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Abstract We present the application of a time-simultaneous multigrid algorithm
closely related to multigrid waveform relaxation for stabilized convection-diffusion
equations in the regime of small diffusion coefficients. We use Galerkin finite el-
ements and the Crank-Nicolson scheme for discretization in space and time. The
multigrid method blocks all time steps for each spatial unknown, enhancing paral-
lelization in space. While the number of iterations of the solver is bounded above for
the 1D heat equation, convergence issues arise in convection-dominated cases. In
singularly perturbed advection-diffusion scenarios, Galerkin FE discretizations are
known to show instabilities in the numerical solution. We explore a higher-order vari-
ational multiscale stabilization, aiming to enhance solution smoothness and improve
convergence without compromising accuracy.

1 Introduction

In the scope of convection-dominated transport problems, Galerkin finite element
solutions are known to encounter spurious artifacts. Amid various stabilization tech-
niques like GLS and SUPG, this study focuses on a higher-order, fully implicit vari-
ational multiscale (VMS) method [1, 2]. This method enhances solution accuracy
by altering the problem’s variational form, adding a diffusive term, and eliminat-
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ing low-frequency diffusion. Beyond accuracy enhancement, we aim to improve the
convergence behavior of the time-simultaneous multigrid solver closely related to
multigrid waveform relaxation (WRMG) [3]. This solver belongs to time-parallel
integration methods, is highly parallelizable in space, and characterized by treating
all time steps simultaneously and consequently solving a space-only problem. Un-
like conventional methods handling initial value problems sequentially, these newer
algorithms enable simultaneous solutions across all time steps, augmenting paral-
lelization limited by spatial resolution. [4, 5] provide a comprehensive introduction
to parallel-in-time methods, that aim to reduce the run times of applications by fully
exploiting the potential of massively parallel computing. Although parallel-in-time
methods date back over 50 years, challenges persist in achieving optimal efficiency
for higher-order discretizations of convection-dominated problems. Recent inves-
tigations of Multigrid Reduction-In-Time (MGRIT) algorithms [6] and Schwarz
waveform relaxation algorithms [7] aim to tackle these challenges.

We enhance the convection-diffusion equation by a VMS stabilization technique
and numerically solve the system by the time-simultaneous multigrid method. The
concept involves perturbing the system using higher-order diffusion to maintain high
accuracy while improving convergence behavior in convection-dominated scenarios,
which is investigated in the numerical studies. This work is highly related to [8].

2 Convection-dominated problems

We consider the convection-diffusion equation for the solution 𝑢 : Ω × (0, 𝑇) → R
such that

𝜕𝑡𝑢(𝑥, 𝑡) − 𝜀Δ𝑢(𝑥, 𝑡) + 𝒗(𝑥, 𝑡) · ∇𝑢(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × (0, 𝑇), (1)

where the spatial domain is given by Ω ⊂ R𝑑 , 𝑑 ∈ {1, 2, 3}, the time interval is
limited by the final time 𝑇 > 0 and 𝑓 : Ω × (0, 𝑇) → R denotes the right hand
side. Using the subspace 𝑉ℎ ⊂ 𝑉 = 𝐻1 (Ω) of linear finite elements (FE), then
𝑢ℎ : (0, 𝑇) → 𝑉ℎ satisfies the variational formulation

(𝜕𝑡𝑢ℎ, 𝜑ℎ) + 𝜀(∇𝑢ℎ,∇𝜑ℎ) + (𝒗 · ∇𝑢ℎ, 𝜑ℎ) = ( 𝑓 , 𝜑ℎ) ∀𝜑ℎ ∈ 𝑉ℎ . (2)

In convection-dominated cases, where the diffusion coefficient 𝜀 ≥ 0 is much smaller
than the velocity field 𝒗 ∈ R𝑑 and the grid size ℎ, it is known that oscillations occur in
the Galerkin FE solution of the problem. Stabilization techniques are commonly used
to reduce those instabilities [9, Sec. 8.3]. While oscillations only occur to a limited
extent in the convection-dominated cases under consideration, the slow convergence
of the solver causes particular problems. We therefore aim to improve the solution
behavior and introduce the chosen stabilization technique in what follows.
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2.1 Stabilization technique

