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Abstract This work presents an enriched Galerkin (EG) discretization for
the two-dimensional shallow-water equations. The EG finite element spaces
are obtained by extending the approximation spaces of the classical finite el-
ements by discontinuous functions supported on elements. The simplest EG
space is constructed by enriching the piecewise linear continuous Galerkin
space with discontinuous, element-wise constant functions. Similar to discon-
tinuous Galerkin (DG) discretizations, the EG scheme is locally conservative,
while, in multiple space dimensions, the EG space is significantly smaller than
that of the DG method. This implies a lower number of degrees of freedom
compared to the DG method. The EG discretization presented for the shallow-
water equations is well-balanced, in the sense that it preserves lake-at-rest con-
figurations. We evaluate the method’s robustness and accuracy using various
analytical and realistic benchmarks and compare the results to those obtained
using the DG method. Finally, we briefly discuss implementation aspects of
the EG method within our MATLAB/GNU Octave framework FESTUNG.
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1 Introduction

The two dimensional shallow-water equations (SWE) are used for a wide range
of applications in environmental and hydraulic engineering, oceanography, and
many other areas. They are discretized on computational domains that can
be very large and often feature complex geometries; therefore, the numeri-5

cal schemes must be computationally efficient and robust. The nonlinearity
and hyperbolic character of the SWE system constitute additional challenges
for designing discretizations and solution algorithms, while other application-
specific aspects such as local conservation of unknown quantities and well-
balancedness represent further desirable properties (see [1] for a brief overview10

of key requirements for SWE models).
The aforementioned issues led to a large number of studies dedicated to

the development, analysis, and practical evaluation of various numerical tech-
niques for solving the SWE. Historically, the first models used finite differences
on structured grids, but, with the emergence of unstructured-mesh models15

(e.g. TELEMAC [2] or ADCIRC [3]), finite elements and finite volumes be-
came the de-facto standard. A big advantage of the finite element approach
is its potential to naturally accommodate higher-order approximations on un-
structured meshes; in this vein, various discretizations based on the continuous
(CG) and discontinuous Galerkin (DG) approximation spaces (or mixtures of20

both) have been described and compared in the literature [4,5]. The results of
these comparisons can be summarized (in a somewhat oversimplified fashion)
as follows:

– Using continuous (e.g. piecewise linear) finite elements for elevation and
velocity is computationally very efficient (at least the low-order schemes)25

but tends to have stability issues usually represented by spurious elevation
or velocity modes that arise from the LBB condition or from too large
elevation spaces;

– Using discontinuous Galerkin (e.g. piecewise linear) spaces for both un-
knowns is robust and needs no additional stabilization but is computation-30

ally more expensive (up to a factor of four to five in serial execution [6]). In
addition, discontinuous Galerkin schemes are locally conservative, better
suited for adaptive and non-conforming meshes, and can partially offset
their higher computational costs by more efficient parallel scaling [7];

– some combinations of continuous and discontinuous spaces such as the35

lowest order Raviart-Thomas spaces tend to perform better [4], but are
rather complicated to extend to higher orders on triangular meshes.

The idea of the enriched Galerkin (EG) method is to enhance the ap-
proximation space of the continuous finite elements by adding element-local
discontinuous functions and, by using the solution procedure nearly identical40
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to that of the DG method (i.e. integrals of edge fluxes, Riemann solvers, etc.),
produce a robust, locally conservative discretization with significantly fewer
unknowns than a DG discretization of the same order.

In its original form, the EG method (also considered in this paper) adds
a piecewise constant DG component to a continuous piecewise linear or multi-45

linear CG discretization. This method was introduced for the linear advection–
diffusion–reaction equation in [8] and was proved there to be stable and con-
verge at the same rate as the discontinuous Galerkin method for piecewise lin-
ear discretization. The piecewise constant enrichment of the linear continuous
Galerkin approximation is intrinsically stable and provides the local conserva-50

tion property as was shown in [9].
Since then, the EG method has been generalized to the classical continuous

Galerkin function space of the polynomial order k augmented by discontinuous,
element-wise constant functions [9,10] and even to arbitrary enrichment with
polynomials of degree m with −1 ≤ m ≤ k (where enrichment of degree m =55

−1 represents no enrichment at all) as discussed in [11]. Arbitrary enrichment
allows to consider EG as generalization of both CG and DG since EG uses the
same bilinear and linear forms as DG.

