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Chapter 1
Bathymetry reconstruction using inverse
shallow water models: Finite element
discretization and regularization

Hennes Hajduk, Dmitri Kuzmin, Vadym Aizinger

Abstract

In the present paper, we use modified shallow water equations (SWE) to
reconstruct the bottom topography (also called bathymetry) of a flow domain
without resorting to traditional inverse modeling techniques such as adjoint
methods. The discretization in space is performed using a piecewise linear
discontinuous Galerkin (DG) approximation of the free surface elevation
and (linear) continuous finite elements for the bathymetry. Our approach
guarantees compatibility of the discrete forward and inverse problems: for a
given DG solution of the forward SWE problem, the underlying continuous
bathymetry can be recovered exactly. To ensure well-posedness of the modified
SWE and reduce sensitivity of the results to noisy data, a regularization term
is added to the equation for the water height. A numerical study is performed
to demonstrate the ability of the proposed method to recover bathymetry in
a robust and accurate manner.
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1.1 Introduction

The shallow water equations are among the most popular mathematical
models for applications in environmental fluid mechanics. The geometry of a
computational domain for SWE simulations of coastal, riverine, and estuarine
flow problems can be determined using inexpensive and highly accurate
measurement techniques for boundaries corresponding to coastlines and the
free surface. However, the resolution and accuracy of experimental data for
the bottom topography (also called bathymetry) of many regions are very
poor. As an alternative to direct measurements, the missing bathymetry
data can be reconstructed by solving a (modified) SWE system as originally
proposed in [7, 8]. The bathymetry enters the momentum equations as a source
term which has a strong influence on the accuracy of simulations. In many
applications such as tsunami predictions, numerical results are highly sensitive
to errors in bathymetry data. The most common measurement techniques for
bathymetry and their respective limitations (see [14, 18]) are as follows:

• Surveys by ships are suitable only for local measurements in small regions;
• LiDAR/LaDAR (Light/Laser Detection And Ranging) using equipment

installed on ships or aircraft is expensive and has limited coverage;
• Multi-spectral satellite imaging is only practical for shallow and clear water.

Discussions of other issues associated with direct bathymetry measurements
can be found, e.g., in [14, 16, 20]. In the present paper, we explore the
possibility of using SWE-based models for bathymetry reconstruction from
the water surface elevation which is much easier to measure remotely (e.g.
by satellite altimetry). The proposed approach involves solving a degenerate
hyperbolic inverse problem, in which the roles of the free surface elevation and
the bottom topography are interchanged [12]. The first proof of concept for
bathymetry reconstructions by this technique was proposed by Gessese et al.
in [8] using a finite difference discretization of a one-dimensional SWE system
for stationary sub- and transcritical configurations. A generalization to the 2D
case was presented in [7] and further developed in [9, 10]. The main objective
of the present work is the design of a special finite element discretization
that ensures compatibility of the forward and the inverse problems. We also
address the ill-posedness issue by adding a regularization term which also
improves the reconstruction quality in the presence of noise.

1.2 Formulation of the forward and inverse problems

The shallow water equations are derived from the incompressible Navier-Stokes
equations using the hydrostatic pressure assumption and averaging in the
vertical direction [5, 19]. The result is the system of conservation laws
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∂H

∂t
+∇· (Hu) = 0 , (1.1)

∂(Hu)
∂t

+∇· (Huu)+ g

2
∂H2

∂x
+gH

∂b

∂x
+ τbfHu−fcHv = 0 , (1.2)

∂(Hv)
∂t

+∇· (Hvu)+ g

2
∂H2

∂y
+gH

∂b

∂y
+ τbfHv+fcHu = 0 , (1.3)

where u= [u,v]T is the depth-averaged velocity, and H = ξ− b is the total
water height, that is, the difference between the free surface elevation ξ and
the bathymetry b both measured with respect to the same level. The terms
depending on τbf and fc are due to the bottom friction and the Coriolis force,
respectively. In a compact form, the SWE system can be written as

∂U
∂t

+∇·F(U) = S(U,∇b), (1.4)

where

U =
[
H
Hu

]
, F(U) =

[
Hu

Hu⊗u + gH2

2 1

]
, S(U,∇b) =

[ 0
fcHv− τbfHu−gH ∂b

∂x

−fcHu− τbfHv−gH ∂b
∂y

]
.

