
Abstract

In bioengineering applications problems of flow interacting with elas-
tic solid are very common. We formulate the problem of interaction for
an incompressible fluid and an incompressible elastic material in a fully
coupled arbitrary Lagrangian-Eulerian formulation. The mathematical
description and the numerical schemes are designed in such a way that
more complicated constitutive relations (and more realistic for bioengi-
neering applications) can be incorporated easily. The whole domain of
interest is treated as one continuum and the same discretization in space
(Q2/P1 FEM) and time (Crank-Nicholson) is used for both, solid and
fluid, parts. The resulting nonlinear algebraic system is solved by an ap-
proximate Newton method. The combination of second order discretiza-
tion and fully coupled solution method gives a method with high accuracy
and robustness. To demonstrate the flexibility of this numerical approach
we apply the same method to a mixture based model of elastic material
with perfusion which also falls into the category of fluid structure interac-
tions. A few simple 2D example calculations with simple material models
and a large deformations of the solid part are presented.
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1 Overview

Both problems of viscous fluid flow and of elastic body deformation have been
studied separately for many years in great detail. But there are many problems
encountered in real life where an interaction between those two medias is of great
importance. Typical example of such a problem is the area of aero-elasticity.
Another important area where such interaction is of great interest is the biome-
chanics. Such interaction is encountered especially when dealing with the blood
circulatory system. Problem of a pulsative flow in an elastic tube, flow through
the heart flaps, flow in the heart chambers are some of the examples. In all these
cases we have to deal with large deformations of a deformable solid interacting
with an unsteady, often periodic, fluid flow. The ability to model and predict
the mechanical behavior of biological tissues is very important in several areas
of bio-engineering and medicine. For example, a good mathematical model for
biological tissue could be used in such areas as early recognition or prediction
of heart muscle failure, advanced design of new treatments and operative proce-
dures, and the understanding of atherosclerosis and associated problems. Other
possible applications include development of virtual reality programs for train-
ing new surgeons or designing new operative procedures (see Miga et al. [1998],
Paulsen et al. [1999]), and last but not least the design of medical instruments
or artificial replacements with optimal mechanical and other properties as close
as possible to the original parts (see Zoppou et al. [1997]). These are some of
the areas where a good mathematical model of soft tissue with reliable and fast
numerical solution is essential for success.

1.1 Fluid structure models

There have been several different approaches to the problem of fluid-structure
interaction. Most notably the work of Peskin and McQueen [1989], Peskin
[1982], Peskin and McQueen [1980], Peskin [1977] where an immersed boundary
method was developed and applied to a three-dimensional model of the heart.
In this model they consider a set of one-dimensional elastic fibers immersed
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in three-dimensional fluid region and using parallel supercomputer they were
able to model the pulse of the heart ventricle. Their method can capture the
anisotropy caused by the muscle fibers.

A fluid-structure model with the wall modeled as a thin shell was used to
model the left heart ventricle in Costa et al. [1996a,b] and Quarteroni et al.
[2000], Quarteroni [2001]. In Heil [1997, 1998] similar approach was used to
model a flow in a collapsible tubes. In these models the wall is modeled by
two-dimensional thin shell which can be modified to capture the anisotropy of
the muscle. In reality the thickness of the wall can be significant and very
important. For example in arteries the wall thickness can be up to 30% of the
diameter and its local thickening can be the cause of an aneurysm creation. In
the case of heart ventricle the thickness of the wall is also significant and also
the direction of the muscle fibers changes through the wall.

1.2 Mixture models for perfusion

Another class of models which fall into the fluid structure interaction problems
are the fluid-solid mixture models used for simulation of soft tissue perfusion
like muscles or cartelage. Mixture theory was first applied to swelling and dif-
fusion in rubber materials Dai and Rajagopal [1990], Rajagopal and Tao [1995],
mechanics of skin Oomens and van Campen [1987], compression of cartilage
Spilker et al. [1988], Kwan et al. [1990], Reynolds and Humphrey [1998] and
blood perfusion through biological tissues in Vankan et al. [1996, 1997]. (see
for example Fung [1993] and Maurel et al. [1998]) The basic idea of mixture
theory is the assumption of co-occupancy, i.e., at each spatial point there is
certain fraction of each constituent (with associated fields) and there are pre-
scribed balance equations for each constituent of the mixture as is usual for a
single continuum, with additional terms representing the interaction between
constituents within the mixture.

There have been several numerical studies of mixture models. One dimen-
sional diffusion of fluid through an isotropic material is solved in Shi [1973], for
transversely isotropic materials in Dai and Rajagopal [1990] and in Reynolds
and Humphrey [1998] a one dimensional diffusion through isotropic stretched
slab is solved using a velocity boundary condition. Finite element solutions of
mixture models for the small deformation, linear elastic case are presented in
Kwan et al. [1990], Vankan et al. [1997] and for nonlinear large deformation
description of various soft tissues in Spilker et al. [1988], Spilker and Suh [1990],
Suh et al. [1991], Donzelli et al. [1992], Vermilyea and Spilker [1993], Almeida
and Spilker [1998], Levenston et al. [1998].

1.3 Theoretical results

The theoretical investigation of the fluid structure interaction problems is com-
plicated by the need of mixed description. While for the solid part the natu-
ral view is the material (Lagrangian) description for the fluid it is the spatial
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(Eulerian) description. In the case of their combination some kind of mixed de-
scription (usually refered to as the arbitrary Lagrangian-Eulerian description)
has to be used which brings additional nonlinearity into the resulting equations.

In Le Tallec and Mani [2000] a time dependent, linearized model of interac-
tion between a viscous fluid and an elastic shell in small displacement approxi-
mation and its discretization is analyzed. The problem is further simplified by
neglecting all changes in the geometry configuration. Under these simplifica-
tions by using the energy estimates they are able to show that the proposed
formulation is well posed and a global weak solution exists. Further they show
that an independent discretization by standard mixed finite elements for the
fluid and by nonconforming DKT finite elements for the shell together with
backward or central difference approximation of the time derivatives converges
to the solution of the continuous problem.

In Rumpf [1998] a steady problem of equilibrium of an elastic fixed obstacle
surrounded by a viscous fluid is studied. Existence of an equilibrium state is
show with the displacement and velocity in C2,α and pressure in C1,α under
assumption of small data in C2,α and the domain boundaries of class C3.

For basic introduction and complete reference of continuum theory see Gurtin
[1981], Truesdell [1991], Marš́ık [1999], Haupt [2000]. Its application in biome-
chanics are presented in Fung [1993] and Marš́ık and Dvořák [1998] for example.
We will mention in the following sections the basic notation and setup used in
this work.

