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SUMMARY

In this paper, we extend our work for the heat equatithgnd for the Stokes equationg][to the
nonstationary Navier-Stokes equations. We present fuaflglicit continuousGalerkin-Petrov (cGP) and
discontinuoussalerkin (dG) time stepping schemes for incompressible fimblems which are, in contrast
to standard approaches like for instance the Crank-Nioasheme, of higher order in time. In particular, we
implement and analyze numerically the higher order dG(#l)&®P(2)-methods which are super-convergent
of 3rd, resp., 4th order in time, while for the space disesgion, the well-known LBB-stable finite element
pair Q2/P{*¢ is used. The discretized systems of nonlinear equationsreaed by using the Newton
method, and the associated linear subproblems are solvedelys of a monolithic multigrid method
with a blockwise Vanka-like smootheB][ We perform nonstationary simulations for two benchrmagki
configurations to analyze the temporal accuracy and effigiefithe presented time discretization schemes.
As a first test problem, we consider a classitalv around cylindebenchmark 4]. Here, we concentrate
on the nonstationary behavior of the flow patterns with mhcimscillations and examine the ability of
the different time discretization schemes to capture theadhics of the flow. As a second test case, we
consider the nonstationaflpw through a Venturi pip€5, 6]. The objective of this simulation is to control
the instantaneous and mean flux through this device. Cdpy@g2011 John Wiley & Sons, Ltd.
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2 S. HUSSAIN ET AL.

1. INTRODUCTION

For solving nonstationary flow problems, it is very commondiscretize partial differential
equations (PDEs) first in space and then in time, known ashMie¢hod of Lines’. This approach
creates a system of ordinary differential equations (OD#srh might be solved by state-of-the-
art ODE integrators. However, the grid points of the spatiakh have to stay fixed in time or are
often subject to certain constraints, as for example in tse of moving mesh methods, so that
these methods often have difficulties in changing the dpagsh from time step to time step. On
the other hand, the Rothe method, which performs first tha-de&soretization in time, allows a
fully adaptive integration of time dependent PDEs. A claktme discretization schemes which
is based on Rothe’s method is tbentinuousGalerkin-Petrov discretization (cGB¢methods) and
thediscontinuousGalerkin (dG§)) approach. The cGP-method has already been used by Aziz and
Monk [7] (but not under this name) for the linear heat equation incivtiase they could prove
optimal error estimates as well as superconvergence seutie discrete time points. Currently,
extensive tests regarding the higher order accuracy intieme been performed for the heat equation
in [1] and for the Stokes equations i#] [

In this paper, we extend these numerical studies to the atioisary Navier-Stokes equations.
In particular, we implement and analyze numerically thdlyfimplicit) cGP(2)-method which is
found, at comparable numerical cost per time step, to begbfdriorder than classical schemes like
Crank-Nicolson or BDF methods, namely of order 3 in the whiote interval and superconvergent
of order 4 in the discrete time points. Since we obtain sugieswonvergence results g for
the velocity only, it is also desirable to get a higher ordegspure at the same time points, for
instance for the computation of the hydrodynamic forces FD@roblems such as drag, lift etc.
Therefore, we perform additionally a special postprocgsbiased on a simple local interpolation
procedure as described ][ Moreover, the corresponding spatial discretizationagied out by
using biquadratic finite elementg4{) for the velocity and discontinuous linear elemen®§¢<)
for the pressure which are of similar high order accuracypacse, namely of third order for the
velocity and second order for the pressure measured i thgorm. On each time interval, the
cGP(2)-method as well as the dG(1)-method lead ®xa2 nonlinear block-system of Navier-
Stokes equations in space. The resulting discretized ragst# nonlinear equations, which are
characterized as coupled saddle point problems, aredrbgitmeans of the Newton method, and the
associated linear subproblems are solved using a morwotithitigrid solver with a local pressure
Schur complement type smoother of Vanka tyfle [