Thus, EG inherits many advantages of DG. However, in multiple dimen-
sions, EG has fewer degrees of freedom (DOF) than the DG method if m < k.60

The standard EG method (with m = 0) has been developed to solve general
elliptic and parabolic problems with dynamic mesh adaptivity [12,13,14,15]
and was extended to address multiphase fluid flow problems [15]. Recently, the
EG method has been applied to solve the nonlinear poroelastic problem [16,
17], and its performance has been compared to other two- and three-field for-65

mulation methods [18].
In the context of convection-dominated problems, additional stabilization

techniques are often required. Classical stabilizations include the streamline
upwind Petrov-Galerkin (SUPG) method, weighted essentially non oscillatory
(WENO) schemes, as well as provably bound-preserving alternatives (e.g. [19,70

20,21,22,23]). Popular methods designed particularly for DG discretizations
include the edge-based Barth-Jesperson limiter [24], and its vertex-based coun-
terparts [25,26]. Limiters for an EG discretization of the linear advection equa-
tion have recently been proposed in [27]. The approach therein deviates from
classical DG slope limiters but rather fits in the framework of algebraic flux75

correction [28], which only recently has been extended to the DG setting [29,
30]. Numerical solutions based on the methods in [27] can be proven to sat-
isfy discrete maximum principles under CFL-like time step restrictions, which
makes the approach superior to geometrical slope limiting.

The main focus of the present work is to formulate and evaluate an EG80

scheme for the SWE and to compare the quality of the EG and DG discretiza-
tions. The method is implemented in the FESTUNG framework [31,32,33,34]
by modifying our DG implementation for the SWE presented in [35,36]. The
same scheme was initially introduced in our UTBEST solver [37,38] and later
extended to three dimensions in UTBEST3D [39,40].85
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The paper is structured as follows. The mathematical model and its dis-
cretization using the EG method are presented in Sec. 2, a brief description of
the implementation using our MATLAB/GNU Octave framework FESTUNG
is the subject of Sec. 3. In Sec 4, we demonstrate the accuracy and robust-
ness of our EG scheme using an analytical convergence test, a supercritical90

flow example with discontinuous solution, and a realistic tidal flow scenario
for Bahamas islands. A short Conclusions section wraps up this work.

2 EG formulation for the SWE

2.1 Governing equations

The SWE in conservative form are given by

∂tξ +∇ · q = 0, (1a)

∂tq +∇ ·
(
qqT/H

)
+ τbfq +

(
0 −fc
fc 0

)
q + gH∇ξ = F . (1b)

They are considered on a two-dimensional, polygonally-bounded domain Ω
and finite time interval (t0, tend). By ξ, we denote the free surface elevation of
the water body with respect to a certain zero level (e.g., the mean sea level).
The quantity H = ξ − zb represents the total fluid depth with zb denoting
the bathymetry. q := (U, V )T is the depth integrated horizontal velocity field,
fc the Coriolis coefficient, g the gravitational acceleration, and τbf the bottom
friction coefficient. Wind stress, the atmospheric pressure gradient, and tidal
potential are combined in the body force term F := (Fx, Fy)

T.
Defining c := (ξ, U, V )T, system (1) can be rewritten in the following compact
form:

∂tc+∇ ·A(c) = r(c) (2)

with

A(c) =


U V

U2

ξ−zb + gξ
(
ξ
2 − zb

)
UV
ξ−zb

UV
ξ−zb

V 2

ξ−zb + gξ
(
ξ
2 − zb

)
 (3)

and

r(c) =

 0
−τbfU + fcV − gξ∂xzb + Fx
−τbfV − fcU − gξ∂yzb + Fy

 . (4)

In this work, we use several types of boundary conditions for the SWE95

(1). Following the standard approach, interior values are used as boundary
values at parts of the boundary, on which the corresponding unknowns are
not prescribed. By ·̂ , we denote prescribed boundary values of the respective
unknowns. The following types of boundary conditions are used in this work:

Dirichlet boundary: Here, all unknowns are specified:

ξ = ξ̂, q = q̂. (5)
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Land boundary: Denoting by n the exterior unit normal to ∂Ω, we set the
normal flux to zero:

q · n = 0. (6)

Open sea boundary: Only the free surface elevation is prescribed for this
boundary type:

ξ = ξ̂. (7)

Radiation boundary: No unknowns are specified, which corresponds to a100

free outflow condition.