We consider a projection-based variational multiscale (VMS) stabilization method
as published in [1, 2]. Using the definition �̃�ℎ B [𝑢ℎ + 𝛿𝑡

2 𝜕𝑡𝑢ℎ], which is specifically
investigated in [8] for the application of the Crank-Nicolson scheme with time step
size 𝛿𝑡, problem (2) is enhanced by a diffusive and a compensation part as follows

(𝜕𝑡𝑢ℎ, 𝜑ℎ) + 𝜀(∇𝑢ℎ,∇𝜑ℎ) + (𝒗 · ∇𝑢ℎ, 𝜑ℎ)
+ 𝛼𝑎𝑑𝑑 [(∇�̃�ℎ,∇𝜑ℎ) − (gℎ,∇𝜑ℎ)] = ( 𝑓 , 𝜑ℎ) ∀𝜑ℎ ∈ 𝑉ℎ, (3)

(gℎ − ∇�̃�ℎ,𝝍ℎ) = 0 ∀𝝍ℎ ∈ (𝑉ℎ)𝑑 ,

where 𝛼𝑎𝑑𝑑 ≥ 0 is the stabilization parameter and will be defined in more detail
within the multigrid context below. The projection-based gradient gℎ : (0.𝑇) →
(𝑉ℎ)𝑑 enforces the stabilization term to vanish in the continuous problem while (𝑉ℎ)𝑑
is a 𝑑-dimensional FE subspace of (𝐿2 (Ω))𝑑 . The use of the same FE subspace for
the approximation of the gradient was also considered in [10, Sec. 5]. By substituting
gℎ into the first equation of (3), the problem in matrix form reads

𝑴ℎ𝜕𝑡𝒖ℎ (𝑡) + 𝜀𝑳ℎ𝒖ℎ (𝑡) + 𝑲ℎ𝒖ℎ (𝑡) + 𝛼𝑎𝑑𝑑𝑾ℎ [𝒖ℎ (𝑡) + 𝛿𝑡
2 𝜕𝑡𝒖ℎ (𝑡)] = 𝒇 ℎ (𝑡), (4)

where 𝑴ℎ, 𝑳ℎ, 𝑲ℎ are the mass, diffusion, and convection matrices, and 𝒇 ℎ is
the discretized right hand side. The substitution results in the stabilization matrix
𝑾ℎ B 𝑳ℎ − 𝑩⊤

ℎ
𝑵−1
ℎ
𝑩ℎ, where 𝑩ℎ is the discrete counterpart of the gradient and

𝑵ℎ is the mass matrix corresponding to the vector-valued FE space (𝑉ℎ)𝑑 . Since
all integrals are approximated using the Trapezoidal rule, both mass matrices are
diagonal and 𝑾ℎ can be determined explicitly. All occurring matrices are defined in
R𝑁×𝑁 for 𝑁 ∈ N spatial unknowns. Using the Crank-Nicolson scheme as the time-
integrator with the discrete initial condition 𝒖0

ℎ
results in the sequential solution

procedure
𝑨𝐼𝒖

𝑚
ℎ + 𝑨𝐸𝒖

𝑚−1
ℎ = 𝒇𝑚, 𝑚 = 1, ..., 𝐾, (5)

where 𝑨𝐼 B (𝑴ℎ + 𝛼𝑎𝑑𝑑 𝛿𝑡2 𝑾ℎ) + 𝛿𝑡
2 (𝜀𝑳ℎ + 𝑲ℎ + 𝛼𝑎𝑑𝑑𝑾ℎ),

𝑨𝐸 B −(𝑴ℎ + 𝛼𝑎𝑑𝑑 𝛿𝑡2 𝑾ℎ) + 𝛿𝑡
2 (𝜀𝑳ℎ + 𝑲ℎ + 𝛼𝑎𝑑𝑑𝑾ℎ)

for time step size 𝛿𝑡, 𝐾 time steps and the right hand side 𝒇𝑚 B 1
2𝛿𝑡

(
𝒇𝑚ℎ + 𝒇𝑚−1

ℎ

)
.