For a systematic comparison of the various temporal dizet@ins w.r.t. the resulting accuracy
for prototypical flow configurations of benchmarking chaeacwe perform detailed simulations
of two different nonstationary flow problems. The first tesdigem considers the classical ‘flow
around cylinder’ configuration ird]: Here, we concentrate on the nonstationary behavior of the
flow patterns with periodic oscillations and examine thdighdf the different time discretization
schemes to capture the dynamics of the flow. The quantitieistefest are the lift and drag
coefficient, as well as the pressure drop between two poimtsecylinder. The temporal accuracy
is compared by means of plotting these physical quantitiegdrious time step sizes and schemes,
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GALERKIN TIME DISCRETIZATIONS FOR THE INCOMPRESSIBLE NAER-STOKES EQUATIONS 3

and patrticularly the deviation per cycle (in percentagehefcorresponding reference curves is of
interest.

As a main result, the numerical tests show that the cGP(2degains the same accuracy at
time step sizes which are approximately 10 times larger tharassociated time steps for cGP(1),
resp., Crank-Nicolson (CN) while the dG(1)-method achsatés accuracy for which the associated
time step is approximately 5 time larger than that of cGP(JN. These tests have been performed
for different spatial mesh levels and demonstrate the saidérglependent behaviour for all levels.

As a second test problem, we analyze the nonstationary ‘fiosugh a Venturi pipe’ which can
be found as a small device in sailing boats: If the inflow spfeeah the inlet is sufficiently large,
then due to the Bernoulli principle, the narrow section ie thiddle of the pipe produces a lower
pressure which creates a flux through the upper part of thdl pipa. One of the objectives of
this simulation is to control the instantaneous and meantficough this device (see alsb, [6]).

In order to compare the different temporal discretizatjahs flow is always started from a same
start solution (namely the Stokes solution) and the siranatare performed for 30 time units with
various time step sizes. Again, the numerical results detnate that the necessary time step sizes
for cGP(2), for which almost the same results are obtainddrassP(1) or CN, are 10 times larger
while for the dG(1) approach they are 5 times larger. Thest®ifa 10 and 5 become even more
clear for higher space mesh levels when more and more sdaleis complex flow configuration
can be resolved. As a main conclusion, we can say that themieescGP(2) approach, together with
special Newton-multigrid FEM solvers which can handle ¢atigne steps and large problem sizes
in a very efficient way, has a great potential for complex flinwdations due to its high accuracy
and robustness.

The paper is organized as follows: Sectidrdescribes the theoretical details adntinuous
Galerkin-Petrov (cGR{)) anddiscontinuousGalerkin (dG§)) methods. The finite element space
discretization is considered in Secti@ntogether with the resulting discrete problems. Finally,
Section4 presents the numerical results for a couple of test problémSection5, the paper is
concluded with a discussion of the results.

2. GALERKIN TIME STEPPING FOR THE NAVIER-STOKES EQUATIONS

For a domain2 ¢ R9, we consider the nonstationary incompressible Naviekeéteequations,
i.e. we want to find for each timee [0, 7] a velocity fieldu(t) : Q — R¢ and a pressure field
p(t) :  — R such that

u—vAu+ (u-V)u+Vp = f, in Qx (0,7,
dvu = 0 in Qx(0,7], B
u =g on 99 x (0,7,
u(z,0) = wug(z) in Q for t=0,

wherer denotes the viscosity, the body force and, the initial velocity field at time = 0. For
simplicity, we restrict to the casé = 2 and we assume homogeneous Dirichlet conditions at the
boundaryo$? of a polygonal domaif (for other choices se@]). To make this problem well-posed

in the case of pure Dirichlet boundary conditions, we havead for the fieldp(t) at each time in

the subspacé?(Q2) c L?(Q2) of functions with zero integral mean value.
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4 S. HUSSAIN ET AL.