A numerical solution of the resulting equations of the fluid structure inter-
action problem poses great challenge since it includes the features of nonlinear
elasticity, fluid mechanics and their coupling. The easiest solution strategy,
mostly used in the available software packages, is to decouple the problem into
the fluid part and solid part, for each of those parts to use some well established
method of solution then the interaction is introduced as external boundary con-
ditions in each of the subproblems. This has an advantage that there are many
well tested finite element based numerical methods for separate problems of
fluid flow and elastic deformation, on the other hand the treatment of the in-
terface and the interaction is problematic. The approach presented here treats
the problem as a single continuum with the coupling automatically taken care
of as internal interface, which in our formulation does not require any special
treatment.

2 Continuum description

Let Ω ⊂ R
3 be a reference configuration of a given body, possibly an abstract

one. Let Ωt ⊂ R
3 be a configuration of this body at time t. Then one-to-one,

sufficiently smooth mapping χΩ of the reference configuration Ω to the current
configuration

χΩ : Ω × [0, T ] 7→ Ωt, (1)
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Ω0 Ωt
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χΩ0
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χΩ(t)χΩ(0)

Figure 1: The referential domain Ω, initial Ω0 and current state Ωt and relations
between them. The identification Ω ≡ Ω0 is adopted in this text.

describes the motion of the body, see figure 1. The mapping χΩ depends on the
choice of the reference configuration Ω which can be fixed in a various ways.
Here we think of Ω to be the initial (stress-free) configuration Ω0. Thus, if not
emphasized, we mean by χ exactly χΩ = χΩ0

.
If we denote by X a material point in the reference configuration Ω then the

position of this point at time t is given by

x = χ(X, t). (2)

Next, the mechanical fields describing the deformation are defined in a standard
manner. The displacement field, the velocity field, deformation gradient and its
determinant as

u(X, t) = χ(X, t) − X, v =
∂χ

∂t
, F =

∂χ

∂X
, J = detF . (3)

Let us adopt following useful notations for some derivatives. Any field quantity
ϕ with values in some vector space Y (i.e. scalar, vector or tensor valued) can
be expressed in the Eulerian description as a function of the spatial position
x ∈ R

3

ϕ = ϕ̃(x, t) : Ωt × [0, T ] 7→ Y.

Then we define following notations for the derivatives of the field ϕ

∂ϕ

∂t
:=

∂ϕ̃

∂t
, ∇ϕ =

∂ϕ

∂x
:=

∂ϕ̃

∂x
, div ϕ := tr∇ϕ. (4)

In the case of Lagrangian description we consider the quantity ϕ to be defined on
the reference configuration Ω, then for any X ∈ Ω we can express the quantity
ϕ as

ϕ = ϕ̄(X, t) : Ω × [0, T ] 7→ Y,

5



and we define the derivatives of the field ϕ as

dϕ

dt
:=

∂ϕ̄

∂t
, Gradϕ =

∂ϕ

∂X
:=

∂ϕ̄

∂X
, Div ϕ := trGradϕ. (5)

These two descriptions can be related to each other through following relations

ϕ̄(X, t) =ϕ̃(χ(X, t), t), (6)

dϕ

dt
=

∂ϕ

∂t
+ (∇ϕ)v, Gradϕ =(∇ϕ)F ,

∫

Ωt

ϕdv =

∫

Ω

ϕJdV (7)

dF

dt
= Gradv,

∂J

∂F
=JF

−T ,
dJ

dt
=J div v. (8)

For the formulation of the balance laws we will need to express a time deriva-
tives of some integrals. The following series of equalities obtained by using the
previously stated relations will be useful

d

dt

∫

Ωt

ϕdv =
d

dt

∫

Ω

ϕJdV =

∫

Ω

d

dt
(ϕJ) dV =

∫

Ωt

(

dϕ

dt
+ ϕdiv v

)

dv

=

∫

Ωt

(

∂ϕ

∂t
+ div (ϕv)

)

dv =

∫

Ωt

∂ϕ

∂t
dv +

∫

∂Ωt

ϕv · nda

=
∂

∂t

∫

Ωt

ϕdv +

∫

∂Ωt

ϕv · nda.

(9)

And also the Piola identity will be used Div(JF
−T ) = 0, which can be checked

by differentiating the left hand side and using (8) together with an identity
obtained by differentiating the relation FF

−1 = I.

2.1 Balance laws

In this section we will formulate the balance relations for mass and momen-
tum in three forms: the Eulerian, the Lagrangian and the arbitrary Eulerian-
Lagrangian (ALE) description.

The Eulerian (or spatial) description is well suited for a problem of fluid
flowing through some spatially fixed region. In such a case the material particles
can enter and leave the region of interest. The fundamental quantity describing
the motion is the velocity vector.

On the other hand the Lagrangian (or referential) description is well suited
for a problem of deforming a given body consisting of a fixed set of material
particles. In this case the actual boundary of the body can change its shape.
The fundamental quantity describing the motion in this case is the vector of
displacement from the referential state.

In the case of fluid-structure interaction problem we can still use the La-
grangian description for the deformation of the solid part. The fluid flow now
takes place in a domain with boundary given by the deformation of the struc-
ture which can change in time and is influenced back by the fluid flow. The
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mixed ALE description of the fluid has to be used in this case. The fundamen-
tal quantity describing the motion of the fluid is still the velocity vector but the
description is accompanied by a certain displacement field which describes the
change of the fluid domain. This displacement field has no connection to the
fluid velocity field and the purpose of its introduction is to provide a transfor-
mation of the current fluid domain and corresponding governing equations to
some fixed reference domain. This method is sometimes called a pseudo-solid
mapping method [see Sackinger et al., 1996].

Let P ⊂ R
3 be a fixed region in space (control volume) with the boundary

∂P and unit outward normal vector nP , such that

P ⊂ Ωt for all t ∈ [0, T ].

Let ̺ denotes the mass density of the material. Then the balance of mass in
the region P can be written as

∂

∂t

∫

P

̺dv +

∫

∂P

̺v · nPda = 0. (10)

If all the fields are sufficiently smooth this equation can be written in local form
with respect to the current configuration as

∂̺

∂t
+ div(̺v) = 0. (11)

It will be useful to derive the mass balance equation from the Lagrangian point
of view. Let Q ⊂ Ω be a fixed set of particles. Then χ(Q, t) ⊂ Ωt is a re-
gion occupied by these particles at the time t, and the balance of mass can be
expressed as

d

dt

∫

χ(Q,t)

̺dv = 0, (12)

which in local form with respect to the reference configuration can be written
as

d

dt
(̺J) = 0. (13)

In the case of arbitrary Lagrangian-Eulerian description we take a region
Z ⊂ R

3 which is itself moving independently of the motion of the body. Let the
motion of the control region Z be described by a given mapping