Due to the definition of �̃�ℎ used in (3), the stabilization matrix in 𝑨𝐸 cancels out
and is therefore treated fully implicitly within this time stepping scheme.

2.2 Solution technique

Based on the sequential solution method (5) using the Crank-Nicolson scheme, we
block all equations into a single linear system of equations
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and perform the following rearrangement to switch from a time-major ordering to a
space-major ordering:

(𝑢1
1, 𝑢

1
2, ..., 𝑢

1
𝑁 , 𝑢

2
1, ..., 𝑢

𝐾
1 , ...) ; (𝑢1

1, 𝑢
2
1, ..., 𝑢

𝐾
1 , 𝑢

1
2, ..., 𝑢

1
𝑁 , ...) C 𝒖

In the one-dimensional case of (1), this results in a block tridiagonal structured
global linear system

©«
□ □

□ □
. . .

. . .
. . . □
□ □

ª®®®®®¬︸            ︷︷            ︸
=:𝑺∈R𝑁𝐾×𝑁𝐾

𝒖 = 𝒇 with block matrix entries

∗
∗ ∗
. . .

. . .

∗ ∗

∈ R𝐾×𝐾 , (6)

where no stabilization is incorporated into the system using 𝛼𝑎𝑑𝑑 = 0. While the
matrix block entries are lower bidiagonal matrices due to the time integrator, the
overlying block tridiagonal structure results from the FE discretization in space.
Therefore, (6) can be interpreted as a space-only system with vector-valued un-
knowns, i.e., all time steps are treated simultaneously for each spatial node.

A time-simultaneous multigrid algorithm, which uses spatial coarsening and
common multigrid components such as smoothing and intergrid transfer operators
is applied to (6). For smoothing purposes, we consider the GMRES method with
block Jacobi preconditioning. The preconditioner 𝑫 then corresponds to the block
diagonal of 𝑺 and provides a high degree of parallelization, since each block can
be considered independently and only couples the (temporal) degrees of freedom
associated with a single spatial node. Its lower bidiagonal structure makes it easy to
solve the resulting linear systems of equations by other appropriate approaches. To
transfer between space-time grids, we define the global restriction operator by the
Kronecker product 𝑹 B 𝑹𝐻

ℎ
⊗ 𝑰𝐾 , where 𝑰𝐾 is an identity matrix of size 𝐾 × 𝐾 ,

and the global prolongation operator 𝑷 = 𝑹⊤, accordingly. While 𝑹𝐻
ℎ

denotes the
restriction operator in space induced by the FE space, where 𝐻 = 2ℎ is the coarser
mesh size, the time step size stays fixed on all grid levels. In the coarse grid correction
of the special case of the two-grid algorithm, the system matrix �̄� ∈ R�̄�𝐾×�̄�𝐾 is
designed in the same way as (6), but with grid size 𝐻. The coarse grid problem is
then solved directly. A detailed description of this algorithm can be found in [8, 11].
The multigrid solver is closely related to WRMG [3] when using the block Jacobi
smoother and a corresponding time stepping method. This was already discussed in
[11] and literature on the convergence analysis of WRMG can be found in [12, 13].
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For problem (1) in 1D, an equidistant triangulation and a constant velocity field,
the FE formulation (4) is equivalent to the second order finite difference (FD) dis-
cretization, ensuring second-order accuracy in space. In this context, the stabilization
matrix can be interpreted as a scaled FD discretization of the biharmonic operator.
This was shown in more detail in [8], where the following stabilization parameter
for a coarser level with grid size 𝐻 was derived:

𝛼𝑎𝑑𝑑 B 𝛼

(
ℎ

𝐻

)𝛾
We study three different choices of 𝛾: The parameter 𝛾 = 2 preserves solving the
same continuous problem on each level of the multigrid algorithm (cf. [8]). In this
case, the stabilization parameter is reduced by a factor of 4 when the mesh size 𝐻
is doubled due to a mesh refinement within the multigrid algorithm. The second
choice 𝛾 = 0, which results from the definition of the VMS stabilization (4), is
an intuitive level-independent option. As a compromise, also 𝛾 = 1 is taken into
account, keeping 𝛼𝑎𝑑𝑑 larger on the coarser levels.

