2 + |Du|2

) r′−2
2 |p− qh|2

with r′ the Hölder conjugate of r. This estimate substantially differs from (1.4) in
that it is not pressure robust, i.e., the velocity-error is interfered by the pressure;
compare with [28]. In particular, for r �= 2, this interference is of nonlinear na-
ture and may lead to suboptimal convergence rates even for regular solutions with
F (Du) ∈ W 1,2(Ω)d×d and p ∈ W 1,r′(Ω). Indeed, Belenki, Berselli, Diening and
Růžička [9] derived from (1.5) for the MINI element the the following error estimate
in terms of the mesh-size h

‖F (Du)− F (Duh)‖2 � hmin{1, r′2 } .(1.6)

Similar results are derived by [27] for a stabilized Q1/Q1-discretization. Comparing
(1.6) and (1.4), we conclude that for r > 2 the velocity-error estimate (1.6) is
suboptimal with respect to the approximation properties of the discrete space.
This is also confirmed by numerical studies in [9].

A similar reasoning (i.e. the pressure-error depends on the velocity-error) limits
the theoretical convergence of the pressure error in [9] to

‖p− ph‖r′ � hmin{ 2
r′ ,

r′
2 }.(1.7)

In this case, however, the numerical results in [9] show O(hmin{ 2
r′ ,1}) convergence,

indicating that the bound for the pressure error possibly is not sharp for r > 2.
In [30], Kaltenbach/Růžička obtain first order convergence for the velocity-error

of a local discontinuous Galerkin method. The results, however are ε-dependent in
the sense that the constants blow up fast as ε → 0. Moreover, they exploit addi-
tional regularity of f and the involved jump penalizations result in non-monotone
schemes, with possible non-unique solutions; cf. [29, §4].

In this paper we aim at achieving (1.4) without the above restrictions. To this
end, we follow a different approach and extend the quasi-optimal and pressure-
robust approach [47, 35, 34] of Kreuzer/Verfürth/Zanotti from linear to nonlinear
Stokes equations (1.1) with (r, ε)-structure. In particular, the methods have the fol-
lowing features: First, we propose two discretizations with nonconforming Crouzeix-
Raviart (CR) elements that are stabilization-free and therefore yield monotone nu-
merical schemes. As a consequence, the numerical solution is unique. Second, a
sophisticated smoothing operator acting on the test functions in the load term,
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allows to handle load-functions f ∈ W−1,r′(Ω) without requiring extra regularity
of the data. Third, this operator maps element-wise divergence-free functions onto
exactly divergence-free functions, so to ensure the pressure robustness. Note that
the pressure robust methods of Linke et al. [37, 36] focus only on the latter property
and are not considered here.

Based on these features, we prove a priori bounds of the form (1.4) (see The-
orems 3.3 and 4.8). It is remarkable that the results neither resort to additional
regularity of the data and are robust for the critical limit ε → 0 of the regularisation
parameter in (1.2).

As a consequence, we obtain for regular velocities F (Du) ∈ W 1,2(Ω)d×d full first
order convergence independent of the pressure

‖F (Du)− F (Dhuh)‖2 � ‖h∇F (Du)‖2 .(1.8)

As the pressure-error depends on the velocity-error, as a side effect, the improved
a priori bounds for the velocity also improve the bounds for the pressure-error. In
fact, if in addition p ∈ W 1,r′(Ω) then we obtain ‖p− ph‖r′ = O(hmin{ 2

r′ ,1}), which
corresponds to the rates observed in the numerical examples of [9] for the MINI
element using a different method.

The plan of the paper is as follows: In Section 2, we introduce the ϕ-structure
(a generalization of the (r, ε)-structure), the nonlinear problem (1.1) as well as the
finite element framework. Sections 3 and 4 each presents the a priori analysis for
the velocity-error of a pressure robust method based on Crouzeix-Raviart elements
for D = ∇ and D = D respectively. Section 5 concerns the improved bounds for
the pressure-error followed by some numerical experiments in Section 6.

2. Preliminaries

To begin with, we clarify our notation and we state important properties of
the nonlinear operator A and of the natural distance. Further, we introduce the
variational formulation of (1.1).

2.1. Basic notation and function spaces. Let R+ be the set of all positive
real numbers, and R+

0 := R+ ∪ {0}. The Euclidean scalar-product of two vectors
p, q ∈ Rd is denoted by p ·q and the Frobenius product of P , Q ∈ Rd×d is defined
by P : Q :=

∑d
i,j=1 PijQij . We set |p| := (p · p)1/2 and |Q| := (Q : Q)1/2.

For an open set ω ⊂ Rd, and r ∈ [1,∞], we denote by Lr(ω) the space of scalar
r-integrable functions on ω with corresponding norm ‖·‖r;ω. The space Lr

0(ω) is
the closed subspace of Lr(ω) of functions with vanishing mean value. We equip the
first order Sobolev space W 1,r(ω) with norm ‖ · ‖1,r;ω = (‖ · ‖rr;ω + ‖∇ · ‖rr;ω)1/r
and denote by W 1,r

0 (ω) its closed subspace of functions with vanishing trace on ∂Ω.
For r ∈ (1,∞) and 1

r + 1
r′ = 1, i.e. r′ = r

r−1 , we have that W 1,r
0 (ω) is a reflexive

Banach space with dual space W−1,r′(ω) =
(
W 1,r

0 (ω)
)∗ and for the dual pairing

between f ∈ W−1,r′(ω) and v ∈ W 1,r
0 (ω), we use the notation 〈f, v〉ω. We use the

convention W 0,r(ω) = W 0,r
0 (ω) = Lr(ω). Orlicz spaces Lϕ(ω) and Sobolev-Orlicz

spaces W 1,ϕ(ω) are introduced later in Section 2.3.
In case of ω = Ω, we usually omit the index Ω, e.g. we write ‖·‖r instead of

‖·‖r;Ω. Spaces of Rd-valued functions are denoted with boldface type, though no
distinction is made in the notation of norms and inner products; for instance, the

norm in W 1,r(Ω) = (W 1,r(Ω))d is given by ‖v‖1,r =
(∑

1≤i≤d ‖vi‖
r
1,r

)1/r
. Thanks

to Poincaré and Korn inequalities, an alternative norm on W 1,r
0 (Ω) is given by

‖D · ‖r if r ∈ (1,∞); compare e.g. with [16, Theorem 6.10].
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For a set ω ⊂ Rd with Hausdorff dimension d or d− 1, we denote by |ω| its d- or
(d− 1)-dimensional Hausdorff measure and for f ∈ Lr(ω), we use the abbreviation

〈f〉ω := −
∫
ω

f :=
1

|ω|

∫
ω

f

for its mean value in ω.
In order to simplify the notation, we shall often denote a � b when a ≤ cb for a

constant c > 0 only depending on fixed but maybe problem specific constants. For
a � b � a we shall also write a � b.

2.2. N-functions. A convenient abstract framework for problems with an (r, ε)-
structure like (1.2) is based on so-called N-functions, that are standard in the theory
of Orlicz spaces; cf. [40, 32]. A continuous, convex, and strictly monotone function
ψ : R+

0 → R+
0 is called an N-function if

ψ(0) = 0, lim
t→0

ψ(t)

t
= 0 and lim

t→∞
ψ(t)

t
= ∞.

Thanks to the convexity of ψ, there exists its right derivative ψ′, which is non-
decreasing and satisfies ψ′(0) = 0, ψ′(t) > 0 for t > 0 and limt→∞ ψ′(t) = ∞.

The conjugate of an N-function ψ is defined by

ψ∗(t) := sup
s≥0

(st− ψ(s)) for all t ≥ 0

and is again an N-function and we have (ψ∗)∗ = ψ. As an example: the conjugate
of ψ(t) = 1

r t
r is ψ∗(t) = 1

r′ t
r′ with 1

r + 1
r′ = 1.

For a quantitative numerical approach we require more regular N-functions. We
say that an N-function ψ is uniform convex, if additionally ψ ∈ W 2,1

loc ((0,∞)) (or
C1([0,∞)) and piecewise C2) and

1 < r− := inf
t>0

ψ′′(t) t

ψ′(t)
+ 1 ≤ sup

t>0

ψ′′(t) t

ψ′(t)
+ 1 =: r+ < ∞.(2.1)

We call r± the indices of uniform convexity of ψ. In the following we assume that
ψ is a uniformly convex N-function. Note that uniform convexity rules out almost
linear growth as well as exponential growth.