Finally, we need to prescribe initial conditions for the elevation and depth
integrated velocity

ξ(x, 0) = ξ0(x), q(x, 0) = q0(x). (8)

2.2 Enriched Galerkin discretization

Let {T∆}∆>0 be a simplicial, shape-regular, quasi uniform, geometrically con-
formal family of triangulations of Ω ⊂ R2 with #T denoting the total number
of elements of T∆. We obtain the local variational formulation of system (2)
by multiplying with smooth test functions φ ∈ C∞(Ω)3 and integrating by
parts on each element T ∈ T∆ yielding

(∂tc,φ)T − (A(c),∇φ)T + 〈A(c) · n,φ〉∂T = (r(c),φ)T , (9)

where we write (·, ·)T and 〈·, ·〉∂T for the L2-scalar products on elements and
their boundaries, and denote by n = (nx, ny)

T an exterior unit normal to ∂T .
Defining the broken polynomial spaces of order m ∈ N0 as

Pm(T∆) :=
{
v ∈ L2(Ω) : v|T is a polynomial of degree at most m,∀T ∈ T∆

}
and P−1(T∆) := {0}, we can modify them to obtain the EG test and trial
spaces

Pk,m(T∆) :=
(
Pk(T∆) ∩ C(Ω)

)
+ Pm(T∆) (10)

for integers −1 ≤ m ≤ k, k > 0. Thus, obviously, Pm(T∆) ⊂ Pk,m(T∆) ⊂
Pk(T∆). Here, ’+’ denotes the sum of subspaces which is not a direct sum if
m 6= −1. Examples of spaces are given in Fig. 1. From (10) it follows immedi-
ately that

dimPk,m(T∆) = dim
(
Pk(T∆) ∩ C(Ω)

)
+ dimPm(T∆)

− dim
((

Pk(T∆) ∩ C(Ω)
)
∩ Pm(T∆)

)
= dimPk,−1(T∆) + dimPm,m(T∆)− dimPm,−1(T∆) . (11)
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P−1,−1 = {0}

P0,−1 P0,0 = P0

P1,−1 P1,0 P1,1 = P1

P2,−1 P2,0 P2,1 P2,2 = P2

Fig. 1 Example of EG spaces: CG spaces are marked by a solid line, DG spaces by a dashed
line. EG spaces of interest are those lying in-between.

This dimension formula will become handy in Sec. 3 for determining EG shape105

functions. For more details about these spaces and their properties, the reader
is referred to [11, Sect. 3].

To obtain the semi-discrete EG formulation of (9), c and φ are replaced
by their discrete counterparts c∆,φ∆ ∈ Pk,m(T∆)3. Since the values of a dis-
continuous function are not unique on element edges, we replace the boundary110

term A(c) · n by a numerical flux Â(c∆, c
+
∆,n) that depends on the discon-

tinuous values of the solution on element T (without superscript) and its edge
neighbor (superscript +). On domain boundaries, the specified boundary val-
ues of free surface elevation and velocity are utilized in place of c+∆ for the flux
computation.115

In conclusion, summing up over all elements T ∈ T∆, yields∑
T∈T∆

(∂tc∆,φ∆)T −
∑
T∈T∆

(
(A(c∆),∇φ∆)T − 〈Â(c∆, c

+
∆,n),φ∆〉∂T

)
=
∑
T∈T∆

(r(c∆),φ∆)T . (12)

In this work, we use the Lax–Friedrichs flux combined with the Roe–Pike
averaging [38,41,42] defined as

Â(c∆, c
+
∆,n) =

1

2

(
A(c∆) +A(c+∆)

)
· n+

λ

2

(
c∆ − c+∆

)
, (13)

where λ = λ(c∆, c
+
∆,n) is given by

λ(c∆, c
+
∆,n) =

∣∣∣∣∣∣∣∣
(
U∆

√
H+
∆ + U+

∆

√
H∆

)
nx +

(
V∆

√
H+
∆ + V +

∆

√
H∆

)
ny

H∆

√
H+
∆ +H+

∆

√
H∆

∣∣∣∣∣∣∣∣
+

√
g

2

(
H∆ +H+

∆

)
with H+

∆ := ξ+∆ − zb, where we exploit the fact that the bathymetry zb is
assumed to be continuous.

Discrete initial conditions are obtained using suitable projections of ξ0,
and q0 into the discrete ansatz space (10) (cf. [11, Sect. 5] for a comparison
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of reasonable choices). For the temporal discretization, we use strong stability120

preserving (SSP) explicit Runge–Kutta methods [43].