For the time discretization, we decompose the time intdrval(0, T'] into IV disjoint subintervals
I, == (tp—1,tp], Wheren =1,... ., Nand0 =ty < t; < --- < ty—1 < ty = T. Thus, the value of
the time-discrete approximation. at timet, is always defined as thé,-value (i.e. the left-
sided value in case of discontinuous approximatiap)t,,) := u~ := u¢|s, (¢,). The symbolt
denotes theime discretization parameteand is also used as the maximum time step size-
maxji<n<n Tn, Where 1, :=1, —t,_1. Then, for the subsequent continuous and discontinuous
Galerkin time stepping schemes, we approximate the solutioy means of a functiom, which
is piecewise polynomial with respect to time. In case of {B® ¢)-method, we are looking foui,
in the discrete time-continuous space (With= (H}(9))?)

X{={ueC(,V): u|, €Py(ln,V) Vn=1,.. N} 2)

where
k

Py (In, V) i= {u I Vi)=Y U, Viel, U eV, Vj}. 3)
=0

Moreover, we introduce the discrete time-discontinuossspace
Yi = {velL’(I,V): v|, €Py_1(In,V) Vn=1,.. N} (4)

consisting of piecewise polynomials of order 1 which are (globally) discontinuous at the end
points of the time intervals. Similarly, we will use for thiene-discrete pressune. an analogous
ansatz spack ¥, where the vector valued spavds replaced by the scalar valued spgce- L3(12),
and an analogous discontinuous test spaee’.

In case of the dG(— 1)-method, we are looking faii. in the time-discontinuous discrete space
Y%L, Next, we describe separately the c&P{nd dG§ — 1)-method.

2.1. cGPf)-method

In order to derive the time discretization, we multiply thguations in {) with some suitabld, -
supported test functions and integrate dver I,,. To determineai.|;, andp~|;, we represent them
by the polynomial ansatz

k k
uT|In (t) = ZUqubn,j(t)? pT|In (t) = ZP’;JL'quL,j(t)? (5)

j=0 =0

where the "coefficients{ U7, P7) are elements of the function spacésx< @ and the polynomial
functions¢,, ; € Py (I,,) are the Lagrange basis functions with respect toithel nodal points
t,,; € I, satisfying the conditions

¢nj(tnz) :61j7 17.7:077]C (6)

with the Kronecker symbai; ;. For an easy treatment of the initial condition, wetsgf = t,,—:.
Then, the initial condition is equivalent to the condition

UY =ucly,  (tn1) i n>2 or U2 =y if n=1 (7)

The other points$,, 1., ..., ¢, , are chosen as the quadrature points ofitfpwint Gaussian formula
onI, which is exact if the function to be integrated is a polyndrofalegree less or equal 8& — 1.
We define the basis functions, ; € P (I,,) of (5) via affine reference transformations (séeZ]
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GALERKIN TIME DISCRETIZATIONS FOR THE INCOMPRESSIBLE NAER-STOKES EQUATIONS 5

for more details). Now, we can describe tirae discretel,,-problem of the cGR{()-method 1, 9]:

Find on the intervall,, = (t,,—1,t,] the k unknown pairs of "coefficients{U?, PJ) € V x Q,
j=1,...,k,suchthatforalf =1,... k,itholds forall(v,q) € V x Q

k
i Tn i Tn i i Tn i "
Zoai,j (Uihv)g + Ta(U;MV) + 7”(U;L7 U:lvv) + Tb(V7 P’rtl) TT (f(tn2)7 V)Q (8)
j=

with UY := u(t,_1) for n > 1, U} := ug and(-, -), denotes the usual inner product(ib?())“.
The bilinear forms:(-,-) andb(-,-) on'V x V andV x @, respectively, are defined as

a(u,v) ::/Vu~Vvdx YuvevV, b(v,p) ::7/V-Vpd1', 9)
Q Q
and the trilinear form(-,-,-) onV x V x V is given as(w, u,v) := Zle n;(w,u;,v;) where
n;(w,ui,v;) = / (w-Vuj)vyde VweV, wu,v € Hol(Q). (20)
Q

A typical property of this cGR{)-variant is that the initial pressu? of the ansatz) does not
occur in this formulation. In order to achieve supercongag for the pressure approximation at
the discrete time levels, special interpolation techniques using two neighbouree intervals can
be applied (se€?]).

In the following subsections, we specify the constants of the cGPk)-method for the cases
k = 1 andk = 2, and for comparison we describe explicitly the well-knov@(#l) approach (se€]
for more details).