Let us recall the properties of uniformly convex N-functions from [13, Appen-
dix B]. If ψ is uniformly convex with indices r− and r+, then ψ∗ is uniformly
convex with indices (r+)′ and (r−)′ respectively. Furthermore, for all s, t ≥ 0 there
holds

min {sr− , sr+}ψ(t) ≤ ψ(st) ≤ max {sr− , sr+}ψ(t).(2.2)

As a consequence ψ and ψ∗ satisfy the so-called Δ2-condition with

ψ(2t) ≤ 2r
+

ψ(t) and ψ∗(2t) ≤ 2(r
−)′ψ∗(t), for all t ≥ 0.

By convexity, we have the quasi-triangle inequality

ψ(s+ t) ≤ 1
2ψ(2s) +

1
2ψ(2t) ≤ 2r

+−1 (ψ(s) + ψ(t)) ∀s, t ≥ 0.(2.3)

It follows also from (2.2) and st ≤ ψ(s) + ψ∗(t) that

st ≤ δ1−r+ψ(s) + δψ∗(t), for all s, t ≥ 0, δ ∈ (0, 1].(2.4)

Moreover, we have for all t ≥ 0 that

ψ(t) � tψ′(t) and ψ∗(ψ′(t)) � ψ(t)(2.5)

with constants depending solely on r±.
We next introduce the notion of shifted N-function first introduced in [18] and

further developed for example in [15, 17, 10, 33, 13]. Here, we use the version of
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[13, Appendix B], where also the self-contained proofs for the properties below can
be found.

For a given uniformly convex N-function ψ with indices of uniform convexity r±,
the family of shifted functions {ψa}a≥0 is defined by

ψa(t) :=

∫ t

0

ψ′
a(s) ds with ψ′

a(t) :=
ψ′(max {a, t})
max {a, t} t .(2.6)

In the original work [18], the maximum max {a, t} was replaced by a+ t. However,
though equivalent, the definition (2.6) has some technical advantages. We have
(ψa)

∗ = (ψ∗)ψ′(a) and the functions ψa are again uniformly convex and with indices
of uniform convexity min {r−, 2} and max {r+, 2}. Hence, ψa and (ψa)

∗ satisfy the
Δ2-condition with constants independent of a ≥ 0.

A first basic property states for all P ,Q ∈ Rd×d that

ψ|P |(|P −Q|) � ψ|Q|(|P −Q|) and ψ′
|P |(|P −Q|) � ψ′

|Q|(|P −Q|).(2.7)

Moreover, for t ≥ 0 and all P ,Q ∈ Rd×d we have∣∣ψ′
|P |(t)− ψ′

|Q|(t)
∣∣ � ψ′

|Q|
(∣∣|P | − |Q|

∣∣) ≤ ψ′
|Q|(|P −Q|),(2.8)

where the hidden constant depends only on r±. Based on this, for any δ ∈ (0, 1],
all t ≥ 0 and all P ,Q ∈ Rd×d there holds

ψ|P |(t) ≤ C δ1−r+ ψ|Q|(t) + δ|F (P )− F (Q)|2 ,(2.9a) (
ψ|P |

)∗
(t) ≤ C δ1−(r−)′ (ψ|Q|

)∗
(t) + δ|F (P )− F (Q)|2 ,(2.9b)

where C only depends on r±. These estimates are often called shift-change.
When D = D we shall need the following Korn inequality on bounded John

domains, which can e.g. be found in [16, Theorem 6.13]. The precise definition of
a John domain is not important in this context, just note that it applies to any
bounded Lipschitz domain.

Proposition 2.1 ([16, Theorem 6.13]). Let ψ be a uniformly convex N-function
with indices r±. Then for a bounded John domain ω ⊂ Rd and all w ∈ W 1,1(ω)
we have ∫

ω

ψ (|∇w − 〈∇w〉ω|) �
∫
ω

ψ (|Dw − 〈Dw〉ω|) .

The hidden constant only depends on the constants r± of uniform convexity of ψ
and the John constant of ω. Note that if w ∈ W 1,1

0 (ω), then 〈∇w〉ω = 0 and
〈Dw〉ω = 0.

2.3. Properties of the nonlinear operator. In this section we state our as-
sumptions on the nonlinear operator A from (1.1). To this end, let ϕ be a fixed
uniformly convex N-function with indices of uniform convexity r±. For simplicity,
we assume that ϕ ∈ C2((0,∞)) (although ϕ ∈ W 2,1

loc ((0,∞)) would suffice in what
follows).

For a bounded open set ω ⊂ Rd, we denote by Lϕ(ω) and W 1,ϕ(ω) the usual
Orlicz and Sobolev-Orlicz spaces; see [40]. In fact, v ∈ Lϕ(ω) if

∫
ω
ϕ(|v|) < ∞ and

v ∈ W 1,ϕ(ω) if in addition
∫
ω
ϕ(|∇v|) < ∞. The space Lϕ(ω) is a reflexive Banach

space equipped with the Luxembourg norm ‖v‖ϕ := inf{λ :
∫
ω
ϕ(|v|/λ) ≤ 1}. By

Lϕ
0 (ω) we denote the closed subspace of Lϕ(ω) of functions with integral zero.

The subspace W 1,ϕ
0 (ω) of Sobolev-Orlicz functions with zero boundary values is a

reflexive Banach space with norm ‖∇·‖ϕ and we denote its dual space by W−1,ϕ∗
(ω).

The most prominent example for ϕ is

ϕ(t) :=

∫ t

0

ϕ′(s) ds with ϕ′(t) := (ε+ t)r−2t(2.10)
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with 1 < r < ∞ and ε ≥ 0 and we say that ϕ has (r, ε)-structure. In this case, we
have Lϕ(ω) = Lr(ω) and W 1,ϕ(ω) = W 1,r(ω). If ε = 0, then r± = r and if ε > 0,
then r− = min {r, 2} and r+ = max {r, 2}. This follows from

ϕ′′(t) t

ϕ′(t)
+ 1 =

rt+ 2ε

t+ ε
.

In particular, the indices of uniform convexity of ϕ are bounded independently
of ε ≥ 0. As a consequence, all estimates that only depend on the indices of
uniform convexity are independent of ε ≥ 0.

Remark 2.2. Other examples of uniformly convex N-functions are
(1) ϕ(t) = tr1 + tr2 for 1 < r1 ≤ r2 < ∞.
(2) ϕ(t) = tr log(e+ t) for 1 < r < ∞.

Assumption 2.3 (Nonlinear operator). We assume that the nonlinear operator
A : Rd×d → Rd×d belongs to C0(Rd×d,Rd×d) ∩ C1(Rd×d \ {0},Rd×d) and satis-
fies A(0) = 0. Furthermore, we assume that A has ϕ-structure, i.e., there exist
constants C0, C1 > 0, such that1

d∑
i,j,k,l=1

∂klAij(Q)PijPkl ≥ C0ϕ
′′(|Q|)|P |2,(2.11a)

|∂klAij(Q)| ≤ C1ϕ
′′(|Q|)(2.11b)

holds for all P , Q ∈ Rd×d with Q �= 0 and all i, j, k, l ∈ {1, . . . , d}.

Remark 2.4. If ϕ is a uniformly convex N-function, then A : Rd×d → Rd×d

defined by

A(Q) = ϕ′(|Q|) Q

|Q|
has automatically ϕ-structure.

Remark 2.5. If ϕ has (r, ε)-structure, then

d∑
i,j,k,l=1

∂klAij(Q)PijPkl ≥ C̃0(ε+ |Q|)r−2|P |2, |∂klAij(Q)| ≤ C̃1(ε+ |Q|)r−2

and

ϕa(t) � (ε+ a+ t)
r−2

t2 as well as (ϕa)
∗ �

(
(ε+ a)r−1 + t

)r′−2
t2

uniformly in t, a ≥ 0 with constants only depending on r (but not on ε).

Several studies on the finite element analysis of the r-Laplace equation (e.g., [3, 4,
5, 15, 9]) indicate that, for quasi-optimal error bounds, a certain error measurement
adapted to the structure of ϕ is necessary. In order to introduce this so-called
natural distance, we define

F : Rd×d → Rd×d by F (Q) :=
√
ϕ′(|Q|)|Q| Q

|Q| .(2.12)

If ϕ has (r, ε)-structure, then F (Q) = (ε+ |Q|)
r−2
2 Q.

The functions A and F are closely related as depicted in following Lemma
from [18, 17] and [13, Appendix B].