3 Implementation aspects

Our implementation of the EG method is based on the DG code for the SWE
realized within the FESTUNG framework [35,44]. To obtain the required EG
operators, we use a simple strategy of modifying the DG code. This trick is125

by no means restricted to the SWE system; it can be just as easily applied
to any linear or nonlinear PDE. The main idea of our approach is to exploit
the fact that EG (or, for that matter also CG) approximation spaces are
embedded in the DG spaces of the same order. Therefore, all EG or CG basis
functions can be represented as linear combinations of DG basis functions;130

this representation can be written in the form of a (generally rectangular)
system of linear equations, which can then be used to convert an available
DG operator into the corresponding one for EG or CG spaces. The downside
of this approach is that a full DG discretization must be assembled first—
thus limiting the efficiency gain due to smaller approximation spaces of the135

EG method. In the solution procedure, a linear system of equations with the
mass matrix needs to be solved. We observed some speedup in the solution
procedure for the EG method when choosing a diagonal mass matrix (e.g., by
lumping) or semi-implicit time discretizations. This speedup is due to a smaller
size of the linear equation system compared to DG.140

In this work, we utilize finite element spaces of polynomial degree k ≤ 2.
Let us first consider the DG space Pk(T∆) and denote by N := dimPk(T∆) the
number DG unknowns for a scalar quantity. We have dimP1(T∆) = 3#T and
dimP2(T∆) = 6#T . For fixed k, let {ϕi : i ∈ {1, . . . , N}}, be the element-wise
continuous nodal basis of the DG method, where the nodal property is local145

to every element T ∈ T∆. Moreover, we denote by {φi : i ∈ {1, . . . ,M}} with
M := dimPk,m(T∆) a basis of the EG space.

In the following, we construct bases for various EG spaces from CG and
DG basis functions. Here, one has to be somewhat careful since, in general,
simply combining a CG basis with element-wise DG basis functions produces150

a linearly-dependent set. For the admissible combinations of k and m with
−1 ≤ m < k ≤ 2 considered in our work, the EG bases can be constructed as
follows:

– k ∈ {1, 2}, m = −1: The space Pk,−1(T∆) coincides with the CG ansatz
space of order at most k. Therefore, we can simply choose the CG basis155

functions.
– k = 1, m = 0: The union of characteristic functions of all elements T ∈ T∆

and the continuous, piecewise linear interpolatory functions for all but one
mesh vertex form a basis.

– k = 2, m = 0: We obtain a basis from the union of characteristic functions160

of all elements and all but one of the shape functions for the quadratic CG
space.
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– k = 2, m = 1: We use the standard linear DG basis and extend it by the
nodal quadratic shape functions equal to 1 at one edge midpoint, but omit
the ones corresponding to cell vertices. The functions are linearly inde-165

pendent and are contained in the space P2,1(T∆). As the number of basis
functions equals dimP2,1(T∆) = 3#T+#E, it must be a basis of P2,1(T∆).
Here, #T and #E denote the number of triangles and edges of T∆, respec-
tively. The dimension formula (11) ensures that this, in fact, constitutes a
basis of P2,1(T∆).170

3.1 Assembling nonlinear EG operators from DG operators

Next, we show how to obtain an EG from the corresponding DG operator.
To simplify the presentation, we formulate our approach here for the scalar
case noting that the generalization to vector fields is straightforward. DG
discretizations of nonlinear PDEs such as the SWE feature nonlinear operators
of the form

BDG : RN → RN , x 7→

(
b

(
N∑
j=1

xjϕj , ϕi

))
i=1,...,N

, (14)

where b : Pk(T∆)× Pk(T∆)→ R is linear in the second argument. Our goal is
to form the EG operator

BEG : RM → RM , y 7→

(
b

(
M∑
j=1

yjφj , φi

))
i=1,...,M

, (15)

by making use of (14). Since Pk,m(T∆) ⊂ Pk(T∆), it is possible to express the
EG basis functions as linear combinations of the DG basis

φi =
N∑
k=1

Cikϕk, Cik ∈ R, i ∈ {1, . . . ,M}. (16)

Next, we insert (16) into (15), obtaining

b

(
M∑
j=1

yjφj , φi

)
= b

(
M∑
j=1

yj

N∑
l=1

Cjlϕl,

N∑
k=1

Cikϕk

)

=

N∑
k=1

Cik b

(
N∑
l=1

(
M∑
j=1

Cjlyj

)
ϕl, ϕk

)
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for i ∈ {1, . . . ,M}. By defining C := (Ckl)kl, k ∈ {1, . . . ,M}, l ∈ {1, . . . , N},
we can thus write

BEG(y) =

(
b

(
M∑
j=1

yjφj , φi

))
i=1,...,M

= C

(
b

(
N∑
l=1

(
CTy

)
l
ϕl, ϕk

))
k=1,...,N

= CBDG(CTy) (17)

Employing (17), we assemble the terms corresponding to (15) by modifying an
existing DG discretization of the operator (14) and computing the matrix C.
Due to the above choice of EG and DG basis functions, the matrix C can be
determined from simple geometric considerations during preprocessing.175

3.2 Assembly of the EG mass matrix

We consider the operator bM defined by bM(u∆, v∆) := (u∆ , v∆)Ω . Since bM
is a bilinear form, we can write its induced operator (mass matrix) as

BDG
M : RN → RN , x 7→ BDG

M x

with
(
BDG

M

)
ij

=
∫
Ω
ϕjϕi dx for i, j ∈ {1, .., N}. The corresponding EG mass

matrix

BEG
M ∈ RM×M ,

(
BEG

M

)
ij
=

∫
Ω

φjφi dx

and can be obtained from (17), and, in operator form, is given by

BEG
M : RM → RM , y 7→ CBDG

M CTy.