2.1.1. cGP(1)-methodwe use the one-point Gaussian quadrature formulatith 0 andt,, ; =
tn—1+ 3. Then, we geton; o = —1 anda;; =1 (see [, 2]). Thus, problem §) leads to the

following problem for the "one” pair of unknowrs}, = u<(t,—1 + %) andP, = p(tn—1 + %)

Find (UL, P!) € V x Q such that for allv,q) € V x Q it holds
(U’}I7V)Q+ TTna(U’}lvv)+TTwn(U71L7U’}lvv)+ TTnb(VHPT%) = TTW (f(tn,l)7v)ﬂ+ (U%,V)Q (11)
b(Un7 q) = 0

Once we have determined the solutiorj at the midpoint,, ; of the time intervall,,, we get the
solution at the next discrete time poift simply by linear extrapolation based on the ans&jz (
ie.,

u'r(tn) = QU}I - U?M (12)

whereU? is the initial value at the time intervét,,_1,¢,] coming from the previous time interval
I,,_1 or the initial valueu,.

If we would replacef (¢,,,1) by the mean valuéf (t,,—1) + f(¢,))/2, which means that we replace
the one-point Gaussian quadrature of the right hand sidenbytrapezoidal rule, the resulting
cGP(1)-method is equivalent to the well-knov@mank-Nicolson schemé&he cGP(1)-method is
accurate of order 2 in the whole time interval as it is known tfee Crank-Nicolson scheme.
Concerning the pressure approximation, one observestibatecond order accuracy holds only
in the midpoints of the time intervals. By means of lineaeipblation between the midpoints of
two neighbouring time intervals we get second order acquaisp at the discrete time levels.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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6 S. HUSSAIN ET AL.

2.1.2. cGP(2)-methodHere, we use the 2-point Gaussian quadrature formula wehptbints
t

__1 P i i i
= andty, = 7 Then, we obtain the coefficients

_ 3 2v3-3
- ahs )
Vi

Consequently, on the time intervhl, we have to solve for the two "unknowns”

) i=1,2,j=01,2 (13)

(UzL:PrJL) = (uT(t7L,j)7pT(t'rL,j)) EV x Q with tn,j = (tnfl +in +Tn£j)/2 for ji=12

(14)
The corresponding coupled system reads
ar1 (Up,v)g, + 5a(Us,v) + (U, Up,v) +a12 (U5, V) + 3(v, Pr) = 4(v)
OCQ,I (U}L,V)Q + CMQ’Q (UEHV)Q + %a(U%,V) + %n(Ugh U%, V) + %b(v7 P72L) - Q(V) (15)
b(U’}H Q) =
b(U%, Q) - 07
which has to be satisfied for @i, q) € V x @ with
Tn 0 .
li(v) = o> (f(tn,i),v) g — @0 (UmV)Q i=1,2. (16)

Once we have determined the solutidfs, U? at the Gaussian points in the interior of the interval
I,,, we get the solution at the right boundaryof I,, by means of quadratic extrapolation from the
ansatz9), i.e.,

u(tn) = U + V3(U;, - Uy), (17)

whereU! is the initial value at the time intervd],. The cGP(2)-method is accurate of order 3 in
the whole time interval and superconvergent of order 4 irdikerete time points (seé,[2]).

2.2. dG{ — 1)-method

Here, the time-discrete velocity and pressure solutioeisrahined in the solution spate., p.) €
YE-1 x Y#-1, wherek > 1. The ansatz fofu.,p.) on intervall, is then analog to%) with the
difference that the sum starts with= 1 and the scalar basis functiops ; are polynomials of order
k — 1. In this paper, we will concentrate only on the cdse 2, i.e. on the well-known dG(1)-
method. We can derive the following constants#gre {1, 2} (see again]] and [2])