1For functions g : Rd×d → R we use the notation ∂klg(Q) :=
∂g(Q)
∂Qkl

.
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Lemma 2.6. Let A satisfy Assumption 2.3 and let F be defined by (2.12). Then
for all P , Q ∈ Rd×d, we have(

A(P )−A(Q)
)
: (P −Q) �

(
ϕ|P |

)∗
(|A(P )−A(Q)|)

� |F (P )− F (Q)|2

� ϕ|P |(|P −Q|)

and

|A(P )−A(Q)| � ϕ′
|P |(|P −Q|),

where the hidden constants only depend on r±.

According to Lemma 2.6, for v, u ∈ W 1,ϕ(Ω), we have the equivalence∫
Ω

(A(Dv)−A(Du)) : (Dv −Du) � ‖F (Dv)− F (Du)‖22,

where the constants only depend on r±. We call the square root of the right-hand
side the natural distance or F -distance.

Remark 2.7 (Quasi-norm and natural distance). The natural distance is an impor-
tant concept in the regularity theory as well as the numerical analysis of nonlinear
PDEs. It was introduced under the name quasi-norm for (r, ε)-structure by Barrett
and Liu in the breakthrough paper [5]. In particular, they used the quantity

|w|2(r,v) :=
∫
Ω

(
ε+ |∇v|+ |∇w|

)r−2|∇w|2 , v, w ∈ W 1,r(Ω).

Indeed, in this case, we have for all P ,Q ∈ Rd×d that

ϕ|P |(|P −Q|) � (ε+ |P |+ |Q|)r−2|P −Q|2

which implies the equivalence to the natural distance, i.e.∫
Ω

(A(∇v)−A(∇u)) : (∇v −∇u) � ‖F (∇v)− F (∇u)‖22 � |v − u|2(r,v).(2.13)

For the quasi-norm error, Barrett and Liu proved quasi-optimality for conforming
finite element Galerkin approximation of the p-Laplace problem. This was extended
in [15] to more general problems with uniformly convex N-functions.

We conclude this section stating equivalences of different integral averages in the
natural distance.

Lemma 2.8 ([14, Lemma A.2]). Let ω ⊂ Rd be a bounded open set and let Q ∈
Lϕ(ω)d×d. Further we define 〈Q〉Aω := A−1(〈A(Q)〉ω). Then we have

−
∫
ω

|F (Q)− 〈F (Q)〉ω|2 � −
∫
ω

|F (Q)− F (〈Q〉Aω )|2 � −
∫
ω

|F (Q)− F (〈Q〉ω)|2

and the hidden constants only depend on r±.

2.4. Variational formulation of the nonlinear Stokes equations. Let ϕ be a
uniformly convex N-function with indices r± of uniform convexity and assume that
A has ϕ-struture. We define the velocity and pressure spaces by

W 1,ϕ
0 (Ω) and Lϕ∗

0 (Ω).(2.14)
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The variational formulation of (1.1) reads as: for f ∈ W−1,ϕ∗
(Ω) find u ∈ W 1,ϕ

0 (Ω)

and p ∈ Lϕ∗
0 (Ω) with

∀v ∈ W 1,ϕ
0 (Ω)

∫
Ω

A(Du) : Dv −
∫
Ω

p div v = 〈f ,v〉,(2.15a)

∀q ∈ Lϕ∗
0 (Ω)

∫
Ω

q divu = 0.(2.15b)

Equation (2.15b) shows that the velocity is actually in the space of divergence-free
vector fields

Z := {v ∈ W 1,ϕ
0 (Ω) | div v = 0} ⊂ W 1,ϕ

0 (Ω) .(2.16)

Consequently, u solves the reduced problem

∀v ∈ Z

∫
Ω

A(Du) : Dv = 〈f ,v〉.(2.17)

According to the strict monotonicity of A (cf. Lemma 2.6), existence and unique-
ness of u ∈ Z follows by standard monotone operator theory and Korn’s inequality
in Proposition 2.1. The inf-sup condition [9, Lemma 4.3] for Orlicz spaces reads

inf
q∈Lϕ∗

0 (Ω)

sup
v∈W 1,ϕ

0 (Ω)

∫
Ω
q div v

‖∇v‖ϕ‖q‖ϕ∗
=: β > 0,(2.18)

where β > 0 only depends on r± and Ω via its John constant. This inf-sup
condition guarantees the existence of a unique pressure p ∈ Lϕ∗

0 (Ω) such that
(u, p) ∈ W 1,ϕ

0 (Ω)× Lϕ∗
0 (Ω) solves (2.15).

2.5. Mesh and finite element spaces. At this point we introduce our notation
for the finite element spaces of the following sections. Let T be a shape regular, face-
to-face decomposition of Ω consisting of d-simplices K ∈ T such that Ω =

⋃
K∈T K.

The faces of the elements in T are denoted by F . The subset of faces in the interior
of Ω is denoted by Fi and its complement of boundary faces by F∂ . The skeleton
of T is Σ := ∪F∈FF .

For K ∈ T and F ∈ F we denote by hK respectively hF its diameter and we
introduce, with some ambiguity of notation, the mesh-size function h : Ω → R+ by

h|K := hK , in K ∈ T , and h|F := hF , on F ∈ F
and let hmax = ‖h‖L∞(Ω). Denoting by ρK , K ∈ T , the supremum of the diameters
of all balls inscribed in the respective K, the shape constant of T is given by

(2.19) max
K∈T

hK

ρK
< ∞.

We emphasise that, in the following, constants hidden in � or � may depend on
the shape constant of T but not on the mesh-size function.

Each face F ∈ Fi in the interior of Ω is oriented by a unit normal vector nF . We
indicate by �v�F and {{v}}F the jump respectively average of v on the face F ∈ Fi

in direction of nF . In particular, for K1,K2 ∈ T with F = K1 ∩K2 we define for
x ∈ F

�v�F (x) = v|K1
(x)− v|K2

(x) and {{v}}F (x) =
v|K1

(x) + v|K2
(x)

2
,

where nF points outside K1. Of course, the sign of �v�F depends on the orientation
of nF , which however is not relevant to our presentation. For boundary faces
F ∈ F∂ , nF is oriented outside Ω and �v�F equals the trace on F , i.e. for K ∈ T
with F = K ∩ ∂Ω we define �v�F (x) = v|K(x) for x ∈ F . We let n ∈ L∞(Σ) with
n|F = nF , F ∈ F .
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For a differential operator D, the notation Dh is used for the broken version of
D, i.e.

(Dhv)|K := D
(
v|K
)

in K, K ∈ T(2.20)

for piecewise smooth v. E.g., the broken gradient of a piecewise W 1,r-function v is
given by (∇hv)|K = ∇

(
v|K
)

for all K ∈ T . For an element K ∈ T we define the
set of neighbours NK and the neighbourhood ωK by

(2.21a) NK := {K ′ ∈ T | K ′ ∩K �= ∅}, ωK := interior

( ⋃
K′∈NK

K ′
)

.

The sets ωK are open, bounded and connected. The shape constant (2.19) of T
implies the following properties of T :

|ωK | � |K| � hd
K for all K ∈ T and #NK ≤ m0 for some m0 ∈ N.(2.21b)

For � ≥ 0 let P�(K) and P�(F ) be the set of polynomials of degree at most � on
a d-simplex K ∈ T and a face F ∈ F , respectively. For k ∈ N0, the space of
W k,1-conforming element-wise polynomials of order � ∈ N0 on T is defined by

Sk
� := Sk

� (T ) :=
{
v ∈ W k,1(Ω) | ∀K ∈ T v|K ∈ P�(K)

}
.(2.22)

The lowest-order Crouzeix-Raviart finite element is given as the subspace of
functions in S0

1 , for which the face mean values of jumps vanish, i.e.

CR := CR(T ) :=

{
v ∈ S0

1 | ∀F ∈ F
∫
F

�v� = 0

}
.(2.23)

Note that
∫
F

�v�F =
∫
F
v for boundary edges F ∈ F∂ . In other words, CR(T )

consists of all functions in S0
1(T ) that are continuous at the barycenters of interior

faces and vanish at the barycenters of boundary faces.
It is well known that broken Sobolev norms are definite on CR and they even

dominate jumps across edges. As we could find this statement only for Hilbert
norms, we provide a short proof in the required W 1,1 setting.

Lemma 2.9. Let v ∈ CR(T ) +W 1,1
0 (Ω), then for all F ∈ F we have

−
∫
F

h−1
F |�v�F | �

∑
K∈T
F⊂K

−
∫
K

|∇v| .

The hidden constant depends only on the shape constant of T .