That is, for operators that are induced by bilinear forms, the assembly can be
preprocessed.

4 Numerical results

In this section, we investigate the performance of the EG method using artifi-180

cial and realistic test problems for the SWE. The main goals of these numerical
studies can be summarized as follows:

– Verify the expected rate of convergence against a manufactured analytical
solution;

– evaluate the solution quality for realistic benchmarks;185

– compare the EG and DG methods in terms of accuracy, stability, and
robustness.
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We denote the results obtained for different combinations of k and m by
the corresponding finite element spaces. To simplify notation, we omit their
dependency on T∆. Hence, we write Pk,m instead of Pk,m(T∆) and use the190

convention that Pk,k is the DG space of polynomial degree k.
As temporal discretization, we use an SSP Runge–Kutta time stepping

scheme described in [45] with s = k+1 stages. The time step size depends on
the specific test problem.

4.1 Analytical convergence test195

For our first numerical experiment, we approximate a smooth solution of the
SWE on the square domain Ω := (0, 1000) × (0, 1000). The coarsest mesh
(corresponding to level one) consists of 16 triangular elements and is shown in
Fig. 2 (left). To investigate the convergence behavior, we consider a total of
five meshes obtained from the coarsest mesh by uniform refinement via edge200

bisection.
The bathymetry is prescribed as

zb(x, y) := −4 +
1

1000
x+

2

1000
y.

Parameters τbf and fc are set to zero. Substituting the following analytical
solution

ξ(x, y, t) := 2 + C1 − 2C2 sin

(
π(x+ y + C3 t)

600

)
,

U(x, y, t) := 2C1 + C2 C3 sin

(
π(x+ y + C3 t)

600

)
,

V (x, y, t) := C1 + C2 C3 sin

(
π(x+ y + C3 t)

600

)
.

into {(2),(3),(4)}, we use the method of manufactured solutions with the corre-
sponding right hand side and Dirichlet boundary conditions for each unknown
imposed on all boundaries. We solve the SWE for the time interval (0, 1000)
using the time step size ∆t = 1/4 in all considered scenarios. This value205

of ∆t is sufficiently small to make temporal discretization errors negligible
compared to spatial approximation errors. Solution parameters are chosen as
C1 = 0.3, C2 = 0.2, C3 = 0.2.

The projected initial surface elevation for P1,0 on the coarsest mesh is
shown in Fig. 2 (middle). Fig. 2 (right) displays the numerical solution for the210

surface elevation using the same approximation (k = 1, m = 0) on the finest
mesh at the final time.

For all considered CG, EG, and DG methods (−1 ≤ m ≤ k ≤ 2), we list
the L2(Ω) discretization errors at the final time along with the corresponding
convergence rates in Tab. 1 and plot them in Fig. 3. The results indicate215

that we obtain at least second order convergence for all methods. Third order
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Elevation:

Fig. 2 Analytical convergence test: Domain with coarsest mesh (left), initial surface eleva-
tion of linear EG method (k = 1, m = 0) on coarsest mesh (middle), linear EG approxima-
tion (k = 1, m = 0) of the surface elevation on the finest mesh (level 5) at the final time
t = 1000 (right).

convergence can be observed for k = 2 and m ∈ {1, 2}, but not for the CG
approximation k = 2,m = −1. The results for k = 2 and m = 0 are slightly
better than without the piecewise constant enrichment, but do not exhibit
third order accuracy. In conclusion, the EG scheme converges almost exactly220

as well as the DG method if m = k − 1, k ∈ {1, 2}, although the absolute
errors tend to be somewhat larger than for their DG counterparts. This is to
be expected because EG has fewer unknowns, and even the projected exact
solution in general becomes less accurate if the number of unknowns is reduced.
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31.2562.512525050010−2