1 V3-1 V3+1
(i) = <_\/§_1 i ) . (di) = (_\/25+1> . (18)
2 2

Then, on the time interval,, one has to determine the two "unknowri®J? , P7) € V x Q as the
solution of the following coupled system

a1 (UL, V), + 5a(Un, v) + Bn(Up, Up,v) + 3b(v, Pa) + 12 (Un,v), = £i(v)
OCQ,I (U}L,V)Q + CMQ’Q (UEHV)Q + %a(U%,V) + %n(Ugh U%, V) + %b(v7 P72L) = eQ(v) (19)
b(Un,q) =
b(Us,q) = 0
which has to be satisfied for gl ¢) € V x Q with ¢;(-) defined by
T .
() = T (ftna)V)g+di (Uhv) - i=12. (20)
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)

Prepared usindldauth.cls DOI: 10.1002/fld



GALERKIN TIME DISCRETIZATIONS FOR THE INCOMPRESSIBLE NAER-STOKES EQUATIONS 7

Once we have solved the above system, we ohia@ndp. at the time,, by means of the following
linear extrapolation
_V3+1

ST L R

3—1 3+1
\/_2 U‘}L and p-r(tn) = \/_2 P72L -

V3-1
2

pl. (21)

The dG(1)-method is of order 2 in the whole time interval andesconvergent of order 3 in the
discrete time points (se&,[2]).

3. SPACE DISCRETIZATION BY FEM

After discretizing the Navier-Stokes equation® (n time, we now discretize the resulting
" I,-problems” in space by using the finite element methbd [L1, 12, 13]. In our numerical
experiments, the finite element spac€s c V and Q, C Q are defined by biquadratic and
discontinuous linear finite elements, respectively, on adglateral meshT, covering the
computational domaif. Each "I,,-problem” for the cGF¥) or the dG§{ — 1)-approach has the
structure:

For givenUY € V, find(UJ,,P}) € Vx Q,j =1,...,k, such that

n? n
Zai,j U‘7]L7V +la(U;L7V)+ _nn(U;MU’anV)—’— _nb(V7P7lL) - ZZ(V)
= ( )Q 2 2 2 | (22)
b(U?m Q) = 07
which has to be satisfied for all= 1, ...,k and all (v, ¢) € V x @ with
Tn 0
bi(v) = o> (f(tn,i)sv) o + di (UmV)Q (23)

whereq; ; andd; are the corresponding constants described above.

For the space discretization, &, P7) € V x @ are approximated by finite element functions
(Uﬁhh, Pi,h) € V5, x Qn, respectively, and the fully discreté,,-problem” reads:

For givenU?, , € V,, find (Ui,h, P’

n,h

YE VL, XxQp j=1,...,k, suchthatitholds

k

, < _ . . . . _
Z Q. j (Uﬁhh’ Vh)Q + fa(UiL,hy vp) + 7”"( nhs Uiy Vi) + fb(vhy Pyn) = Li(vp)
j=1

|
o

b(Uiz,hv an)
(24)

forall (vh,qn) € Vi x Qrandalli =1,... k.

Once we have solved this system, we have computed for ea&h¢ti#ny,, a finite element
approximationu- 5 (t) € Vy, of the time discrete solutiom<(¢t) € V which is defined by an
analogous ansatz t&)where theU?, € V are replaced by the discrete functidﬂ%_h € Vy,.

In the following, we will write problem 24) as a nonlinear algebraic block system. Let
Sn C H}(Q) denote the scalar finite element space for the velocity compsU;, V) € S), of

nr'n

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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8 S. HUSSAIN ET AL.

U, = (U, Vi, eV, =5} andletg, € Sy, p=1,...,my, denote the scalar finite element
basis functions ofS;,. Then, we define the nodal vectdi’, = (U7, V7) € R?™» of Ui,h _
(Ui,ha V,ih) € Vy, such that

mp . mp p
Ul @)=Y Uhutu(@), VI, (2)=> Vhusulx) Vze (25)
p=1 pn=1
Similarly for the pressure, let,, € Qn, u = 1,...,n;, denote the finite element basis functions and

PJ e R™ the nodal vector of’’ , € @), such that

Pi,h(x) = ZL(B%)M/JM(QU) Ve (26)

p=1

Furthermore, we introduce the mass mathik € R™»*™~  the discrete Laplacian matrik
R™Mrxmu the gradient matriceB; € R™"»*™r ¢ = 1,2, as