Proof. Since v ∈ CR(T ) +W 1,1
0 (Ω), the face mean value 〈v〉 = −

∫
F
v takes the same

value on both sides of the face is therefore well defined. If F ⊂ ∂Ω, then 〈v〉F = 0.
We first consider interior faces F ∈ Fi, i.e. there exist K1,K2 ∈ T with F =

K1 ∩ K2. Then the embedding W 1,1(Ki) ↪→ L1(F ), i = 1, 2, and a Poincaré
inequality imply

−
∫
F

|�v�F | ≤
2∑

i=1

−
∫
F

|v|Ki
− 〈v〉F | ≤ 2

2∑
i=1

−
∫
F

|v|Ki
− 〈v〉Ki

| �
2∑

i=1

−
∫
Ki

|∇v|.(2.24)

The case F ⊂ ∂Ω is similar using 〈v〉F = 0. �
The Crouzeix-Raviart interpolation operator Icr : W 1,1(Ω) → CR is defined by∫

F

Icrv =

∫
F

v ∀F ∈ F i.

Element-wise integration by parts yields for all K ∈ T and v ∈ W 1,1(Ω)

∇h(Icrv)|K = −
∫
K

∇h(Icrv) = −
∫
K

∇hv(2.25)
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i.e., Icr preserves averages of first derivatives.
Using Jensen’s inequality and the fact that Dh(Icrv) is piecewise constant, we

conclude from (2.25) that for any N-function ψ we have∫
K

ψ(|Dh(Icrv)|) =
∫
K

ψ
(∣∣∣−∫

K

Dv(y) dy
∣∣∣) ≤

∫
K

ψ(|Dv|).(2.26)

Thanks to the definition of the Luxembourg norm, this readily implies ‖DhIcrv‖ψ ≤
‖Dv‖ψ, i.e. Icr is W 1,ψ-stable with constant one. Moreover, we even have that
Icrv is a quasi-optimal approximation of v in the natural distance.

Corollary 2.10. For any v ∈ W 1,ϕ
0 (Ω) and K ∈ T , we have

‖F (Dv)− F (DhIcrv)‖2;K � inf
QK∈Rd×d

‖F (Dv)−QK‖2;K .

The hidden constant depends only on r±.

Proof. Note that Dh(Icrv)|K = −
∫
K
Dv due to (2.25) and use Lemma 2.8. �

With some ambiguity of notation, we extend all the terms introduced above to
vector-valued functions by applying them component by component and possibly
adding them up, e.g. in the case of norms.

Following [11], we discretize (2.15) with nonconforming Crouzeix-Raviart func-
tions for the velocity and piecewise constant functions for the pressure

CR := (CR)d and Ŝ0
0 := S0

0(T ) ∩ Lϕ∗
0 (Ω).(2.27)

This pair is inf-sup stable. Indeed, the interpolant Icr is a bounded Fortin operator,
according to (2.25) and (2.26). This observation and (2.18) imply

inf
qh∈̂S0

0

sup
vh∈CR

∫
Ω
qh divh vh

‖∇hvh‖ϕ‖qh‖ϕ∗
≥ β > 0.(2.28)

2.6. Smoothing operator. Note that the Crouzeix-Raviart space is nonconform-
ing, i.e. CR �⊂ W 1,ϕ

0 (Ω) in view of the lack of global continuity and the violation
of the boundary conditions. Consequently the datum f ∈ W−1,ϕ∗

(Ω) in (2.15)
cannot be directly applied on test-functions from CR. Still, it is known from [44]
that an error estimate like (1.4), not involving extra regularity of u, can hold true
only for discretizations defined for all possible data f . Therefore, we resort to a
so-called smoothing operator E : CR → W 1,∞

0 (Ω) ⊂ W 1,ϕ
0 (Ω), which acts on the

test-functions, thus enabling the application of f .
We make use of the smoothing operator introduced in [47, §4.1] for the Stokes

equations (see also [34, §3]). The operator acts on vh ∈ CR as follows

Evh = Avh +Bvh +Cvh

where
• A : CR → (S1

1)
d is an averaging operator, enabling the stability estimates

(2.30) below;
• B maps vh to a combination of face bubbles, so as to enforce the identity∫

F

Evh =

∫
F

vh ∀F ∈ F(2.29a)

which implies∫
Ω

Qh : ∇hvh =

∫
Ω

Qh : ∇Evh ∀Qh ∈ (S0
0)

d×d,(2.29b)

in combination with element-wise integration by parts;
• C maps vh to a combination of element bubbles, so as to enforce the identity

divEvh = divhvh.(2.29c)
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We refer to [47, 34] for the details of the construction and the proof of (2.29).

Remark 2.11 (Pressure robustness). Owing to (2.29c), we readily infer

divhvh = 0 =⇒ divEvh = 0

i.e. E maps element-wise divergence-free functions to exactly divergence-free func-
tions. This property, originally pointed out in [37], guarantees the pressure robust-
ness of the discretizations proposed in the next sections, meaning that the discrete
velocity is independent of the discrete pressure. This property is necessary to make
sure that the velocity-error is independent of the pressure error, thus preventing
from sub-optimal error decay rates as in (1.6).

Lemma 2.12 (Stability of E). The operator E : CR → W 1,∞
0 (Ω) from [47, 34]

satisfies (2.29) and the local stability properties

‖∇Evh‖1;K � ‖∇hvh‖1;ωK
∀K ∈ T ,(2.30a)

‖Dh(wh +Evh)‖∞;K � −
∫
K

|Dh(wh +Evh)| ∀K ∈ T ,(2.30b)

‖Dh(vh −Evh)‖1;K �
∑
F∈F

F∩K �=∅

∫
F

|�vh�F | ∀K ∈ T ,(2.30c)

for wh,vh ∈ CR and D ∈ {∇,D}. The hidden constants depend only on the shape
constant of T .

Proof. Properties (2.29) are proved in [47, §4.1].
The bound (2.30c) is proved in [34, proposition 18] for L2-type norms and D = ∇.

Recalling that |D(vh − Evh)| ≤ |∇(vh − Evh)|, the claimed bound follows from
scaling.

Assertion (2.30a) follows from a triangle inequality

‖∇Evh‖1;K ≤ ‖∇(Evh − vh)‖1;K + ‖∇vh‖1;K
with (2.30c) and Lemma 2.9.

Since by the above indicated construction, E maps to an affine equivalent finite
element, therefore property (2.30b) follows from equivalence of norms on finite
dimensional spaces and standard scaling of affine equivalent elements. �

The local W 1,1-stability of E (2.30a) implies local W 1,ϕ-stability in the following
sense.

Lemma 2.13 (Local W 1,ψ-stability of E). Let ψ be a uniformly convex N-function.
Then E : CR → W 1,∞

0 (Ω) from [47, 34] satisfies

−
∫
K

ψ (|∇Evh|) � −
∫
ωK

ψ (|∇hvh|) ∀K ∈ T .(2.31)

The hidden constant only depends on the indices of uniform convexity of ψ and on
the shape constant of T .

Proof. Using (2.30b), the local W 1,1-stability (2.30a) of E together with (2.21) and
the Δ2-condition, we estimate for all K ∈ T and vh ∈ CR

−
∫
K

ψ (|∇Evh|) � −
∫
K

ψ

(
−
∫
K

|∇Evh|
)

� −
∫
K

ψ

(
−
∫
ωK

|∇hvh|
)

� −
∫
ωK

ψ (|∇hvh|) .

(2.32)

Here we have used Jensen’s inequality for convex functions in the last step. �
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Lemma 2.13 implies in particular, that E is W 1,ϕ-stable. This and the fact that
only finite many of the ωK , K ∈ T , overlap imply for all vh ∈ CR that∫

Ω

ϕ(|∇Evh|) �
∫
Ω

ϕ(|∇hvh|) resp. ‖∇Evh‖ϕ � ‖∇hvh‖ϕ.(2.33)

Finally, we observe that E is a right inverse of the Crouzeix-Raviart interpolation
operator as a consequence of (2.29a), cf. [45, Lemma 3.2].

Corollary 2.14. For all K ∈ T and vh ∈ CR(T ) we have

IcrEvh = vh and −
∫
K

∇Evh = −
∫
K

∇vh = ∇hvh|K ∀K ∈ T .

3. A pressure robust Crouzeix-Raviart method for D = ∇.

In this section we propose a pressure robust Crouzeix-Raviart method for the
nonlinear Stokes equation (1.1) for the case D = ∇. The method coincides with
the ones in [47, 34] for ϕ(t) = t2, i.e. for the linear Stokes equations.

Method 3.1. For f ∈ W−1,ϕ∗
(Ω) compute uh ∈ CR and ph ∈ Ŝ0

0 such that

∀vh ∈ CR

∫
Ω

A(∇huh) : ∇hvh −
∫
Ω

ph divh vh = 〈f ,Evh〉,

∀qh ∈ Ŝ0
0

∫
Ω

qh divh uh = 0.