ζZ : Z × [0, T ] 7→ Zt, Zt ⊂ Ωt ∀t ∈ [0, T ],

with the corresponding velocity vZ = ∂ζZ
∂t

, deformation gradient FZ = ∂ζZ
∂X

and
its determinant JZ = detFZ . The mass balance equation can be written as

∂

∂t

∫

Zt

̺dv +

∫

∂Zt

̺(v − vZ) · nZt
da = 0, (14)

7



this can be viewed as Eulerian description with moving spatial coordinate system
or as a grid deformation in the context of the finite element method. In order to
obtain a local form of the balance relation we need to transform the integration
to the fixed spatial region Z

∂

∂t

∫

Z

̺JZdv +

∫

∂Z

̺(v − vZ) · F−T
Z nZJZda = 0, (15)

then the local form is

∂

∂t
(̺JZ) + div

(

̺JZ(v − vZ)F−T
Z

)

= 0. (16)

The two previous special formulations can be now recovered. If the region Z
is not moving in space, i.e. Z = Zt, ∀t ∈ [0, T ], then ζZ is the identity mapping,
FZ = I, JZ = 1,vZ = 0 and (16) reduces to (11). While, if the region Z moves
exactly with the material, i.e. ζZ = χ|Z then FZ = F , JZ = J,vZ = v and
(16) reduces to (13).

The balance of linear momentum is postulated in a similar way. Let σ denote
the Cauchy stress tensor field, representing the surface forces per unit area, f

be the body forces acting on the material per its unit mass. Then the balance
of linear momentum in the Eulerian description is stated as

∂

∂t

∫

P

̺vdv +

∫

∂P

̺v ⊗ vnPda =

∫

∂P

σ
T
nPda +

∫

P

̺fdv. (17)

The local form of the linear momentum balance is

∂̺v

∂t
+ div(̺v ⊗ v) = div σ

T + ̺f , (18)

or with the use of (11) we can write

̺
∂v

∂t
+ ̺(∇v)v = div σ

T + ̺f . (19)

From the Lagrangian point of view the momentum balance relation is

d

dt

∫

χ(Q,t)

̺vdv =

∫

∂χ(Q,t)

σ
T
nχ(Q,t)da +

∫

χ(Q,t)

̺fdv. (20)

Let us denote by P = Jσ
T
F

−T the first Piola-Kirchhoff stress tensor [see
Gurtin, 1981], then the local form of the momentum balance is

d

dt
(̺Jv) = Div P + ̺Jf , (21)

or using (13) we can write

̺J
dv

dt
= Div P + ̺Jf . (22)
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In the arbitrary Lagrangian-Eulerian formulation we obtain

∂

∂t

∫

Zt

̺vdv +

∫

∂Zt

̺v ⊗ (v − vZ)nZt
da =

∫

∂Zt

σ
T
nZt

da +

∫

Zt

̺fdv, (23)

which in the local form gives

∂̺JZv

∂t
+ div

(

̺JZv ⊗ (v − vZ)F−T
Z

)

= div
(

JZσ
T
F

−T
Z

)

+ ̺JZf , (24)

or with the use of (16) we can write

̺JZ

∂v

∂t
+ ̺JZ(∇v)F −T

Z (v − vZ) = div
(

JZσ
T
F

−T
Z

)

+ ̺JZ f . (25)

In the case of angular momentum balance we assume that there are no
external or internal sources of angular momentum, then it follows that the
Cauchy stress tensor has to be symmetric, i.e. σ = σT . Assuming an isothermal
conditions the energy balance is satisfied and the choice of the constitutive
relations for the materials has to be compatible with the balance of entropy.
[see Truesdell, 1991]

3 Fluid structure interaction problem formula-

tion

At this point we make a few assumptions that will allow us to deal with the
task of setting up a tractable problem. We will use the superscripts s and f to
denote the quantities connected with the solid and fluid. Let us assume that the
both materials are incompressible and all the processes are isothermal, which
is well accepted approximation in biomechanics and let us denote the constant
densities of each material by ̺f , ̺s.

3.1 Monolithic description

We denote by Ωf
t the domain occupied by the fluid and Ωs

t by the solid at time

t ∈ [0, T ]. Let Γ0
t = Ω̄f

t ∩ Ω̄s
t be the part of the boundary where the solid

interacts with the fluid and Γi
t, i = 1, 2, 3 be the remaining external boundaries

of the solid and the fluid as depicted in figure 2.
Let the deformation of the solid part be described by the mapping χs

χs : Ωs × [0, T ] 7→ Ωs
t , (26)

with the corresponding displacement u
s and the velocity v

s given by

u
s(X, t) = χs(X, t) − X, v

s(X, t) =
∂χs

∂t
(X, t). (27)
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Figure 2: Undeformed (original) and deformed (current) configurations.

The fluid flow is described by the velocity field v
f defined on the fluid domain

Ωf
t

v
f (x, t) : Ωf

t × [0, T ] 7→ R
3. (28)

Further we define the auxiliary mapping, denoted by ζf , to describe the change
of the fluid domain and corresponding displacement u

f by

ζf : Ωf × [0, T ] 7→ Ωf
t , u

f (X, t) = ζf (X, t) − X. (29)

We require that the mapping ζf is sufficiently smooth, one to one and has to
satisfy

ζf (X, t) = χs(X, t), ∀(X, t) ∈ Γ0 × [0, T ]. (30)

In the context of the finite element method this will describe the artificial mesh
deformation inside the fluid region and it will be constructed as a solution to a
suitable boundary value problem with (30) as the boundary condition.

The momentum and mass balance of the fluid in the time dependent fluid
domain according to (16) and (24) are

̺f ∂v
f

∂t
+ ̺f (∇v

f )(vf −
∂u

f

∂t
) = div σ

f in Ωf
t , (31)

div v
f = 0 in Ωf

t , (32)

together with the momentum (18) and mass (11) balance of the solid in the
solid domain

̺s ∂v
s

∂t
+ ̺s(∇v

s)vs = div σ
s in Ωs

t , (33)

div v
s = 0 in Ωs

t . (34)

The interaction is due to the exchange of momentum through the common
part of the boundary Γ0

t . On this part we require that the forces are in balance
and simultaneously the no slip boundary condition for the fluid, i.e.

σ
f
n = σ

s
n on Γ0

t , v
f = v

s on Γ0
t . (35)
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The remaining external boundary conditions can be of the following kind. A
natural boundary condition on the fluid inflow and outflow part Γ1

t

σ
f
n = pBn on Γ1

t , (36)

with pB given value. Alternatively we can prescribe a Dirichlet type boundary
condition on the inflow or outflow part Γ1

t

v
f = vB on Γ1

t , (37)

where vB is given. The Dirichlet boundary condition is prescribed for the solid
displacement at the part Γ2

t

u
s = 0 on Γ2

t , (38)

and the stress free boundary condition for the solid is applied at the part Γ3
t

σ
s
n = 0 on Γ3

t . (39)

We introduce the domain Ω = Ωf ∪ Ωs, where Ωf , Ωs are the domains
occupied by the fluid and solid in the initial undeformed state, and two fields
defined on this domain as

u : Ω × [0, T ] → R
3, v : Ω × [0, T ] → R

3,

such that the field v represents the velocity at the given point and u the dis-
placement on the solid part and the artificial displacement in the fluid part,
taking care of the fact that the fluid domain is changing with time,

v =

{

v
s on Ωs,

v
f on Ωf ,

u =

{

u
s on Ωs,

u
f on Ωf .