In the context of bathymetry reconstruction, the forward and inverse problems
require numerical solution of system (1.1)–(1.3). In the forward problem, the
free surface elevation is given by ξ =H+ b, where b is a known bathymetry.
The bathymetry gradient which appears in (1.2), (1.3) is known as well, so
the source term gH∇b depends linearly on H. In the inverse problem, the
bathymetry is unknown and defined by b = ξ−H, where ξ is given. Since
the gravitational force term of the inverse momentum equation contains the
unknown bathymetry gradient, the inverse problem exhibits entirely different
mathematical behavior. As a consequence of swapping the roles of ξ and b,
system (1.1)–(1.3) becomes degenerate hyperbolic and more difficult to solve
(see [12] for an in-depth analysis of the potentially ill-posed inverse problem).
The possible lack of uniqueness can be cured by adding a regularization term
of the form ε∆b to (1.1). This regularization resembles the Brezzi-Pitkäranta
stabilization method [3] for equal-order numerical approximations to the
velocity and pressure in the incompressible Navier-Stokes equations; however,
in the setting of the shallow water equations, such a term would induce
artificial currents in the presence of bathymetry gradients. The Laplacian can
be replaced by a total variation regularization term [4] or another anisotropic
diffusion operator. In this work, we define the regularization term at the
discrete level in terms of finite element matrices (see below).
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1.3 Discretization of the SWE system

Let Ω ⊂R2 be a bounded Lipschitz domain with a polygonal boundary. Given
a conforming triangulation Th := {T1 , . . . ,TK} of Ω , we define the DG space
Vh := {vh ∈L2(Ω) : vh|T ∈P1(T ) ∀T ∈Th} and the corresponding continuous
Galerkin (CG) space Wh := Vh∩C0(Ω) . The space Vh is spanned by 3K
piecewise-linear basis functions ψkj , k = 1, . . . ,K, j = 1,2,3. The dimension
of Wh equals the number of vertices x1, . . . ,xL of Th. The Lagrange basis
functions ϕ1, . . . ,ϕL have the property that ϕi(xj) = δij , i, j = 1, . . . ,L.
System (1.1)–(1.3) is discretized using the space Vh for H,Hu, ξ and the
space Wh for b. Since the number of equations must be equal to the number of
unknowns, the variational forms of the discrete forward and inverse problems
differ in the choice of the test function space for the continuity equation. Time
integration is performed using an explicit second-order SSP Runge-Kutta
scheme [11], i.e., Heun’s method.

Space discretization of the forward problem
In the semi-discrete forward problem, we seek the coefficients of surface
elevation ξh ∈ Vh and momentum (Hu)h ∈ (Vh)2. In practice, it is more
convenient to formulate the semi-discrete forward problem in terms of Uh =
[Hh,(Hu)h]T ∈ (Vh)3 and calculate the surface elevation ξh =Hh +bh ∈Vh by
adding the known continuous bathymetry bh ∈Wh to the discontinuous water
height Hh ∈ Vh. For any element T− ∈ Th and any test function vh ∈ (Vh)3,
the (element-local) DG form of system (1.4) is given by [1, 12]
ˆ

T −
vh ·∂tUh dx −

ˆ
T −

∇vh : F(Uh) dx

+
ˆ

∂T −
vh · F̂(U−h ,U

+
h ;νT −) ds=

ˆ
T −

vh ·S(Uh,∇bh) dx , (1.5)

where νT − is the unit outward normal and F̂(U−h ,U
+
h ;νT −) is a numerical

flux defined in terms of the one-sided limits U±h (see [12] for details). In the
numerical study below, we use the Roe flux or the Lax-Friedrichs flux.
Summing over all elements, we obtain a semi-discrete problem of the form