Note that we do not require regularity beyond f ∈ W−1,ϕ∗
(Ω) from (2.15),

because Evh ∈ W 1,∞
0 (Ω). Similarly to the derivation of (2.17), we have that uh is

in the space of element-wise divergence-free functions

Zh := {vh ∈ CR | divh vh = 0} ⊂ CR ,(3.1)

and uniquely solves the reduced problem

∀vh ∈ Zh

∫
Ω

A(∇huh) : ∇hvh = 〈f ,Evh〉.(3.2)

In view of the stability (2.33) and the inf-sup-condition (2.28), the well-posedness
of Method 3.1 follows from standard monotone operator theory; cf. [9, 26].

Proposition 3.2 (Well-posedness). Method 3.1 determines a unique pair (uh, ph) ∈
CR×Ŝ0

0 depending continuously on the datum f ∈ W−1,ϕ∗
(Ω).

From the properties of E and the ϕ-structure of A we infer our first main result
addressing the approximation properties of Method 3.1.

Theorem 3.3 (Velocity-error). Let (u, p) ∈ W 1,ϕ
0 (Ω)× Lϕ∗

0 (Ω) be the solution to
(2.15) and let (uh, ph) ∈ CR×Ŝ0

0 be computed by Method 3.1. Then we have

‖F (∇u)− F (∇huh)‖22 �
∑
K∈T

inf
QK∈Rd×d

‖F (∇u)−QK‖22;ωK
.(3.3)

In particular, when F (∇u) ∈ W 1,2(Ω), we have

‖F (∇u)− F (∇huh)‖2 � ‖h∇F (∇u)‖2 .(3.4)

The hidden constants depend only on Ω, r±, and the shape constant of T .

Before we prove Theorem 3.3, some remarks are in order.
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Remark 3.4 (Quasi-optimality). Recall that, for conforming and divergence-free
discretizations, the velocity-error estimate (1.4) is derived from the quasi-optimality
stated in (1.3). Theorem 3.3 establishes a counterpart of (1.4) for Method 3.1, but
quasi-optimality in the sense of (1.3) is not guaranteed. The critical aspect is
the stability of the smoothing operator E, as Lemma 2.13 for ψ = ϕa, requires a
constant shift a ≥ 0 on element neighbourhoods. Enforcing this through a change
of the shift (2.9) introduces a suboptimal approximation term. For details consider
the bound of I2 in the proof of Theorem 3.3 below.

Remark 3.5 (Rate of convergence and regularity). We emphasize that two aspects
of the velocity-error estimate (3.4) improve upon the existing results in [9] for the
MINI element and in [26] for a stabilized Q1/Q1 discretization. First, the con-
vergence rate for the velocity is optimal, whereas for problems with (r, ε)-structure,
suboptimal rates are observed in [9, 26] both theoretically and in numerical sim-
ulations for r > 2, cf. (1.6). Second, no additional regularity of the pressure is
necessary beyond the minimal requirement p ∈ Lϕ∗

0 (Ω) from (2.15). Both improve-
ments are made possible by the pressure robustness observed in Remark 2.11.

An O(h) velocity-error estimate can be found in [30, Corollary 4.2] for a local
dG discretization, however, compared to (3.4) this result has several disadvantages.
First, the discrete solution is obtained via a pseudo-monotone scheme, which does
not guarantee uniqueness of the solution. Second, the constant hidden in O(h) is
not robust with respect to ε and is unbounded as ε → 0, and third, the additional
regularity f ∈ L2(Ω) is required. In contrast, Theorem 3.3 invokes only the minimal
regularity F (∇u) ∈ W 1,2(Ω)d×d that is necessary according to the approximation
theory.

The regularity for system (2.15) has not been fully developed. However, it is
expected that this kind of regularity is the natural one. Results for the special case
of (r, ε)-structure can be found in [8, 46, 7]. The case without pressure but for all
uniformly convex N-functions is considered in [6, Theorem 2.4].

Proof of Theorem 3.3. We abbreviate vh = Icru ∈ CR. We use Lemma 2.6 to
estimate the error by

‖F (∇u)− F (∇huh)‖22 �

∫
Ω

(A(∇huh)−A(∇u)) : (∇huh −∇u)

=

∫
Ω

(A(∇huh)−A(∇u)) : (∇hvh −∇u)︸ ︷︷ ︸
=:I1

+

∫
Ω

(A(∇huh)−A(∇u)) : (∇huh −∇hvh)︸ ︷︷ ︸
=:I2

.

We bound the first term with the Young-type inequality (2.4) and Lemma 2.6 by

I1 ≤
∫
Ω

δ
(
ϕ|∇u|

)∗
(|A(∇huh)−A(∇u)|) +

∫
Ω

Cδ ϕ|∇u| (|∇hvh −∇u|)

� δ ‖F (∇u)− F (∇huh)‖22 + Cδ‖F (∇u)− F (∇hvh)‖22.

For estimating the second term on the right-hand side, observe that the second
equation of Method 3.1 and (2.25) imply divh(uh − vh)|K = −−

∫
K
divu = 0 for all

K ∈ T . This and (2.29c) reveal divE(uh − vh) = 0. Hence, the first equation of
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Method 3.1 and (2.15) imply

I2 = 〈f ,E(uh − vh)〉 −
∫
Ω

A(∇u) : (∇huh −∇hvh)

=

∫
Ω

A(∇u) : (∇E(uh − vh)−∇h(uh − vh))

=

∫
Ω

(A(∇u)−A(∇hvh)) : (∇E(uh − vh)−∇h(uh − vh)) ,

where we have used (2.29b) together with A(∇hvh) ∈ (S0
0)

d×d in the last step.
By the Young-type inequality (2.4), the quasi-triangle inequality (2.3), and

Lemma 2.6, we conclude for δ > 0 that

I2 ≤ 2

∫
Ω

Cδ

(
ϕ|∇u|

)∗
(|A(∇u)−A(∇hvh)|)

+

∫
Ω

δ ϕ|∇u| (|∇h(uh −Euh)|) +
∫
Ω

δ ϕ|∇u| (|∇h(vh −Evh)|)

� Cδ‖F (∇u)− F (∇hvh)‖22
+

∫
Ω

δ ϕ|∇u| (|∇h(uh −Euh)|) +
∫
Ω

δ ϕ|∇u| (|∇h(vh −Evh)|) .

The first term on the right-hand side is already fine and the latter terms can be
treated in the same way. For QK ∈ Rd×d we first change the shift with (2.9) from
|∇u| to |QK | to obtain∫
K

ϕ|∇u| (|∇h(vh −Evh)|) �
∫
K

ϕ|QK | (|∇h(vh −Evh)|) +
∫
K

|F (∇u)− F (QK)|2.

Next, Lemma 2.12 and Lemma 2.9 yield that

‖∇h(vh −Evh)‖∞;K � −
∫
K

|∇h(vh −Evh)| =
∑
F∈F

F∩K �=∅

−
∫
F

h−1 |�vh − u�F |

�
∑
F∈F

F∩K �=∅

∑
K′∈T
F⊂K′

−
∫
K′

|∇h(vh − u)| � −
∫
ωK

|∇h(vh − u)| .

The last estimate follows from

ωK =
⋃

{K ′ ∈ T : F ⊂ K ′ for some F ∈ F with F ∩K �= ∅}

and the fact that every element K ′ ⊂ ωK appears in previous sum at least once and
at most (d+1)-times. Consequently, recalling |K| � |ωK |, we obtain with Jensen’s
inequality and a shift-change back to |∇u|, that∫

K

ϕ|∇u| (|∇h(vh −Evh)|)

�
∫
ωK

ϕ|QK | (|∇h(vh − u)|) +
∫
K

|F (∇u)− F (QK)|2

�
∫
ωK

ϕ|∇u| (|∇h(vh − u)|) +
∫
ωK

|F (∇u)− F (QK)|2

�

∫
ωK

|F (∇hvh)− F (∇u)|2 +
∫
ωK

|F (∇u)− F (QK)|2.