(40)

Due to the conditions (30) and (35) both fields are continuous across the inter-
face Γ0

t and we can define global quantities on Ω as the deformation gradient
and its determinant

F =I + Gradu, J =detF . (41)

Using this notation the solid balance laws (33) and (34) can be expressed
in the Lagrangian formulation with the initial configuration Ωs as reference, cf.
(21),

J̺s dv

dt
= Div P

s in Ωs, (42)

J = 1 in Ωs. (43)

The fluid equations (31) and (32) are already expressed in the arbitrary Lagrangian-

Eulerian formulation with respect to the time dependent region Ωf
t , now we
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transform the equations to the fixed initial region Ωf by the mapping ζf de-
fined by (29)

̺f ∂v

∂t
+ ̺f(Gradv)F−1(v −

∂u

∂t
) = J−1 Div(Jσ

fF−T ) in Ωf , (44)

Div(JvF
−T ) = 0 in Ωf . (45)

It remains to prescribe some relation for the mapping ζf . In terms of the
corresponding displacement u

f we formulate some simple relation together with
the Dirichlet boundary conditions required by (30), for example

∂u

∂t
=∆u in Ωf , u =u

s on Γ0, u =0 on Γ1. (46)

Other choices are possible for example the mapping u
f can be realized as a

solution of the elasticity problem with the same Dirichlet boundary conditions.
[see Sackinger et al., 1996]

The complete set of the equations can be written as

∂u

∂t
=

{

v in Ωs,

∆u in Ωf ,
(47)

∂v

∂t
=

{

1
J̺s Div P

s in Ωs,

−(Gradv)F−1(v − ∂u

∂t
) + 1

J̺f Div(Jσ
f
F

−T ) in Ωf ,
(48)

0 =

{

J − 1 in Ωs,

Div(JvF
−T ) in Ωf ,

(49)

with the initial conditions

u(0) = 0 in Ω, v(0) = v0 in Ω, (50)

and boundary conditions

u =0, v = vB on Γ1, u =0 on Γ2, σ
s
n =0 on Γ3. (51)

3.2 Constitutive equations

In order solve the balance equations we need to specify the constitutive relations
for the stress tensors. For the fluid we use the incompressible Newtonian relation

σ
f = −pf

I + µ(∇v
f + (∇v

f )T ), (52)

where µ represents the viscosity of the fluid and pf is the Lagrange multiplier
corresponding to the incompressibility constraint (32).

For the solid part we assume that it can be described by an incompressible
hyper-elastic material. We specify the Helmholtz potential Ψ and the solid
stress is given by

σ
s = −ps

I + ̺s ∂Ψ

∂F
F

T , (53)
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the first Piola-Kirchhoff stress tensor is then given by

P
s = −Jps

F
−T + J̺s ∂Ψ

∂F
, (54)

where ps is the Lagrange multiplier corresponding to the incompressibility con-
straint (43).

The Helmholtz potential can be expressed as a function of different quantities

Ψ = Ψ̂(F ) = Ψ̂(I + Gradu),

but due to the principle of material frame indifference the Helmholtz potential Ψ
depends on the deformation only through the right Cauchy-Green deformation
tensor C = F

T
F [see Gurtin, 1981]

Ψ = Ψ̃(C). (55)

A certain coerciveness condition is usually imposed on the form of the
Helmholtz potential

Ψ̄(Gradu(X, t)) ≥ a ||Gradu(X, t)||
2
− b(X), (56)

where a is a positive constant and b ∈ L1(Ωs). With this assumption and using
the integral identity (65) we can derive an energy estimate of the following form

c

2
||v(T )||

2
L2(ΩT ) +

∫ T

0

µ ||∇v||
2
L2(Ωf

t ) dt + a ||Gradu(T )||
2
L2(Ωs)

≤ ||b||L1(Ωs) +
1

2
||v0||

2
L2(Ωf ) +

β

2
||v0||

2
L2(Ωs) .

(57)

where c = min(1, β).
Typical examples for the Helmholtz potential used for isotropic materials

like rubber is the Mooney-Rivlin material

Ψ̃ = c1(IC − 3) + c2(IIC − 3), (58)

where IC = tr C, IIC = tr C
2 − tr2 C, IIIC = detC are the invariants of the

right Cauchy-Green deformation tensor C and ci are some material constants.
A special case of neo-Hookean material is obtained for c2 = 0. With a suitable
choice of the material parameters the entropy inequality and the balance of
energy is automatically satisfied.

3.3 Weak formulation

We non-dimensionalize all the quantities by a given characteristic length L and
speed V as follows

t̂ = t
V

L
, x̂ =

x

L
, û =

u

L
, v̂ =

v

V
,

σ̂
s = σ

s L

̺fV 2
, σ̂

f = σ
f L

̺fV 2
, µ̂ =

µ

̺fV L
, Ψ̂ = Ψ

L

̺fV 2
,
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further using the same symbols, without the hat, for the non-dimensional quan-
tities and denoting by β = ̺s

̺f the densities ratio. The non-dimensionalized

system with the choice of material relations, (52) for viscous fluid and (54) for
the hyper-elastic solid is

∂u

∂t
=

{

v in Ωs,

∆u in Ωf ,
(59)

∂v

∂t
=







1
β

Div
(

−JpsF
−T + ∂Ψ

∂F

)

in Ωs,

−(Gradv)F−1(v − ∂u

∂t
) + Div

(

−JpfF
−T + Jµ GradvF

−1
F

−T
)

in Ωf ,

(60)

0 =

{

J − 1 in Ωs,

Div(JvF
−T ) in Ωf ,

(61)

and the boundary conditions

σ
f
n = σ

s
n on Γ0

t , v = vB on Γ1
t , (62)

u = 0 on Γ2
t , σ

f
n = 0 on Γ3

t . (63)

Let I = [0, T ] denote the time interval of interest. We multiply the equations
(59)-(61) by the test functions ζ, ξ, γ such that ζ = 0 on Γ2, ξ = 0 on Γ1 and
integrate over the space domain Ω and the time interval I. Using integration
by parts on some of the terms and the boundary conditions we obtain

∫ T

0

∫

Ω

∂u

∂t
· ζdV dt =

∫ T

0

∫

Ωs

v · ζdV dt −

∫ T

0

∫

Ωf

Gradu · Grad ζdV dt, (64)

∫ T

0

∫

Ωf

J
∂v

∂t
· ξdV dt +

∫ T

0

∫

Ωs

βJ
∂v

∂t
· ξdV dt

= −

∫ T

0

∫

Ωf

J GradvF
−1(v −

∂u

∂t
) · ξdV dt

+

∫ T

0

∫

Ω

JpF
−T · Grad ξdV dt

−

∫ T

0

∫

Ωs

∂Ψ

∂F
· Grad ξdV dt

−

∫ T

0

∫

Ωf

Jµ GradvF
−1

F
−T · Grad ξdV dt,

(65)

0 =

∫ T

0

∫

Ωs

(J − 1)γdV dt +

∫ T

0

∫

Ωf

Div(JvF
−T )γdV dt.