(vh,∂tHh) +aH (vh,Uh) = fH(vh) ∀vh ∈ Vh, (1.6)

(vh,∂t(Hu)h) +au (vh,Uh) = (vh,Sh(Uh,∇bh)) + fu(vh) ∀vh ∈ (Vh)2, (1.7)

where (·, ·) is the L2 scalar product on Ω. The forms aH(·, ·) and au(·, ·) consist
of volume integrals depending on ∇vh : F(Uh) and jump terms depending
on (v+

h −v−h ) · F̂(U−h ,U
+
h ;νT −). The linear forms fH(·) and fu(·) contain the

contribution of weakly imposed boundary conditions.

Space discretization of the inverse problem
In the inverse problem, the water height Hh ∈ Vh is uniquely determined by
the 3K known coefficients of the surface elevation ξh ∈Vh and L unknown co-
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efficients of the bathymetry bh ∈Wh. Hence, the dimension of the test function
space for system (1.6),(1.7) exceeds the number of unknowns. Substituting
ξh− bh for Hh, we replace the continuity equation (1.6) by

(wh,∂tbh)−aH (wh,Uh) = (wh,∂tξh)−fH(wh) ∀wh ∈Wh, (1.8)

while keeping the momentum equation (1.7) unchanged. This yields a system
of L+ 6K equations for L+ 6K unknowns. Since Wh is a subspace of Vh,
a DG approximation Uh = [Hh,(Hu)h]T satisfying (1.6),(1.7) will satisfy
(1.7),(1.8) as well. If the given surface elevation ξh corresponds to a solution
of the discrete forward problem, the underlying bathymetry bh must be a
(possibly non-unique) solution of the discrete inverse problem.

Pseudo-time stepping and regularization
Any explicit SSP Runge-Kutta time discretization of system (1.8),(1.7) can be
expressed as a convex combination of forward Euler updates. Let M = (mij)
denote the consistent mass matrix with entries mij = (ϕi,ϕj), i, j = 1, . . . ,L,
where ϕi are the continuous Lagrange basis functions spanning the space Wh.
Row-sum mass lumping yields the diagonal approximation ML = (miδij),
where mi = (ϕi,1). To deal with the issue of ill-posedness, we march the
bathymetry bh ∈Wh to a steady state using the regularized matrix form

ML
bn+1− bn

∆t
=R(Un

h)+ ε(M−ML)bn (1.9)

of a generic forward Euler step for pseudo-time integration of (1.8). The first
term on the right-hand side of the above linear system is defined by

Ri(Un
h) =

(
ϕi,

ξn+1
h − ξn

h

∆t

)
+aH (ϕi,Un

h)−fH(ϕi), (1.10)

where ∆t is the pseudo-time step. The regularization term ε(M−ML)bn has
the same form as the pressure stabilization term proposed by Becker and
Hansbo [2] for a finite element discretization of the Stokes system. In our
experience, the use of a discrete Laplace operator in place of M−ML produces
similar results. We envisage that the use of anisotropic diffusion operators
such as the one employed in [4] for total variation-based image denoising
purposes can lead to more accurate reconstructions of small-scale features.