My = (¢, dv)qs  Lvp:=a(ou,év), (Bi)vu:= b((buei,wy), (27)
and the right hand side vectofy, G, € R™»,i = 1,..., k, with the components
iy . ] 1 iy ) 2
(Fo = (fltnid dve") o (G = (Fltna)ove?) . (28)

Next, for a given discrete velocity field;, € V;, with the nodal vectow € R*™», we define the
matrix N(E) c Rmrxmn gg

N(W)v,p = (W, G, dv)- (29)

Using the block-matrices and block-vectors

M:{M 0} L:[L 0]7 N(E)Z[N(ﬂ) 0 } .
0 M 0 L 0 N(w)

the fully discrete T,,-problem” is equivalent to the following nonlinearx k block system:

F}

Fr,=|"l, (30
: i (30)

For given UY € R¥", find U’/ € R?"» and P/ ¢ R"™, j=1,...,k such that for all
i=1,...,k, it holds

—n =-—n

k
1 T i T i i T i i
> 0i MU, + Z'LU, + ZN(U,)U, + 5B, = &MU+ 3F, 1)
j=1

BTU!, = o

The vectoﬂ_J?L is defined as the finite element nodal vector of the fully disesolutionu ; (¢,—_1)
computed from the previous time interygl _», t,,—1] if n > 2 or from a finite element interpolation
of the initial datauy if n = 1. In the case of higher Reynolds numbers, we apply additipaaledge
oriented FEM stabilization (EOFEM)L] for the convective term. This means that we replace the
trilinear formn(w, -, -) by a modified forrm,,(w, -, -) such that, in81), differences will appear only
in the nonlinear matrilN (w).

In the following, we will present the resulting block systifor the cGP(1), cGP(2) and dG(1)
method which are used in our numerical experiments.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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3.1. ¢cGP(1)-method

The problem on time intervdl, reads:

For given initial velocityU? = (U°,V?), findU} = (U}, V}) and a pressuré®’, such that

—-n’ —-n’ —n

(M+ B L+%N) U, +%BiP, = BF+MU,
(M+ %L+ 5NV, + 3 BoP, = BpGnp+ MV, (32
BiU, + B3V, = 0

whereN; := N(w!) with w! := (Q}L,K;)T denotes the nonlinear convection operator. Once we

have determined the soluti@f , V' we compute the nodal vectd’ , ,, V. | of the fully discrete
n p n+1 n+1

solutionu. ;, at timet,, by using the following linear extrapolation

0 1 0 0 1 0
uT,h(tn) ~ Q7L+1 = QQn - Q'yp UT,h(tn) ~ Zn-‘,—l = QZ” - Kn' (33)

3.2. ¢cGP(2)-method

The6 x 6 block system on time intervd], reads:

For given initial velocityU® = (U°,V?), findU!, U2, V! V2 and P!, P? such that

(BM +tnL + taN1) Uy, + (2V3 = 3) MUZ + TuB1P), = TPy +2V3MUY
(=2v/3 = 3) MU}, + (3M + th L+ TnN2) U2 + T B1P% = TauFy —2v/3MUY
(BM +TnL + TaN1) VL + (2V3 = 3) MV2 + 1w BoPy, = TnGy +2V3MVY (34
(=2v3 = 3) MV} + (3M + TuL + TuN2) V2 + tnBoP2 = 1nGE —2/3MVY
BiU,+ B3V, = 0
BIU; + B3V, = 0

where N; := N(w') with w’ = (U’ , V)T, i = 1,2, denotes the nonlinear convection operator
associated with the velocity approximation evaluated atiith Gauld point on the time interval.
Once we have determined the soluti@n,, U2, V., V), we compute the nodal vectdig) ., and
K?LH of the fully discrete solutiom. ;, at timet,, by using the following quadratic extrapolation

wep(tn) ~Up g =Up +V3(UL —Uy,),  ven(tn) ~ Vo =V) +V3(V2 - V,).  (35)