(66)
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Let us define the following spaces

U = {u ∈ L∞(I, [W 1,2(Ω)]3),u = 0 on Γ2},

V = {v ∈ L2(I, [W 1,2(Ωt)]
3) ∩ L∞(I, [L2(Ωt)]

3),v = 0 on Γ1},

P = {p ∈ L2(I, L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is
stated as follows

Definition 67 Find (u,v− vB, p) ∈ U × V × P such that equations (64), (65)
and (66) are satisfied for all (ζ, ξ, γ) ∈ U × V × P .

3.4 Discretization

From now on, we restrict ourselves to two dimensions. This restriction is due to
an easier presentation and the computational time needed to solve the problem.
Apart of these two reasons, the same discretization procedure can be applied to
the three dimensional problem.

The time discretization is done by the Crank-Nicholson scheme which is only
conditionally stable but it has better conservation property than for example the
implicit Euler scheme [see Farhat et al., 1995, Koobus and Farhat, 1999]. The
Crank-Nicholson scheme can be obtained by dividing the time interval I into
the series of time steps [tn, tn+1] with step length kn = tn+1−tn. Assuming that
the test functions are piecewise constant on each time step [tn, tn+1], ∀n, writing
the weak formulation (64)-(65) for the time interval [tn, tn+1], approximating
the time derivatives by the central differences

∂f

∂t
≈

f(tn+1) − f(tn)

kn

(68)

and approximating the time integration for the remaining terms by the trape-
zoidal quadrature rule as

∫ tn+1

tn

f(t)dt ≈
kn

2
(f(tn) + f(tn+1)), (69)

we obtain the time discretized system. The last equation was taken explicitly
for the time tn+1 and the corresponding term with the Lagrange multiplier pn

h

in the equation (65) was also taken explicitly.
The discretization in space is done by the finite element method. We ap-

proximate the domain Ω by a domain Ωh with polygonal boundary and by Th

we denote a set of quadrilaterals covering the domain Ωh. We assume that Th

is regular in the sense that any two quadrilateral are disjoint or have a common
vertex or a common edge. By T̄ = [−1, 1]2 we denote the reference quadrilateral.

Our treatment of the problem as a one system suggests to use the same finite
elements on both, the solid part and the fluid region. Since both materials are
incompressible we have to choose a pair of finite element spaces know to be stable
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vh,uh

ph, ∂ph

∂x
, ∂ph

∂y

x

y

Figure 3: Location of the degrees of freedom for the Q2, P1 element

for the problems with incompressibility constraint. One possible choice is the
conforming biquadratic, discontinuous bilinear Q2, P1 pair, see figure 3 for the
location of the degrees of freedom. This choice results to 39 degrees of freedom
on an element in the case of our displacement, velocity, pressure formulation in
two dimensions and to 112 degrees of freedom on an element in three dimensions.
This seems rather prohibitive, especially for a three dimensional computation.

The spaces U, V, P on an interval [tn, tn+1] would be approximated in the
case of Q2, Q1 pair as

Uh = {uh ∈ [C(Ωh)]2,uh|T ∈ [Q2(T )]2 ∀T ∈ Th,uh = 0 on Γ2},

Vh = {vh ∈ [C(Ωh)]2,vh|T ∈ [Q2(T )]2 ∀T ∈ Th,vh = 0 on Γ1},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}.

Let us denote by u
n
h the approximation of u(tn), v

n
h the approximation of

v(tn) and pn
h the approximation of p(tn). Further we will use following shorthand

notation

F
n = I + Gradu

n
h , Jn = detF

n Jn+ 1
2 =

1

2
(Jn + Jn+1),

(f, g) =

∫

Ω

f · gdV , (f, g)s =

∫

Ωs

f · gdV , (f, g)f =

∫

Ωf

f · gdV ,

f, g being scalars, vectors or tensors.
Writing down the discrete equivalent of the equations (64)-(66) yields

(

u
n+1
h , η

)

−
kn

2

{

(

v
n+1
h , η

)

s
+

(

∇u
n+1
h ,∇η

)

f

}

− (un
h, η) −

kn

2

{

(vn
h , η)s + (∇u

n
h,∇η)f

}

= 0, (70)
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(

Jn+ 1
2 v

n+1
h , ξ

)

f
+ β

(

v
n+1
h , ξ

)

s
− kn

(

Jn+1pn+1
h (F n+1)−T , Grad ξ

)

s

+
kn

2

{(

∂Ψ

∂F
(Gradu

n+1
h ), Grad ξ

)

s

+µ
(

Jn+1 Gradv
n+1
h (F n+1)−1, Grad ξ(F n+1)−1

)

f

+
(

Jn+1 Gradv
n+1
h (F n+1)−1

v
n+1
h , ξ

)

f

}

−
1

2

(

Jn+1 Gradv
n+1
h (F n+1)−1(un+1

h − u
n
h), ξ

)

f

−
(

Jn+ 1
2 v

n
h , ξ

)

f
− β (vn

h , ξ)s

+
kn

2

{(

∂Ψ

∂F
(Gradu

n
h), Grad ξ

)

s

+ µ
(

Jn Gradv
n
h(F n)−1, Grad ξ(F n)−1

)

f

+
(

Jn Gradv
n
h(F n)−1

v
n
h , ξ

)

f

}

+
1

2

(

Jn Gradv
n
h(F n)−1(un+1

h − u
n
h), ξ

)

f
= 0,

(71)

(

Jn+1 − 1, γ
)

s
+

(

Jn+1 Gradv
n+1
h (F n+1)−1, γ

)

f
= 0. (72)

Using the basis of the spaces Uh, Vh, Ph as the test functions ζ, ξ, γ we obtain
a nonlinear algebraic set of equations. In each time step we have to find X =
(un+1

h ,vn+1
h , pn+1

h ) ∈ Uh × Vh × Ph such that

F(X) = 0, (73)

where F represents the system (70–72).