(3.5)
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Estimating the term
∫
K
ϕ|∇u| (|∇h(uh −Euh)|) in exactly the same way, and sum-

ming over all K ∈ T , we arrive at

I2 � Cδ‖F (∇u)− F (∇hvh)‖22
+ δ

∫
Ω

|F (∇hvh)− F (∇u)|2 + δ

∫
Ω

|F (∇huh)− F (∇u)|2

+ δ
∑
K∈T

inf
QK∈Rd×d

∫
ωK

ϕ|∇u| (|∇u−QK |)

since QK ∈ Rd×d was arbitrary and the sets ωK , K ∈ T , overlap only finitely often.
Using again Lemma 2.6, combining the previous estimates, we arrive at

‖F (∇u)− F (∇huh)‖22 � (Cδ + δ)‖F (∇u)− F (∇hvh)‖22
+ δ‖F (∇u)− F (∇huh)‖22
+ δ

∑
K∈T

inf
QK∈Rd×d

‖F (∇u)− F (QK)‖22;ωK
.

Choosing δ sufficiently small, the second term can be compensated on the left hand
side and the assertion follows from Corollary 2.10 recalling vh = Icru. �

Remark 3.6. Note that we also have (3.3) for the post-processed approximation
Euh instead of uh. Indeed, thanks to Lemma 2.6 and the quasi triangle inequal-
ity (2.3), we have

‖F (∇u)− F (∇Euh)‖22 � ‖F (∇u)− F (∇huh)‖22 +
∫
Ω

ϕ|∇u|(|∇huh −∇Euh|).

The claim follows estimating the former term on the right hand side by (3.3) and
the latter term as in the proof of Theorem 3.3; compare with (3.5).

4. A pressure robust Crouzeix-Raviart method for D = D

Recall the symmetric gradient Dv := 1
2 (∇v +∇vT ). According to [1], on some

choices of Ω and T , there exists 0 �= vh ∈ CR with Dhvh = 0, where Dh is the
element-wise symmetric gradient; compare with (2.20).

This observation means that we cannot just apply Method 3.1 with ∇h replaced
by Dh since the quasi-linear operator is not strictly monotone in general. We
propose the following alternative, inspired by the so-called recovered finite ele-
ments [21].

Method 4.1. For f ∈ W−1,ϕ∗
(Ω) find uh ∈ CR and ph ∈ Ŝ0

0 such that

∀vh ∈ CR

∫
Ω

A(DEuh) : DEvh−
∫
Ω

ph divh vh = 〈f ,Evh〉

∀qh ∈ Ŝ0
0

∫
Ω

qh divh uh = 0 .

Remark 4.2 (Equivalent conforming method). Method 4.1 is equivalent to a con-
forming and divergence-free discretization of (2.15): find ũh ∈ E(CR) and p̃h ∈ Ŝ0

0

such that

∀ṽh ∈ E(CR)

∫
Ω

A(Dũh) : Dṽh −
∫
Ω

p̃h div ṽh = 〈f , ṽh〉,

∀q̃ ∈ Ŝ0
0

∫
Ω

q̃ div ũh = 0.

Indeed, we have ũh = Euh and p̃h = ph. The equivalence is obtained by (2.29c).
Though the velocity space E(CR) appears to have a complicated structure, it can
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be parametrised by CR via E, which is one-to-one according to the first part of
Corollary 2.14.

In analogy with (2.17) and (3.2), we can characterize the velocity uh from
Method 4.1 as the unique solution in Zh of the reduced problem

∀vh ∈ Zh

∫
Ω

A(DEuh) : DEvh = 〈f ,Evh〉(4.2)

which is equivalent to a conforming Galerkin discretization of (2.17), cf. Re-
mark 4.2. Consequently, Method 4.1 is uniquely solvable by standard monotone
operator theory and the inf-sup-condition (2.28). For an a priori bound of the
velocity uh, we additionally recall the stability (2.33) of E as well as the inverse
bound∫
Ω

ϕ(|∇hvh|) =
∫
Ω

ϕ(|∇hIcrEvh|) ≤
∫
Ω

ϕ(|∇Evh|) �
∫
Ω

ϕ(|DEvh|) ∀vh ∈ CR .

resulting from Corollary 2.14, the stability of the Crouzeix-Raviart interpolation
operator (2.26) and Korn’s inequality from Proposition 2.1.

Proposition 4.3 (Well-posedness). Method 4.1 determines a unique pair (uh, ph) ∈
CR×Ŝ0

0 , which depends continuously on f ∈ W−1,ϕ∗
(Ω).

The equivalence of Method 4.1 with a conforming and divergence-free discretiza-
tion implies also that we have quasi-optimality in the sense of (1.3).

Theorem 4.4 (Approximation by Euh). Let (u, p) ∈ W 1,ϕ
0 (Ω) × Lϕ∗

0 (Ω) be the
solution of (2.15) and let (uh, ph) ∈ CR×Ŝ0

0 be computed by Method 4.1. Then

‖F (Du)− F (DEuh)‖2 � inf
vh∈Zh

‖F (Du)− F (DEvh)‖2.

The hidden constant depends only on r±.

Proof. Let vh ∈ Zh be arbitrary. We employ Lemma 2.6, the scaled Young inequal-
ity (2.4) and the Galerkin orthogonality of Method 4.1 to obtain that

‖F (Du)− F (DEuh)‖22 �
∫
Ω

(A(Du)−A(DEuh)) : (Du−DEvh)

�
∫
Ω

δ
(
ϕ|Du|

)∗
(|A(Du)−A(DEuh)|)

+

∫
Ω

Cδ ϕ|Du| (|Du−DEvh|)

� δ‖F (Du)− F (DEuh)‖22
+ Cδ‖F (Du)− F (DEvh)‖22.

The claimed bound follows for δ > 0 small enough. �

If we consider the approximation of u by uh instead of Euh, we have the follow-
ing a priori error bounds. Note that, in this case, quasi-optimality is not guaranteed.

Theorem 4.5 (Approximation by uh). Let (u, p) ∈ W 1,ϕ
0 (Ω) × Lϕ∗

0 (Ω) be the
solution of (2.15) and let (uh, ph) ∈ CR×Ŝ0

0 be computed by Method 4.1. Then

‖F (Du)− F (Dhuh)‖2 � inf
vh∈Zh

{
‖F (Du)− F (DEvh)‖2 + ‖F (Du)− F (Dhvh)‖2

}
.

The hidden constant depends only on r±, d and the shape constant of T .
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Proof. Let vh ∈ Zh be arbitrary. Lemma 2.6, Corollary 2.14 and (2.26) reveal

‖F (Dhuh)− F (Dhvh)‖22 �

∫
Ω

ϕ|Dhuh| (|DhIcrE(uh − vh)|)

≤
∑
K∈T

∫
K

ϕ|Dhuh|

(
−
∫
K

|DE(uh − vh)|
)

≤
∫
Ω

ϕ|Dhuh| (|DE(uh − vh)|) ,

with Jensen’s inequality in the last step. Changing the shift to |Du| with (2.9) for
some δ > 0 and applying the quasi-triangle inequality (2.3) yields

∫
Ω

ϕ|Dhuh| (|DE(uh − vh)|)

≤ Cδ

∫
Ω

ϕ|Du| (|DE(uh − vh)|) + δ

∫
Ω

|F (Du)− F (Dhuh)|22

� Cδ

∫
Ω

ϕ|Du| (|Du−DEuh|) + Cδ

∫
Ω

ϕ|Du| (|Du−DEvh|)

+ δ ‖F (Du)− F (Dhuh)‖22
� Cδ

(
‖F (Du)− F (DEuh)‖22 + ‖F (Du)− F (DEvh)‖22

)
+ δ‖F (Du)− F (Dhuh)‖22

� Cδ‖F (Du)− F (DEvh)‖22 + δ‖F (Du)− F (Dhuh)‖22,

where we have used Theorem 4.4 in the last step. With a quasi-triangle inequality,
we thus obtain

‖F (Du)− F (Dhuh)‖22 � ‖F (Du)− F (Dhvh)‖22 + ‖F (Dhuh)− F (Dhvh)‖22
� ‖F (Du)− F (Dhvh)‖22 + Cδ‖F (Du)− F (DEvh)‖22
+ δ‖F (Du)− F (Dhuh)‖22.

From this the claimed bound follows for δ > 0 small enough. �

In order to establish velocity-error estimates like (1.4) and (1.8), we must assess
the approximation power of the space E(CR) in the natural distance.

Lemma 4.6 (Smoothing error). For all vh ∈ CR we have

‖F (Dhvh)− F (DEvh)‖22 �
∑
K∈T

∑
F∈F

F∩K �=∅

∫
F

hϕ|Dhvh|K |
(
h−1 |�vh�F |

)
=: J (vh) .

The hidden constant depends only on r±, d and the shape constant of T .