To get a higher order pressure at timg particularly for the computation of lift, drag, etc., we

perform a special post processing as described]in [

3.3. dG(1)-method

The analogous x 6 block system on the time interva) reads:

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
Prepared usindldauth.cls DOI: 10.1002/fld



10 S. HUSSAIN ET AL.

For given initial velocityU? = (U°, V%), find U, U?, V! V? and P}, P2 such that

(2M + oL+t N) U, + (VB = 1) MU} + tB1 Py, Tl + (V34 1) MU,

(=3 1) MUL + (2M + L + TuN2) U2 + T B1 P2 = TnF3+ (—V3+1) MUY,
(2M +TuL + TN V) + (V3= 1) MV} + tnBoPy), = TaGrh+ (V3+1) MV (36)
(=VB=1) MV, + (2M + L+ TaNo) Vi + taBoPy = TaGh+ (—V3+1) MV,
B{U,+ B3V, = 0

BIU; +BIV;, 0

where againN; := N(w') with w* = (U’,V')", i = 1,2, denotes the nonlinear convection
operator associated with the velocity approximation eatald at the-th Gauld point on the time
interval. Once we have determined the solutiof}, U2, V}, V2), we compute the nodal vectors
UY .. Ve . andP)  , as the left side limit of the fully discrete solutien , andp- j, at timet,, by
using the following linear extrapolation

— 0 3+1772 3—1771
u'r,h(t") ~ QnJrl = f%gn - ngnv

vy (tn) ~ Vi Varly?2 _ Maolyl (37)

Peptn) ~ Poyy = ¥3ELP2 — ¥3lpl,

The resulting nonlinear saddle point problems frad2)( (34) or (36) are solved by using a
Newton-multigrid method with Vanka type smoothers (s2efpr details). A detailed analysis
regarding the solver behavior (similar t8]] will be part of the forthcoming paper inLf]. The
solution approach is based on an outer nonlinear loop whashtd solve a linear system in each
nonlinear step. The associated linear subproblems aredsbly means of a geometrical multigrid
method with a local pressure Schur complement smoother[§s€lés, 3, 17]), resp., Vanka-like
smoother. The corresponding linear systems in each tireeval{(t,,_;, ¢,,], are6 x 6 block systems
in the case of the cGP(2) and dG(1) approach, &nrd3 block systems for the cGP(1)-method,
respectively, as described before.

4. NUMERICAL RESULTS

Analytical test cases to analyze the order of convergenge baen considered ir2]. Here,
we perform nonstationary simulations for more complex flamfeggurations to demonstrate the
temporal accuracy and efficiency of the presented higheerdithe discretization schemes for
prototypical test cases of benchmarking character. Toethds we continue the work which had
been started by one of the authors@h where different time stepping schemes for two problems,
namelyflow around cylindeandflow through a Venturi pipevere analyzed. First, we consider the
flow around cylindeconfiguration which has been described4h Here, we will concentrate only
on the nonstationary behavior of the flow patterns with mcoscillations and examine the ability
of the different time discretization schemes (combinedhtie same FEM discretization in space)
to capture the dynamics of the flow.

As a second test case, we consider the nonstationary belod@digher Reynolds number flow
through a Venturi pipe which has many real life and induk#jmplications. If the inflow speed from

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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the inlet is sufficiently high, then due to the Bernoulli mijple, the narrow section in the middle of
the pipe produces a low pressure which creates a flux thrawvegbgper part of the small pipe. The
objective of this simulation is to control the instantaneand mean flux through this device.

4.1. Nonstationary flow around cylinder

The flow problem related to the ‘flow around cylinder’ configtion [4] is characterized as follows:

¢ (laminar) nonstationary Navier-Stokes equationBat= 100

e parabolic inflow withU .., = 1.5

e time interval:[ty,to + T = [0, 10], wheret, corresponds to the fully developed solution for
each mesh level

e space-discretizationi?,-elements for velocity and discontinuoBs-elements for the pressure
on a quadrilateral mesl)¢ / P{#*)

o time-discretization: cGP(1), cGP(2), dG(1)

e no stabilization for space-discretization

Here, the domain) consists of a channel of heighif = 0.41 and lengthL = 2.2 having
a circular cylinder located at0.2,0.2) with diameterD = 0.1, placed at right angle to the
direction of the fluid (see Figurd). Further details regarding the settings can be found on
http://ww. f eat fl ow. de/ en/ benchmar ks/ cf dbenchmar ki ng. ht .