3.5 Solution algorithm

The system (73) of nonlinear algebraic equations is solved using Newton method
as the basic iteration. One step of the Newton iteration can be written as

X
n+1 = X

n −

[

∂F

∂X
(Xn)

]−1

F(Xn) (74)

The convergence of this basic iteration can be characterized by the following
statement.

Theorem 1 Let X be a solution of F(X) = 0 and ∂F

∂X
(Xn) is invertible and

locally Lipschitz continuous. Then, if X
0 is sufficiently close to X, the Newton

algorithm has the following property

||Xn+1 − X|| ≤ c||Xn − X||2. (75)

We can see that this gives us quadratic convergence provided that the initial
guess is sufficiently close to the solution. To ensure the convergence globally
some improvements of this basic iteration are used.

17



The dumped Newton method with line search improves the chance of conver-
gence by adaptively changing the length of the correction vector. The solution
update step in the Newton method (74) is replaced by

X
n+1 = X

n + ωδX, (76)

where the parameter ω is found such that certain error measure decreases. One
of the possible choices for the quantity to decrease is

f(ω) = F(Xn + ωδX) · δX. (77)

Since we know

f(0) = F(Xn) · δX, (78)

and

f ′(0) =

[

∂F

∂X
(Xn)

]

δX · δX = F(Xn) · δX, (79)

and computing f(ω0) for ω0 = −1 or ω0 determined adaptively from previous
iterations we can approximate f(ω) by a quadratic function

f(ω) =
f(ω0) − f(0)(ω0 + 1)

ω2
0

ω2 + f(0)(ω + 1). (80)

Then setting

ω̃ =
f(0)ω2

0

f(ω0) − f(0)(ω0 + 1)
, (81)

the new optimal step length ω ∈ [−1, 0] is

ω =















−
ω̃

2
if

f(0)

f(ω0)
> 0,

−
ω̃

2
−

√

ω̃2

4
− ω̃ if

f(0)

f(ω0)
≤ 0.

(82)

This line search can be repeated with ω0 taken as the last ω until, for exam-
ple, f(ω) ≤ 1

2f(0). By this we can enforce a monotonous convergence of the
approximation X

n.
An adaptive time-step selection was found to help in the nonlinear conver-

gence. A heuristic algorithm was used to correct the time-step length according
to the convergence of the nonlinear iterations in the previous time-step. If the
convergence was close to quadratic, i.e. only up to three Newton steps were
needed to obtain required precision, the time step could be slightly increased,
otherwise the time-step length was reduced.

The structure of the Jacobian matrix ∂F
∂X

is

∂F

∂X
(X) =





Avv Avu Bv

Auv Auu Bu

BT
v BT

u 0



 , (83)
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1. Let X
n be some starting guess.

2. Set the residuum vector R
n = F(Xn) and the tangent matrix A =

∂F
∂X

(Xn).

3. Solve for the correction δX

AδX = R
n.

4. Find optimal step length ω.

5. Update the solution X
n+1 = X

n − ωδX.

Figure 4: One step of the Newton method with the line search.

and it can be computed by finite differences from the residual vector F(X)

[

∂F

∂X

]

ij

(Xn) ≈
[F ]i(X

n + αjej) − [F ]i(X
n − αjej)

2αj

, (84)

where ej are the unit basis vectors in R
n and coefficients αj are adaptively taken

according to the change in the solution in the previous time step. Since we know
the sparsity pattern of the Jacobian matrix in advance, it is given by the used
finite element method, this computation can be done in an efficient way so that
the linear solver remains the dominant part in terms of the cpu time.

The linear problems are solved by BiCGStab iterations with ILU precondi-
tioner with allowed certain fill-in for the diagonal blocks. The algorithms used
are described in Barrett et al. [1994] and the implementation was taken from
Bramley and Wang [1997].

4 Mixture model formulation

In this section we formulate and propose a solution algorithm for a steady state,
two-dimensional problem of stretched rectangular slab of solid-fluid mixture.
Two or three dimensional problems for solid fluid mixtures in connection with
hydrated biological tissue were recently presented in Spilker et al. [1988], Spilker
and Suh [1990], Suh et al. [1991], Donzelli et al. [1992], Vermilyea and Spilker
[1993], Almeida and Spilker [1998] for biphasic mixture to model behavior of
articular cartilage under compression. In all these works the nonlinear inertial
of the fluid is neglected.

4.1 Model formulation

Let u denotes the solid displacement, v = v
f denotes the fluid velocity while

v
s = 0 due to the assumption of a steady state, φ is the fluid volume fraction
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and p is the Lagrange multiplier associated with the incompresibility constraint.
The interaction between the elastic material and the perfusing fluid is realized
by the drag force in the form

αφ(1 − φ)(vf − v
s). (85)

which in the case of steady solution reduces to αφ(1 − φ)v.
Our task is to find (u,v, φ, p) such that

φ(∇v)v + ∇p − div σ
s =0 (86)

(∇v)v + ∇(p + Ψ) − div σ
f + (1 − φ)αv =0 (87)

(1 − φ) detF =φs
0 (88)

div(φv) =0 (89)

holds in domain Ω, where φs
0 is the volume fraction of the solid in the reference

state and the Helmholtz potential Ψ is given by constitutive equation as a
function of φ and F . The Cauchy stress tensor σ

s is then given by

σ
s = (φ + β(1 − φ))

∂Ψ

∂F
F

T , (90)

where β =
̺s

t

̺
f
t

is the true mass ratio. By S we will denote the Piola-Kirchoff

stress tensor

S = −p(detF )F−T + (φ + β(1 − φ))(det F )
∂Ψ

∂F
. (91)

Let the boundary ∂Ω be divided into three disjoint parts ∂Ω =
⋃3

i=1 Γi. Let
n be the unit normal vector to the boundary ∂Ω. Then if t is given traction on
the boundary, uB is given solid boundary displacement and vB is given fluid
velocity at the boundary the possible boundary conditions are

1

3
tr σ = pB, u = uB on Γ1, (92)

−pn + σ
s
n = t, v = vB on Γ2, (93)

u = uB, v = vB on Γ3. (94)

We avoid prescribing partial stresses on the boundary since it is not clear
weather such values can be obtained by measurements or how it should be
partitioned into the partial stresses. Instead, we focus on the prescription of the
fluid velocity at the boundary. There are other possible boundary conditions,
apart of prescribing the fluid velocity. We may prescribe

φv = fB, (95)

or the total fluid flux through certain part of the boundary
∫

Γ

φv · nda = fB, (96)

which would be convenient as an outflow boundary condition. On the other
hand the implementation of these conditions in the solution process is more
complicated.
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4.2 Weak formulation

In order to apply the finite element method we formulate our problem in a weak
sense. Let us define spaces U, V, M and P as follows

U = {u ∈ [W 1,2(Ωs)]2,u = 0 on Γ1 ∪ Γ3} (97)