Proof. Property (2.30c) implies for all vh ∈ CR and K ∈ T that

−
∫
K

|Dhvh −DEvh| �
∑
F∈F

K∩F �=∅

−
∫
F

h−1 |�vh�F |(4.3)
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Using Lemmas 2.6 and 2.12 and (4.3), we estimate

‖F (Dhvh)− F (DEvh)‖22;K �

∫
K

ϕ|Dhvh| (|Dhvh −DEvh|)

�
∫
K

ϕ|Dhvh|

(
−
∫
K

|Dhvh −DEvh|
)

�
∫
K

ϕ|Dhvh|

( ∑
F∈F

F∩K �=∅

−
∫
F

h−1 |�vh�F |
)
.

It follows from the quasi-triangle inequality (2.3) and Jensen’s-inequality that

‖F (Dhvh)− F (DEvh)‖22;K �
∫
K

∑
F∈F

F∩K �=∅

ϕ|Dhvh|

(
−
∫
F

h−1 |�vh�F |
)

�
∫
K

∑
F∈F

F∩K �=∅

−
∫
F

ϕ|Dhvh|K |
(
h−1 |�vh�F |

)

�
∑
F∈F

F∩K �=∅

∫
F

hϕ|Dhvh|K |
(
h−1 |�vh�F |

)
.

By summing over all K ∈ T , we arrive at the desired estimate. �

Motivated by the above result, we next investigate the approximation in CR in
the natural distance augmented with jumps.

Lemma 4.7. For v ∈ W 1,ϕ
0 (Ω), we have

‖F (Dv)− F (DhIcrv)‖22 + J (Icrv) �
∑
K∈T

inf
QK∈Rd×d

‖F (Dv)− F (QK)‖22;ωK
.

The hidden constant depends only on r±, d and the shape constant of T .

Proof. Owing to Corollary 2.10, we have for all K ∈ T that

‖F (Dv)− F (DhIcrv)‖22;K � inf
QK∈Rd×d

‖F (Dv)− F (QK)‖22;K .(4.4)

In order to bound the term J (Icrv), we first employ (2.9) to change the shift to
some arbitrary Q ∈ Rd×d and get∑

K∈T
F∩K �=∅

∫
F

hϕ|DIcrv|K |
(
h−1 |�Icrv�F |

)

�
∑
K∈T

F∩K �=∅

∫
F

hϕ|Q|
(
h−1 |�Icrv�F |

)
+
∑
K∈T

F∩K �=∅

∫
K

|F (DhIcrv)− F (Q)|2,
(4.5)

where we have used that DhIcrv is piecewise constant. Using again Corollary 2.10,
The latter term can be bounded by∑

K∈T
F∩K �=∅

‖F (DhIcrv)− F (Q)‖22;K �
∑
K∈T

F∩K �=∅

‖F (Dv)− F (Q)‖22;K .
(4.6)

For the first term at the right hand side of (4.5), we have∫
F

hϕ|Q|
(
h−1 |�Icrv�F |

)
� |F |hF ϕ|Q|

(
−
∫
F

h−1 |�Icrv�F |
)
,
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where we used that |�Icrv�F | � −
∫
F
|�Icrv�F | since �Icrv�F is linear on F . Note that

thanks to v ∈ W 1,ϕ
0 (Ω), we have �v�F = 0 in F ∈ F . Consequently, �Icrv�F =

�Icrv − v�F in F ∈ F and it follows from Lemma 2.9 that

−
∫
F

h−1 |�Icrv�F | = −
∫
F

h−1 |�Icrv − v�F | �
∑
K∈T
F⊂K

−
∫
K

|∇(Icrv − v)| .

This and Jensen’s inequality imply

∫
F

hϕ|Q|
(
h−1 |�Icrv�F |

)
�
∫
F

hϕ|Q|

⎛⎜⎝∑
K∈T
F⊂K

−
∫
K

|∇(Icrv − v)|

⎞⎟⎠
�
∑
K∈T
F⊂K

∫
K

ϕ|Q| (|∇(Icrv − v)|) .

Thanks to (2.25) we can apply the Korn inequality (Proposition 2.1) and obtain∫
F

hϕ|Q|
(
h−1 |�Icrv�F |

)
�
∑
K∈T
F⊂K

∫
K

ϕ|Q| (|D(Icrv − v)|) .

At this point, we again invoke (2.9) to change the shift to Dv and obtain with
Lemma 2.6∫

F

hϕ|Q|
(
h−1 |�Icrv�F |

)
�
∑
K∈T
F⊂K

(∫
K

ϕ|Dv| (|D(Icrv − v)|) +
∫
K

|F (Dv)− F (Q)|2
)

�
∑
K∈T
F⊂K

(
‖F (Dv)− F (DIcrv)‖22;K + ‖F (Dv)− F (Q)‖22;K

)
�
∑
K∈T
F⊂K

‖F (Dv)− F (Q)‖22;K ,

where we used (4.4) in the last step. Combining this with (4.5) and (4.6) and
recalling that Q ∈ Rd×d was arbitrary, we have proved for F ∈ F that∑

K∈T
F∩K �=∅

∫
F

hϕ|DIcrv|K |
(
h−1 |�Icrv�F |

)
�

∑
K∈T

F∩K �=∅

‖F (Dv)− F (Q)‖22;K .

Note that F : Rd×d → Rd×d is surjective and since Q ∈ Rd×d is arbitrary, we have∑
K∈T

F∩K �=∅

∫
F

hϕ|DIcrv|K |
(
h−1 |�Icrv�F |

)
� inf

Q∈Rd×d

∑
K∈T

F∩K �=∅

‖F (Dv)−Q‖22;K .

Together with (4.4), summing over all F ∈ F finally proves the assertion. �

With this preparation, we can prove the following main result.

Theorem 4.8 (Velocity-error). Let (u, p) ∈ W 1,ϕ
0 (Ω)× Lϕ∗

0 (Ω) be the solution to
(2.15) and let (uh, ph) ∈ CR×Ŝ0

0 be computed by Method 4.1. Then we have

‖F (Du)− F (Dhuh)‖22 + ‖F (Du)− F (DEuh)‖22 �
∑
K∈T

inf
QK∈Rd×d

‖F (Du)−QK‖22;ωK
.
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In particular, we have for F (Du) ∈ W 1,2(Ω) the estimate

‖F (Du)− F (Dhuh)‖2 + ‖F (Du)− F (DEuh)‖2 � ‖h∇F (Du)‖2 .

The hidden constant depends only on r±, d and the shape constant of T .

Proof. We conclude from Theorems 4.4 and 4.5, and Lemma 4.6 that

‖F (Du)− F (Dhuh)‖22 + ‖F (Du)− F (DEuh)‖22
� inf

vh∈Zh

{
‖F (Du)− F (Dhvh)‖22 + J (vh)

}
.

Choosing vh = Icru ∈ Zh, the assertion follows from Lemma 4.7. �

Remark 4.9 (Stabilization for the symmetric gradient problem). In order to han-
dle the non-definiteness of the symmetric gradient, one can also consider a jump
penalization of our method as it is common for discontinuous Galerkin (DG) meth-
ods; compare with [12]. This has been done by Kaltenbach and Růžička in [29, 30,
31] for a DG approximation of (r, ε)-structure systems. However, their approach
suffers from non-monotonicity of the stabilized nonlinear operator so that unique-
ness of the discrete solution cannot be guaranteed. In contrast, our Method 4.1
features monotonicity and hence unique solvability.

5. Estimates of the pressure-error

Although the above velocity-error estimates for Methods 3.1 and 4.1 are pressure
robust, i.e. independent of the pressure error, the pressure-error itself depends on
the velocity-error. Consequently, improving the velocity approximation can improve
also the pressure approximation in some cases. To make this more precise, we
combine ideas from [9, Theorem 4.7] with the results in the previous sections. For
the ease of presentation, we restrict ourselves to problems with (r, ε)-structure.

Theorem 5.1 (Pressure-error). Let A have (r, ε)-structure (2.10) for some 1 <

r < ∞ and ε ≥ 0. Let (u, p) ∈ W 1,r
0 (Ω) × Lr′

0 (Ω) be the unique solution to (2.15)
and let (uh, ph) ∈ CR×Ŝ0

0 be obtained with either Method 3.1 or 4.1. Then we
have

‖p− ph‖r′ �
(∑

K∈T
inf

QK∈Rd×d
‖F (Du)−QK‖22;ωK

) 1
2 min{1, 2

r′ }

+ inf
qh∈̂S0

0

‖p− qh‖r′ .

In particular, when F (∇u) ∈ W 1,2(Ω) and p ∈ W 1,r′(Ω), we have

‖p− ph‖r′ � ‖h∇F (Du)‖min{1, 2
r′ }

2 + ‖h∇p‖r′ .(5.1)

Here D = ∇ or D = D depending on the context and for r > 2, the hidden constant
depends also on f but is robust for ε → 0.