10−1

100

101

102
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∆

L2 -
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r

L2-error of |q |

P1,−1 P1,0 P1,1 P2,−1 P2,0 P2,1 P2,2

2

3

2

3

Fig. 3 Analytical convergence test: Logarithmic plots of the L2(Ω) errors at the final time
for the surface elevation ξ (left) and the depth integrated velocity magnitude |q| (right) for
CG, EG, and DG discretizations.
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Method Level ∆ Err(ξ) EOC(ξ) Err(U) EOC(U) Err(V ) EOC(V )

P1,−1

1 500 1.47E+02 – 4.98E+02 – 4.49E+02 –
2 250 2.12E+01 2.80 1.05E+02 2.24 8.06E+01 2.48
3 125 4.15E+00 2.36 2.82E+01 1.90 2.22E+01 1.86
4 62.5 9.55E−01 2.12 8.42E+00 1.75 6.43E+00 1.79
5 31.25 2.35E−01 2.02 2.23E+00 1.92 1.65E+00 1.96

P1,0

1 500 4.94E+01 – 1.35E+02 – 1.20E+02 –
2 250 1.22E+01 2.01 3.07E+01 2.13 3.45E+01 1.80
3 125 3.10E+00 1.98 7.38E+00 2.06 8.76E+00 1.98
4 62.5 7.80E−01 1.99 1.83E+00 2.01 2.21E+00 1.99
5 31.25 1.95E−01 2.00 4.59E−01 2.00 5.56E−01 1.99

P1,1

1 500 3.02E+01 – 1.11E+02 – 9.21E+01 –
2 250 6.91E+00 2.13 2.34E+01 2.25 2.54E+01 1.86
3 125 1.65E+00 2.07 5.62E+00 2.06 6.25E+00 2.02
4 62.5 4.02E−01 2.04 1.40E+00 2.01 1.57E+00 2.00
5 31.25 9.98E−02 2.01 3.48E−01 2.01 3.92E−01 2.00

P2,−1

1 500 1.68E+01 – 8.51E+01 – 8.18E+01 –
2 250 4.29E+00 1.97 3.59E+01 1.25 3.20E+01 1.35
3 125 1.07E+00 2.00 1.11E+01 1.69 9.87E+00 1.70
4 62.5 2.66E−01 2.01 3.01E+00 1.89 2.64E+00 1.90
5 31.25 6.67E−02 2.00 7.65E−01 1.98 6.68E−01 1.98

P2,0

1 500 1.19E+01 – 5.96E+01 – 6.88E+01 –
2 250 1.79E+00 2.74 1.20E+01 2.31 1.11E+01 2.63
3 125 2.59E−01 2.79 2.81E+00 2.09 2.43E+00 2.19
4 62.5 4.49E−02 2.53 7.21E−01 1.96 6.41E−01 1.92
5 31.25 9.67E−03 2.21 2.03E−01 1.83 1.88E−01 1.77

P2,1

1 500 9.60E+00 – 3.30E+01 – 3.59E+01 –
2 250 1.41E+00 2.77 4.88E+00 2.76 4.76E+00 2.92
3 125 1.80E−01 2.97 5.72E−01 3.09 6.02E−01 2.98
4 62.5 2.28E−02 2.98 6.80E−02 3.07 7.96E−02 2.92
5 31.25 2.88E−03 2.99 8.94E−03 2.93 1.12E−02 2.84

P2,2

1 500 6.85E+00 – 3.20E+01 – 3.37E+01 –
2 250 7.56E−01 3.18 4.43E+00 2.85 4.02E+00 3.07
3 125 8.86E−02 3.09 5.10E−01 3.12 4.77E−01 3.07
4 62.5 1.09E−02 3.03 5.76E−02 3.15 6.11E−02 2.96
5 31.25 1.35E−03 3.01 7.26E−03 2.99 8.31E−03 2.88

Table 1 Analytical convergence test: L2(Ω) errors Err(·) at the final time and experimen-
tal orders of convergence EOC(·) for the surface elevation and depth integrated velocity
components.

In Tab. 2, we list the total numbers of degrees of freedom for all configu-225

rations. Note that, the DOF for the EG method with element-wise constant
enrichment (k ∈ {1, 2}, m = 0) has approximately half as many DOF as the
DG method of order k. EG with k = 2, m = 1 has approximately three quar-
ters of the DOF for the quadratic DG method, thus indicating a potential gain
in computational cost for EG compared to DG. In conclusion, the EG method230

performs similarly to DG for smooth solutions while having significantly fewer
DOF.
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Degrees of freedom
Level ∆ #T #V #E P1,−1 P1,0 P1,1 P2,−1 P2,0 P2,1 P2,2

1 500 16 14 29 14 29 48 43 58 77 96
2 250 64 43 106 43 106 192 149 212 298 384
3 125 256 149 404 149 404 768 553 808 1172 1536
4 62.5 1024 553 1576 553 1576 3072 2129 3152 4648 6144
5 31.25 4096 2129 6224 2129 6224 12228 8353 12448 18512 24576

Table 2 Series of refined triangular meshes: Number of triangles (#T ), vertices (#V ), edges
(#E), and degrees of freedom for CG, EG, and DG for all considered orders.