V = {v ∈ [W 1,2(Ωs)]2,v = 0 on Γ2 ∪ Γ3} (98)

M = {φ ∈ W 1,2(Ωs)} (99)

P = {p ∈ L2(Ωs)} (100)

Multiplying equations (86)–(89) by a test functions (ζ, ξ, η, γ), integrating over
the domain Ω and transforming the integration to the reference domain Ωs yields

∫

Ωs

φ∇v cof F
T
v · ζdX −

∫

Ωs

p cof F · ∇ζdX +

∫

Ωs

S
E · ∇ζdX −

∫

Γ2

t cof FN · ζdA = 0,

(101)

∫

Ωs

∇v cof Fv · ξdX −

∫

Ωs

(p + Ψ) cof F · ∇ξdX +

∫

Ωs

(1 − φ)αv · ξ det FdX

+

∫

Γ1

(pB −
1

3
trσ + Ψ) cof FN · ξdA = 0,

(102)

∫

Ωs

((1 − φ) detF − φs
0) ηdX = 0, (103)

∫

Ωs

∇(φv) · cof F γdX = 0, (104)

where cof F = detFF
−T and the inner product for two tensors is defined as

F · G = tr(F T
G). Then our task is to find (u,v, φ, p) such that (u − uB,v −

vB, φ, p) ∈ U × V × M × P and equations (101)–(104) are satisfied for all
(ζ, ξ, η, γ) ∈ U × V × M × P .

4.3 Discretization

We apply the same discretization and solution technique as in the previous sec-
tion. The reference domain Ωs is approximated by a domain Ωh with piecewise
linear boundary. The interior is divided by regular quadrilateral mesh into con-
vex quadrilateral elements. The set of all quadrilaterals in Ωh is denoted by Th

and T̃ = (−1, 1)2 is the reference quadrilateral. For each element T ∈ Th there
is a bilinear one to one mapping on to the reference element T̃ . The spaces
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U, V, M resp. P are approximated by the following finite element spaces

Uh = {uh ∈ [C(Ωh)]2,uh/T ∈ [Q2(T )]2 ∀T ∈ Th,uh = 0 on Γ1 ∪ Γ3}, (105)

Vh = {vh ∈ [C(Ωh)]2,vh/T ∈ [Q2(T )]2 ∀T ∈ Th,vh = 0 on Γ1 ∪ Γ3}, (106)

Mh = {φh ∈ C(Ωh), φh/T ∈ Q1(T ) ∀T ∈ Th, 0 ≤ φh ≤ 1}, (107)

Ph = {ph ∈ C(Ωh), ph/T ∈ Q1(T ) ∀T ∈ Th}. (108)

The resulting discrete problem is obtained by taking usual nodal basis of the
space Uh × Vh ×Mh × Ph and using the elements of this basis as test functions
(ζ, ξ, η, γ) in (101–104). This set of non-linear algebraic equations can be written
as

F(X) = 0, (109)

where X = (uh,vh, φh, ph) is the vector of unknown components.
The Jacobian matrix

[

∂F
∂X

(X)
]

has following structure

[

∂F

∂X
(X)

]

=









Au,u Au,v Bu,φ C

Av,u Av,v Bv,φ C

(1 − φ)CT
0 Bφ,φ 0

Ap,u φC
T

Bp,φ 0









(110)

This matrix has typical structure of constraint system with zero diagonal block.

4.4 Solution algorithm

The system (109) of nonlinear algebraic equations is again solved using the same
approach like in the previous section. Additionally, since we seek the steady
solution in this case, the continuation method is employed in order to have the
starting approximation in the Newton iteration in the range of convergence. In
the continuation method the problem F(X) = 0 is replaced by

G(X, λ) = 0 (111)

where λ is a parameter such that for G(X, 0) = 0 we know the solution, while
for λ = 1 the original problem is recovered

G(X, 1) ≡ F(X). (112)

For example making the boundary conditions to depend on the parameter λ in
such a way that for λ = 0 we have the undeformed, stress free state, and for
λ = 1 we have the original boundary conditions.

In the process of the continuation method, we follow the solution curve given
by the initial value problem

d

ds
G(X(s), λ(s)) = 0, (113)

(X(0), λ(0)) = (X0, 0), (114)
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1. Let X
n be given starting approximation and λn the value of the continu-

ation parameter.

2. Predictor step. Solve for (Ẋn, λ̇n)

[

∂G

∂X
(Xn, λn)

]

Ẋn +

[

∂G

∂λ
(Xn, λn)

]

λ̇n = 0, (115)

||(Ẋn, λ̇n)|| = 1. (116)

3. Update the solution (Xn+ 1
2 , λn+1) = (Xn, λn) + ω(Ẋn, λ̇n).

4. Correction step. Solve for X
n+1 by Newton iteration with X

n+ 1
2 as start-

ing guess

G(Xn+1, λn+1) =0. (117)

Figure 5: One step of Euler-Newton algorithm.

until the point λ(s) = 1. The basic method used to solve this problem is the
Euler-Newton iteration, outlined in figure 5, where the explicit Euler method is
applied to (113) as predictor and then the solution is corrected by the Newton
method. This step is repeated until λn = 1. The parameter ω in the update step
can be fixed or can be chosen adaptively, for example depending on the number
of Newton iterations in the correction step needed to correct the solution.

The Jacobian matrix is computed again via finite differences. To invert
the matrices in the most inner loops, BiCGStab or GMRES methods are used
with preconditioning. See Barrett et al. [1994], Bramley and Wang [1997] for
further details on these methods. The incomplete LU decomposition is used for
preconditioning with suitable ordering of the unknowns and with fill-in allowed
for certain pattern in the zero diagonal block of the jacobian matrix.

5 Applications

In this section we present a few example application to demonstrate the pre-
sented methods. As a motivation we consider the numerical simulation of the
cardiovascular hemodynamics which has become a useful tool for deeper under-
standing of the onset of diseases of the human circulatory system, as for example
blood cell and intima damages in stenosis, aneurysm rupture, evaluation of the
new surgery techniques of heart, arteries and veins.

In order to test the proposed numerical method a simplified two-dimensional
examples which include some of the important characteristics of the biomechani-
cal applications are computed. The first example is a flow in an ellipsoidal cavity
and the second is a flow through a channel with elastic walls. In both cases the
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Figure 6: Schematic view of the ventricle and elastic tube geometries.

flow is driven by changing fluid pressure at the inflow part of the boundary while
the elastic part of the boundary is either fixed or stress free.

The constitutive relations used for the materials are the incompressible New-
tonian model (52) for the fluid and the hyper-elastic neo-Hookean material (58)
with c2 = 0 for the solid. This choice includes all the main dificulties the
numerical method has to deal with, namely the incompressibility and large de-
formations.