3 Numerical studies

The described VMS stabilization technique using the Crank-Nicolson time integrator
in combination with the time-simultaneous multigrid algorithm will be examined for
convection-dominated problems in this section. First, we shortly investigate a non-
smooth exact solution to illustrate the solution behavior for the chosen discretization
in unstabilized and stabilized cases in Sec. 3.1. Afterwards the influence of the
stabilization on the multigrid solver is studied in Sec. 3.2.

3.1 Non-smooth solution

We consider the Heaviside step function with periodic boundary values, 𝑣 = 1 and
𝜀 = 0 on Ω = (0, 1) at the final time 𝑇 = 1 for different discretization techniques
without any stabilization and one stabilized case with 𝛼𝑎𝑑𝑑 > 0 in Fig. 1. Spurious
oscillations occur in the Galerkin approximation of the exact solution. These can be
smoothed out by using the upwind scheme to discretize the convective part of the
problem at hand. However, this result is very diffusive and the method only leads to
first-order accuracy [9, Sec. 8.3]. Therefore, we prefer the stabilized case, since the
spurious artifacts of the Galerkin solution can be smoothed and the higher order is
preserved by this VMS stabilization.

In what follows, the influence of the stabilization on the solver is investigated.
The improvement of the convergence behavior is the main reason for the application
of the stabilization in this work.
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Fig. 1 Heaviside step function
and corresponding numerical
solutions at final time 𝑇 = 1 in
the case of ℎ = 𝛿𝑡 = 1

128 . The
parameter 𝛼 = 0.1 is used for
the stabilized case.
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3.2 Smooth solution

This study explores the numerical solution of the stabilized convection-diffusion
problem (3) in 1D for convection-dominated cases and the fixed velocity field 𝑣 = 1
using the time-simultaneous multigrid algorithm. We consider

𝑢(𝑥, 𝑡) = exp
(
−𝜂

(
1
2 − 𝑥 + 1

4 sin
(
𝜋
2 𝑡
) )2

)
sin(𝜋𝑥), (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇),

as the manufactured solution of the inital value problem satisfying homogeneous
Dirichlet boundary conditions and the corresponding initial guess
𝑢(𝑥, 0) = exp(−𝜂( 1

2 − 𝑥)2) sin(𝜋𝑥). The parameter 𝜂 = 100 is chosen to keep
the temporal and spatial error in balance and characterizes the steepness of 𝑢. We
differ between the multgrid case, where the coarse level is chosen to be level 1, and
the two-grid case with coarse level 𝑙 − 1, while ℎ = 2−𝑙 is the mesh size of fine level
𝑙. In the numerical experiments, we compute the numerical solution up to a relative
tolerance of 10−8 and the smoother performs 4 pre- and post-smoothing steps. For
further algorithmic aspects, we refer to Sec. 2.2.

In Fig. 2, the number of multigrid iterations for the unstabilized Galerkin dis-
cretization is illustrated for different numbers of blocked time steps 𝐾 . While the
number of iterations is bounded above for moderate diffusion coefficients, the solver
requires more than 100 iterations as 𝜀 decreases and more time steps are blocked.
This convergence behavior is to be improved for a large number of simultaneously

Fig. 2 Number of
iterations for multi-
grid solver using V-cycle,
ℎ = 𝛿𝑡 = 1

128 ,𝑣 = 1, 𝛼𝑎𝑑𝑑 = 0
and Galerkin discretization of
convective term.
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treated time steps in order to obtain a fast multigrid solver. The convection-dominated
case 𝜀 = 10−3 is therefore investigated in Fig. 3 to illustrate the influence of the stabi-
lization on the two-grid solver and to justify the choice of the stabilization parameter
𝛼. While the method does not converge within 100 iterations when only a small

Fig. 3 Number of iterations
and normalized error for two-
grid solver with ℎ = 𝛿𝑡 = 1

32 ,
𝑣 = 1, 𝜀 = 10−3, and stabi-
lization parameter 𝛾 = 2.
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amount of stabilization is incorporated into the system, the number of iterations
can be reduced and is even bounded above for different numbers of blocked time
steps for 𝛼 ≥ 10−1. At the same time, the error, which is normalized with respect
to the error for 𝛼 = 10−3, becomes larger if 𝛼 increases. From the point to view of
solution quality, 𝛼 should not be chosen too large. Comprising both, the error and
the convergence behavior, we suggest to choose 𝛼 = 10−1. Then the solver shows
the desired effects and the error of the solution grows only by a factor of 4, which
corresponds to one level of mesh refinement due to the second order of convergence
of the FE discretization at hand.