1.4 Numerical results for the inverse problem

Our numerical discretization utilizes the FESTUNG toolbox [6, 17, 15] and is
described in detail in [13]. We consider the domain Ω = (0,1km)× (0,1km)
and utilize a triangular unstructured grid with ∆x= 40m to solve the forward
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and inverse problems on a time interval of three hours with ∆t= 0.1s. The
employed parameter settings are g= 9.81m/s2,fc = 3 ·10−5s−1, cf = 10−3s−1.
Bathymetry for solving the forward problem is specified as a rather complex
yet smooth function (see [12] and Fig. 1.1). The boundary conditions are as

Fig. 1.1: Computational domain and mesh (left), exact bathymetry (right).

follows: in both problems, the normal fluxes are set to zero on the upper and
lower boundary, and the flux Hu= [4 0]T is prescribed on the left (or inflow)
boundary. In the forward problem, ξ ≡ 0 is used at the outlet, whereas in the
inverse problem, the bathymetry is prescribed at the inlet.
First, we solve the forward problem with the initial condition ξ ≡ 0 and
Hu ≡ [4 0]T . The steady-state result (as presented in [12]) is subsequently
used as input for the inverse problem, where the initial bathymetry is set
to b≡−2, and initial momentum is as in the forward problem. Running the
code until the change in bathymetry between pseudo-time steps becomes
sufficiently small, we obtain a very accurate reconstruction (the L∞ error
is 7.85 ·10−6m). Excellent results are also obtained if a non-stationary free
surface elevation is used as input for the inverse problem, similarly to the
example considered in [12].
To study the effect of noisy input data on the free surface elevation, we add
random perturbations ranging in (−10−4m,10−4m) to the free surface values
in each grid vertex. Fig. 1.2 (left) shows a typical reconstruction result for
such a case. The amplification of data errors in the reconstruction indicates
the ill-posedness of the inverse problem, and further study shows that the
reconstruction error is even worse on refined grids. However, interesting effects
can be observed if one substitutes the ’noisy’ result shown in Fig. 1.2 (left)
as the bathymetry for the forward problem: a surface elevation field differing
from the original perturbed steady state is produced. Remarkably, using this
new steady state as input for the inverse problem results in the exact same
oscillatory steady-state bathymetry as in Fig. 1.2 (left). We attribute this
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phenomenon to the space relation Wh ⊂ Vh: proper reconstruction of free
surface elevation ξh ∈ Vh from a solution bh ∈Wh of the inverse problem
may be impossible due to the larger DG space Vh. On the other hand, the
continuous bathymetry seems to be uniquely determined by the free surface
and the inflow boundary condition as long as the velocities are non-zero –
which is an encouraging result.
Finally, we demonstrate how to improve the oscillatory reconstruction via
inclusion of diffusive terms: so far the parameter ε was set to zero. From
heuristic testing we found the best possible reconstruction is possible with
ε= 0.08m2/s. The result can be seen in Fig. 1.2 (right); it indicates that the
influence of flawed data can be filtered out by our regularization approach.
Furthermore, we are able to reduce the required number of pseudo-time-
stepping iterations by a factor of around 15 due to the smoothing properties of
the artificial diffusive term. Corresponding results for reconstruction from noisy

Fig. 1.2: Bathymetry reconstruction from noisy data without (left) and with
(right) artificial diffusion.

surface elevation were obtained on refined grids. However, the regularization
parameter ε has to be chosen much larger. In some cases, the steady-state
convergence behavior can also be improved by decreasing the pseudo-time
step. Promising results can be obtained even for ε→ 0 by gradually decreasing
the value of ε.

1.5 Conclusion and outlook

The main highlight of this work is a combined CG-DG finite element method
for SWE-based reconstruction of bottom topography from surface elevation
data. The use of a continuous finite element space Wh⊂Vh for the bathymetry
produces a realistic number of constraints and ensures compatibility to the DG
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scheme for the hyperbolic forward problem. A regularization term is added
to the discretized continuity equation of the inverse problem to to obtain
stable steady state solutions. The presented numerical examples demonstrate
the potential of the proposed methodology. Further work is required to
study the sensitivity of results to the choice of the regularization parameter
and definition of the artificial diffusion operator. These studies may involve
theoretical investigations, as well as applications to rivers with well-explored
bathymetry and/or comparison to laboratory experiments.
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