5.1 Flow in an ellipsoidal cavity

The motivation for our first test is the left heart ventricle which is approximately
ellipsoidal void surrounded by the heart muscle. In our two-dimensional compu-
tations we use an ellipsoidal cavity, see figure 6, with prescribed time-dependent
natural boundary condition at the fluid boundary part Γ1.

p(t) = sin t on Γ1 (118)

The material of the solid wall is modeled by the simple neo-Hookean constitutive
relation (58) with c2 = 0.

The figures 7 and 8 show the computational grid for the maximal and mini-
mal volume configuration of the cavity and the velocity field of the fluid for the
same configurations. One of the important characteristics is the shear stress
exerted by the fluid flow on the wall material. This figure 8 shows the distribu-
tion of the shear stress in the domain for three different times. In figures 9 and
10 the volume change of the cavity as a function of the time and the average
pressure inside the cavity versus the volume of the cavity is shown together
with the trajectory and velocity of a material point on the solid fluid interface.
We can see that after the initial cycle which was started from the undeformed
configuration the system comes to a time periodic solution.
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Figure 7: Maximum and minimum volume configuration with the fluid flow

Figure 8: Shear stress distribution in the wall during the period.

Figure 9: Volume of the fluid inside and the pressure-volume diagram for the
ellipsoidal cavity test.
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Figure 10: The displacement trajectory and velocity of a point at the fluid solid
interface (inner side of the wall) for the ellipsoidal cavity test

Figure 11: Velocity field during one pulse in channel without an obstacle

5.2 Flow in an elastic channel

The second application is the simulation of a flow in an elastic tube or in our
2 dimensional case a flow between elastic plates. The flow is driven by a time-
dependent pressure difference between the ends of the channel of the form (118).
Such flow is also interesting to investigate in the presence of some constriction
as a stenosis, which is shown in figures 14.

For the flow in the channel without any constriction the time dependence of
the fluid volume inside the channel is shown together with the pressure volume
diagram in the figure and the trajectory and velocity of a material point on the
solid fluid interface in the figures 12 and 13. The velocity field is shown in figure
11 at different stages of the pulse.

Finally in figure 14 the velocity field in the fluid and the pressure distribution
throughout the wall is shown for the computation of the flow in a channel with

26



Figure 12: Volume of the fluid in the channel and the pressure-volume diagram.

Figure 13: Displacement trajectory and velocity of a point at the fluid solid
interface (inner side of the wall).
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Figure 14: Fluid flow and pressure distribution in the wall during one pulse for
the example flow in a channel with constriction

elastic obstruction. In this example the elastic obstruction is modeled by the
same material as the walls of the channel and is fixed to the elastic walls. Both
ends of the walls are fixed at the inflow and outflow and the flow is again driven
by a periodic change of the pressure at the left end.

5.3 Illustrative example of perfusion

We take two dimensional crossection of the slab along the direction of the per-
fusion. Let Ωs = [−L, L]× [−H, H ]× [−L, L] be the reference domain occupied
by the solid. The deformed domain, shown in figure 15, is

Ω = {x = X + u(X), ∀X ∈ Ωs}. (119)

The deformation is assumed to be of a form

x1 = X1 + u1(X1, X2), x2 = X2 + u2(X1, X2), x3 = λ3X3, (120)
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rigid porous wall

Ω
Ωs

v
f

X1

X2

Figure 15: Undeformed and deformed configuration in two dimensional problem.

Figure 16: Finite element grid on the reference and the deformed configuration
of the solid.

where λ3 is prescribed positive constant. The fluid velocity is assumed to be

v(x1) = (v1(x1, x2), v2(x1, x2), 0). (121)

The constitutive relation for the Helmholtz potential is used in the form

Ψ =c1(IC − 3) + c2 ln(φ). (122)

The boundary conditions applied are σn = t, φv = vB at the left end of the
speciment, u1 = 0, σ12 = 0, 1

3 tr σ = pB at the right end and σn = 0, φv = vB

the top and bottom boundaries.
In figure 16 is shown the finite element grid on the reference configuration

of the solid. The initial solution is taken to be zero displacement and velocity,
given constant volume fraction and Lagrange multiplier p such that the solution
is stress free. The the solution for required values of the boundary conditions is
computed by continuation. In figure 16 the finite element grid on the deformed
configuration of the solid is shown. We can see that the slab becomes thicker
in the X2 direction at the left end, and thinner at the fluid outflow end. This
variation in the thickness is caused by the gradual decrease in the pressure along
the fluid flow. Figure 17 shows the velocity field of the perfusion and and the
fluid volume fraction throughout the slab. The fluid velocity increases toward
the end of the slab while the volume fraction decreases. In figure 18 the pressure
field is shown together with the stress tensor components. We can notice the
presence of stress concentration around the corners of the slab where the type
of the boundary condition changes.

29



Figure 17: Fluid velocity and the fluid volume fraction.

Figure 18: Isolines of the pressure field and the stress components σ12, σ11 and
σ22.

6 Summary and future development

In this paper we present a general formulation of dynamic fluid-structure inter-
action problem suitable for applications with finite deformations and laminar
flows. While the presented example calculations are simplified to allow initial
testing of the numerical methods the formulation is general to allow immediate
extension to more realistic material models. For example in the case of material
anisotropy one can consider

Ψ̃ = c1(IC − 3) + c2(IIC − 3) + c3(|Fa| − 1)2,

with a being the preferred material direction. The term |Fa| represents the
extension in the direction a. In Humphrey et al. [1990a,b] a similar material
relation of the form

Ψ̃ = c1 (exp (b1(IC − 3)) − 1) + c2 (exp (b2(|Fa| − 1)) − 1)

has been proposed to describe a passive behavior of the muscle tissue. Adding to
any form of Ψ a term like f(t,x)(|Fa|−1) one can model the active behavior of a
material and then the system can be coupled with additional models of chemical
and electric activation of the active response of the tissue, see Maurel et al.
[1998]. In the same manner the constitutive relation for the fluid can be directly
extended to the power law models used to describe the shear thinning property
of the blood. Further extension to viscoelastic models and coupling with the
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mixture based model for soft tissues together with models for chemical and
electric processes involved in biomechanical problems would allow to perform
realistic simulation for real applications.

To obtain the solution approximation the discrete systems resulting from the
finite element discretization of the governing equations need to be solved which
requires sophisticated solvers of nonlinear systems and fast solvers for very large
linear systems. The computational complexity increases tremendously for full
3D problems and with more complicated models like visco-elastic materials for
the fluid or solid components. The main advantage of the presented numerical
method is its accuracy and robustness with respect to the constitutive mod-
els. The possible directions of improving the efficiency of the solvers include
development of fast linear solver based on multigrid ideas, spatial and temporal
adaptivity and effective use parallel computations.
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