In Table 1a we examine the different choices of 𝛾 for the preferred value 𝛼 = 10−1

in the case of 𝜀 = 10−3. In the two-grid approach, the number of iterations is bounded
above for all configurations. However, the solver converges fastest here for 𝛾 = 2. In
the multigrid case, however, the number of iterations for this value of 𝛾 increases
significantly if a large number of time steps are blocked. As already mentioned
above, 𝛾 = 2 results in a smaller stabilization parameter 𝛼𝑎𝑑𝑑 on the coarser levels.
This seems to affect the convergence of the multigrid solver, so that in particular
the level-independent stabilization with 𝛾 = 0 provides better convergence rates,
especially for a large number of blocked time steps. In Table 1b, similar effects can
be observed for an even smaller diffusion coefficient 𝜀 = 10−6. The preferred choice
of 𝛾 = 0 for the multigrid case and large 𝐾 is emphasized here once again since the
solver reaches the maximum number of iterations using the other values of 𝛾.

4 Conclusion

The study presented the time-simultaneous multigrid algorithm applied to the
convection-diffusion equation in 1D, revealing convergence issues in convection-
dominated problems, while the convergence rate is uniformly bounded regardless
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Table 1: Number of iterations in case of 𝑣 = 1, and stabilization parameter 𝛼 = 10−1.
A dash “-” indicates that the solver did not converge within 100 iterations.

(a) 𝜀 = 10−3

Two-grid Multigrid (F-cycle)

𝛾 = 0 𝛾 = 1 𝛾 = 2 𝛾 = 0 𝛾 = 1 𝛾 = 2

𝐾 ⧹ℎ = 𝛿𝑡 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512

16 10 5 7 4 6 4 10 13 7 9 6 4
64 19 8 11 6 8 4 19 17 11 9 8 4

256 26 17 13 10 8 4 31 26 16 12 13 6
1024 25 19 13 11 8 5 34 32 17 16 31 16
4096 24 18 12 11 7 5 33 33 20 21 60 67

16384 23 17 12 10 7 4 32 32 64 23 - 43

(b) 𝜀 = 10−6

Two-grid Multigrid (F-cycle)

𝛾 = 0 𝛾 = 1 𝛾 = 2 𝛾 = 0 𝛾 = 1 𝛾 = 2

𝐾 ⧹ℎ = 𝛿𝑡 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512 1/128 1/512

16 10 5 8 4 6 4 11 14 8 10 6 4
64 21 8 12 6 8 4 21 19 12 10 8 4

256 32 21 15 11 9 4 37 32 19 13 16 8
1024 31 24 15 12 9 5 46 50 23 22 53 42
4096 30 23 14 12 8 5 44 61 26 28 98 -

16384 28 21 13 11 8 4 42 59 - 34 - 96

of the number of blocked time steps if the diffusion parameter is sufficiently large.
The use of a higher-order VMS stabilization technique improves convergence to a
bounded number of iterations and maintains second-order accuracy in space and
time. The choice of the stabilization parameter is a crucial aspect. A level-dependent
parameter significantly reduces the number of iterations in the two-grid studies.
Multigrid scenarios emphasize the trade-off between the added stabilization and
the consistency of the coarse grid problem, which affects convergence behavior.
Therefore, future investigations aim to extend this method by adapting stabilization
parameters or varying smoothing steps based on levels, and may explore time-based
stabilization.

Acknowledgements This work was supported by the Federal Ministry of Education and Research
(BMBF) through the project “StroemungsRaum” 16ME0706K, which is part of the initiative “Neue
Methoden und Technologien für das Exascale-Höchstleistungsrechnen” (SCALEXA).
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