Proof. We focus on the case of Method 3.1. For Method 4.1 the assertion follows
with minor changes. Let πp ∈ Ŝ0

0 be the L2-orthogonal projection of p and apply
the triangle inequality

‖p− ph‖r′ ≤ ‖p− πp‖r′ + ‖πp− ph‖r′ .
Owing to Jensen’s inequality, the projection π is bounded, cf. (2.26) where the
same argument is used. Therefore, the first term on the right-hand side above is
bounded by

‖p− πp‖r′ ≤ 2 inf
qh∈̂S0

0

‖p− qh‖r′ .
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For the second term we invoke the inf-sup stability (2.28), divh CR = Ŝ0
0 and

(2.29c), to obtain

β‖πp− ph‖r′ ≤ sup
vh∈CR

∫
Ω
(πp− ph) divh vh

‖∇hvh‖r
= sup

vh∈CR

∫
Ω
(p− ph) divEvh

‖∇hvh‖r
.

For the enumerator, the continuous equations (2.15) and Method 3.1 imply∫
Ω

(p− ph) divEvh =

∫
Ω

(A(∇u)−A(∇huh)) : ∇Evh

≤ ‖A(∇u)−A(∇huh)‖r′‖∇Evh‖r.
Combining the above estimates with (2.33) and [9, Lemma 4.6] or [26, Lemma 2.4]
thus yields

‖πp− ph‖r′ � ‖A(∇u)−A(∇huh)‖r′

�
{
‖F (∇u)− F (∇huh)‖

2
r′
2 if r ∈ (1, 2]

‖ε+ |∇u|+ |∇huh|‖
r−2
2

r ‖F (∇u)− F (∇huh)‖2 if r ∈ (2,∞).

The first assertion then follows from Theorem 3.3, and, in the case r > 2, from the
boundedness of Galerkin solutions ‖∇u‖r + ‖∇huh‖r � ‖f‖

1
r−1

−1,r′ , with a hidden
constant depending only on r; compare with [27, (2.17)]. The claimed a priori rate
follows again from Theorem 3.3 and a Poincaré inequality. �
Remark 5.2 (Rate of convergence). Theorem 5.1 predicts the same rate of conver-
gence of the pressure-error as in [31], under less restrictive regularity assumptions
and including ε = 0; compare also with Remark 3.5. The same rate is observed also
in the numerical experiments of [9] where, however, the theoretical expectation is
suboptimal for r > 2, cf. (1.7).

6. Numerical experiments

In this section, we illustrate the performance and the pressure robustness of the
Methods 3.1 and 4.1 for the r-Stokes equations, i.e. for

(6.1) A(Q) = |Q|r−2Q

in Assumption 2.3. Note that the results from [30, 31] do not apply to this case, as
they require the (r, ε)-structure and are not robust in the limit ε → 0.

To highlight pressure robustness, we compare also with the following counterpart
of Method 3.1 without smoothing operator.

Method 6.1. For f ∈ W−1,r′(Ω) compute uh ∈ CR and ph ∈ Ŝ0
0 such that

∀vh ∈ CR

∫
Ω

A(∇huh) : ∇hvh −
∫
Ω

ph divh vh = 〈f ,vh〉,

∀qh ∈ Ŝ0
0

∫
Ω

qh divh uh = 0.

Recall that we could not apply this method with the gradient replaced by the
symmetric gradient, cf. [1].

Our implementation is realized with the help of the C library ALBERTA 3.1
[24, 41]. We solve the nonlinear system of equations stemming from each method
via a relaxed Kačanov iteration, based on [13, 2]. For the solution of the linearized
system, we apply SymmLQ with block diagonal preconditioning.

We consider two test cases with prescribed manufactured solution. In both cases,
the domain is a square and the initial mesh T0 is obtained by drawing the two main
diagonals. We obtain subsequent meshes T1, T2, . . . by performing each time two
uniform refinements with newest vertex bisection. We estimate the decay rate of the
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velocity- and of the pressure-error with respect to the number of mesh refinements
via the experimental order of convergence,

EOCk := log(ek−1/ek)/ log(2)

where ek is the error of interest on Tk for k ≥ 1. For Method 4.1, we consider e.g.
the velocity error with smoother ‖F (Du)− F (DEuh)‖2.

Test case 1: power functions. Following [9, section 7], we compute the data so
that the solution of (2.15) with (6.1) is given by

(6.2) u(x) = |x|α(x2,−x1) and p(x) = η|x|γ

for x = (x1, x2) ∈ Ω = (−1, 1)2. Different from (2.15), we have nonzero Dirichlet
datum on ∂Ω, but a similar (undisplayed) test case on the unit circle with zero
Dirichlet datum confirmed the results discussed below. In analogy with [9], we set

α = 0.01, γ =
2

r
− 1 + 0.01, η =

{
0.01 if r ∈ (1, 2),

1 if r ∈ [2,∞).

The factor η scales the pressure best-error relative to the velocity-error on the
right hand side of (5.1) for r ∈ (1, 2) such that the suboptimal convergence of the
pressure-error can be better observed in Figure 2.

Method 3.1 Method 4.1 Method 6.1

Figure 1. Test case 1. Experimental order of convergence EOCk

of the velocity-error versus the number k of mesh refinements.

Method 3.1 Method 4.1 Method 6.1

Figure 2. Test case 1. Experimental order of convergence EOCk

of the pressure-error versus the number k of mesh refinements.

Since F (Du) ∈ W 1,2(Ω)2×2, we expect that EOCk for the velocity-error of both
Method 3.1 and 4.1 converges to 1 as k increases, owing to Theorems 3.3 and 4.8,
respectively. Similarly, since p ∈ W 1,r′(Ω) for all r > 1, we expect that EOCk

for the pressure-error of both methods converges to min{1, 2
r′ }, as a consequence
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of Theorem 5.1. The data in Figure 1 and 2 (left and center panel) confirm our
expectation. The convergence to the expected value is faster for Method 4.1 than
for Method 3.1. We verified that the gap is somehow related to this specific example
and it is less evident if, e.g., we increase the exponent α in (6.2), see also the next
test case.

Regarding Method 6.1, we observe that EOCk for the velocity-error converges
to the suboptimal value min{1, r′

2 } (Figure 1, right panel), which is in line with the
estimate (1.6) for another method lacking pressure robustness. For the pressure-
error (Figure 2, right panel), the results suggest convergence of EOCk to min{1, 2

r′ },
as for the other methods. Thus, for r > 2, the convergence is faster than expected
from (1.7), as reported also in [9].

Test case 2: jumping pressure. In analogy with [47, section 6.3] and [34, sec-
tion 4.2], we consider a test case with smooth velocity and discontinuous pressure

u(x) = |x|0.5(x2,−x1) and p(x) =

{
− 3

2 , x1 < 2
3

3, x1 > 2
3

for x = (x1, x2) ∈ Ω = (0, 1)2. As before, we expect that EOCk for the velocity-
error of both Method 3.1 and 4.1 converges to 1 as k increases. In contrast, since
p ∈ W s,r′(Ω) only for s < 1

r′ , we expect that EOCk for the pressure-error of both
methods converges to 1

r′ for all r > 1. Our expectation is confirmed by the data in
Figure 3 and 4 (left and center panel).

Method 3.1 Method 4.1 Method 6.1

Figure 3. Test case 2. Experimental order of convergence EOCk

of the velocity-error versus the number k of mesh refinements.

Method 3.1 Method 4.1 Method 6.1

Figure 4. Test case 2. Experimental order of convergence EOCk

of the pressure-error versus the number k of mesh refinements.

Compared with the previous test case, the pressure regularity is much lower
and the importance of pressure robustness is even more apparent. Indeed, for the
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Method 6.1 (Figure 3, right panel), we observe that EOCk for the velocity-error
converges to the sub-optimal rate 0.5, irrespective of r, whereas for the pressure-
error we have similar results as for the other methods (Figure 4, right panel).

7. Conclusions

We have proposed two numerical methods for the nonlinear Stokes equations (1.1)
using nonconforming Crouzeix-Raviart velocity elements and piecewise constant
pressure elements (Method 3.1 and 4.1) with D = ∇ and D = D respectively. Both
schemes feature a monotone nonlinear operator acting on the velocity and thus the
discrete problems are uniquely solvable; see Propositions 3.2 and 4.3. Both methods
are pressure robust. The error estimates in Theorems 3.3, 4.8 and 5.1 improve upon
existing results for similar methods and are in line with the best known results for
conforming and divergence-free methods.
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