4.2 Supercritical flow in a constricted channel

In order to demonstrate the stability and robustness of the EG method, we
solve the supercritical flow problem proposed by Zienkiewicz and Ortiz in [46].
The computational domain is a channel whose lateral boundary walls are con-
stricted on both sides with an angle of five degrees (cf. Fig. 4). This benchmark
uses constant bathymetry zb ≡ −1 while parameters τbf , and fc are once more
set to zero. The following initial and boundary conditions are prescribed for
this problem: Initially, we set the surface elevation and momentum to ξ0 ≡ 0,
q0 = (1, 0)T, respectively. Land boundary conditions are imposed at the lat-
eral (wall) boundaries, while at the inlet (left), free surface elevation as well
as velocity are for all times specified to be identical to their corresponding
initial values. Finally, at the outlet (right) radiation boundary conditions are
used. Denoting by u and H the axial velocity and water depth at the inlet,
respectively, the flow regime is set to be supercritical by choosing the inlet
Froude number Fr

Fr :=
u√
gH

= 2.5,

which is equivalent to setting the gravitational constant g = 0.16 m
s2 in this

artificial example.235

The solution to this problem converges to a steady-state, for which an
analytical solution is available (see [47]). Fig. 4 illustrates the computational
domain along with the unstructured mesh used in all computations.

Fig. 4 Supercritical flow in a constricted channel: Unstructured mesh with 3155 elements.
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We run all simulations to a steady-state using pseudo time stepping with
a time step of ∆t = 1/10 and present the results for all schemes in Fig. 5.240

The steady-state surface elevation shown in Fig. 5 (top left) is discontinuous
and displays interactions of waves reflected from the channel constrictions.
Fig. 5 (top right to bottom right), display the steady-state solutions for all
considered EG and DG methods (0 ≤ m ≤ k ≤ 2). Since no limiter was used,
all approximations exhibit spurious oscillations close to the discontinuities. We245

expect the results to improve and the numerical solutions to become bound-
preserving if a limiter, such as the one developed in [27], is utilized (at least)
for the free surface elevation.

The type of enrichment appears to play a major role for the stability of
EG schemes. Thus the results for enrichments with m = k − 1, k ∈ {1, 2} are250

almost indistinguishable from the corresponding DG results. In particular, the
characteristic wave features such as positions and magnitudes of discontinuities
are in good agreement with the analytical solution. On the other hand, the
EG solution for k = 2, m = 0 exhibits severe oscillations not only in the
vicinity of the discontinuities but also in the remainder of the computational255

domain. This phenomen raises the concern a piecewise constant enrichment
of the quadratic CG space is not sufficient to obtain an intrinsically stable
scheme. However, an enrichment by piecewise linear discontinuous functions
seems to remedy this issue, which confirms the previous findings in 4.1 and [11].
Our study of this benchmark suggests that optimal EG schemes (m = k − 1)260

possess similar stability properties to their DG counterparts while offering
potential advantages in computational efficiency.

4.3 Tidal flow at Bahamas Islands

The realistic benchmark considered in this work involves a tidal flow sce-
nario around the Bahamas Islands. The domain geometry, bathymetry as well265

as boundary types are depicted in Fig. 6 (left). Furthermore, four recording
stations are placed at the following locations (38 667, 49 333), (56 098, 9 613),
(41 263, 29 776), and (59 594, 41 149) (coordinates in meters). These stations
monitor the temporal evolution of the numerical solution at their respective
locations and can also be seen in Fig. 6 (left). Fig. 6 (right) shows the unstruc-270

tured mesh used in all simulations.

For the bottom friction coefficient we use the standard quadratic friction
law τbf = Cf |q|/H2 (see e.g. [48]) with coefficient Cf = 0.009. The (constant)
Coriolis parameter is set to 3.19 × 10−5 s−1. The following tidal forcing is
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Fig. 5 Supercritical flow in a constricted channel, free surface elevation, analytical solution
(top left) and approximations at steady-state for: P1,1 (top right), P1,0 (middle left), P2,2

(middle right), P2,0 (bottom left), P2,1 (bottom right).

prescribed at the open sea boundary:

ξ̂(t) = 0.075 cos

(
t

25.82
+ 3.40

)
+ 0.095 cos

(
t

23.94
+ 3.60

)
+ 0.100 cos

(
t

12.66
+ 5.93

)
+ 0.395 cos

(
t

12.42
+ 0.00

)
+ 0.060 cos

(
t

12.00
+ 0.75

) (18)
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Fig. 6 Tidal flow around Bahamas Islands: Bathymetry, boundary type and positions of
recording stations (left), unstructured triangular mesh with 1696 elements (right).

with time t in hours. In real-life ocean simulations, the initial conditions are
often unknown or very difficult to obtain, therefore a cold start initialization
is performed: The flow domain is assumed to be at rest initially (ξ0 ≡ 0,
q0 ≡ (0, 0)T ). Then, starting immediately at initial time t = 0, boundary275

condition (18) is imposed as A tidal forcing driving the flow.
The simulations are run for a total of twelve days using constant time step

∆t = 15 seconds for EG and DG discretizations corresponding to 0 ≤ m ≤
k ≤ 2. In Fig. 7–9, we compare the numerical solutions for all considered EG
and DG methods at the four recording stations.280

Fig. 7 demonstrates excellent agreement for the surface elevation for all
EG and DG methods. The curves lie nearly on top of each other and no
differences can be visually detected at this resolution. The differences in the
surface elevation between the EG and DG approximations at the recording
stations are on the order of 10−4 meters.285

In Fig. 8 and Fig. 9, we plot both velocity components at the record-
ing stations. For the recording station two (Fig. 8 and Fig. 9 top right), one
can observe slight differences between the approximations of orders one and
two. Such behavior is fully consistent with the station comparisons performed
in [38]. The effect of approximation order has greater magnitude than the dif-290

ferences between the EG and DG discretizations. Small differences between
EG and DG discretizations of the same order can be observed in the plots at
some locations. The deviations at the recording stations are on the order of
10−3 to 10−4 ms−1.

In addition to testing the accuracy and robustness of the EG method, we295

also used the Bahamas example to verify the well-balancedness of the method.
For this purpose, we ran our simulation for the lake-at-rest configuration with



Enriched Galerkin method for the shallow-water equations 17

10 11 12
−0.2

−0.1

0

0.1

0.2

Time (days)

El
ev

at
io

n
(m

et
er

s)

Station 1

10 11 12
−0.2

−0.1

0

0.1

0.2

Time (days)
El

ev
at

io
n

(m
et

er
s)

Station 2

10 11 12
−0.2

−0.1

0

0.1

0.2

Time (days)

El
ev

at
io

n
(m

et
er

s)

Station 3

10 11 12
−0.2

−0.1

0

0.1

0.2

Time (days)

El
ev

at
io

n
(m

et
er

s)

Station 4

P1,0 P1,1 P2,0 P2,1 P2,2

Fig. 7 Tidal flow at Bahamas Islands: Free surface elevation for days eleven and twelve at
recording stations one to four (left to right, top to bottom).

open sea boundary condition set to zero instead of using (18). Just as expected,
no spurious circulation emerged for any of the EG or DG configurations.

5 Conclusions300

In this work, we present the first enriched Galerkin discretization for the sys-
tem of 2D shallow-water equations, evaluated its performance in analytical and
realistic test problems, and compared the numerical results to those obtained
using our discontinuous Galerkin solver. The results of our studies demonstrate
that EG schems with enrichments using discontinuous spaces of order one less305
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Fig. 8 Tidal flow at Bahamas Islands: x-velocity component for days eleven and twelve at
recording stations one to four (left to right, top to bottom).

than the order of the continuous space display similar accuracy and robustness
as the corresponding DG discretizations. Similarly to DG, EG discretizations
guarantee local conservation of all conserved unknowns while the total number
of degrees of freedom is substantially lower than that for the DG space of the
same order. This makes the enriched Galerkin method a very attractive can-310

didate for solving the shallow-water equations and other nonlinear hyperbolic
PDE systems.

Several interesting avenues of future research concerning the development
of the EG solver for the SWE present themselves at this time. Thus one could
employ the quadrature-free methodology to improve the computational effi-315

ciency of the method—similarly to our recent work for the DG SWE solver
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Fig. 9 Tidal flow at Bahamas Islands: y-velocity component for days eleven and twelve at
recording stations one to four (left to right, top to bottom).

in [49]. Also EG discretizations appears to hold promise (perhaps even more so
than the DG method) for bathymetry reconstruction using modified shallow-
water equations [50]. Finally, stabilization techniques, such as limiters, e.g., the
one designed specifically for EG in [27], will be required for certain applications320

of the SWE such as dam break problems.
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