The maximum velocity/,,... = 1.5 yields Re = 100 which leads to periodically oscillatory time-
dependent vortex shedding behind the cylinder. For thigeasf Reynolds numbeit®gether with
the Q»/ P discretization, our results have shown that there is no feestabilization of the
convective terms.

Quantities of physical interest: The examined accuracy of the benchmark crucially depends on
the following quantities computed on the bound&rgf the cylinder

Fp = /(pu%ny — png)dS, and particularly Fr = —/(py%nx + pny)dS (38)
S

on s On

representing the total forces in the horizontal and vdrtiizactions, respectively. The resulting drag
and lift coefficients are (withh = 1 andU,,,,. = 1.5)

_ 2Fp _2F
CD B pU’VQVLCCLTLD 7 CL B pU’VQVLCCLTLD ' (39)
Furthermore, the pressure drop on the cylinder which is ddfas
Ap =pa — pB, (40)

where A(0.15,0.2) and B(0.25, 0.2) are points on the boundary of the cylinder, is also of interes
Beside these quantities, we also compare the accuracy diffaeent time discretization schemes
by computing the velocity at the poin?(0.4, 0.2) near the obstacle.

Figure2 shows the initial coarse mesh (level 1), which will be umifidy refined, and Figur&
presents for different space mesh levels the number '#E&lexhents and the total number '#DOF’

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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2,2
I
041 Unnax .
L,
(X,,y.) = (0.2,0.2)
l_‘1

Figure 1. Geometry for thifbow around cylinderconfiguration in 2D.

Lev. | #EL | #DOF(total)
] 2 520 5928
3| 2080 23296
T 4| 8320 92352
Figure 2. Coarse mesh félow around cylinder Figure 3. Size of the different systems in space.

of degrees of freedom where the finite element discretizati@arried out by using the described
biquadratioQ--element for velocity and discontinuoés-element for the pressure.

In order to compare the accuracy of the different time diszagons, the flow is started from a
fully developed solution, that means the simulation on #traesmesh with small time step had been
performed until a fully periodical flow behavior had beenateed, at time,, and the simulation
is performed until T=10 using different time discretizatimethods for various uniform time step
sizest, := 1. After T=10, all the introduced quantities are plotted andlgzed in detail. To this
end, in addition to the global picture of all quantities frtimet, to ¢y + 10, these quantities are also
zoomed in the last unit from T=9 to T=10. Since the resultaiotetd from the Crank-Nicolson and
cGP(1)-method are almost identical as expected, we shovethits for the cGP(1) only together
with the cGP(2) and dG(1)-method. All the time discretiaatschemes are started from the same
initial solution (fully developed velocity field) and prese and the simulations are performed with
the same time step sizes. First, we show the results for nregsh4. Next, we demonstrate that the
results are already grid independent by showing them fderaift (space) levels for the cGP(2)-
method, so that higher levels are not required.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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reference
T=1/100
— — — T=1/50

v-velociy at P(0.40.2)

reference
T=1/100
T=1/50
T=1/25
T=1/20
— — — T1=1/15

v-velocity at P(04,0.2)

reference
T=1/100
T=1/50
T=1/25
T=1/20
— — — T=1/15

— — — Tt=1/10

v-velocity at P(0.40.2)

Figure 4.v-velocity at pointP (0.4, 0.2) for level 4 for differentt, using cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method (from T=9 until T=10 after startimgrfi T=0).
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2.52

reference
T=1/100
— — — T1=1/50

2.51

2.49

2.48

2.47

Pressure difference

2.46 |

2.45

2.44

2.43

2.42

2.52 ——— reference
———— t=1/100
——— t=1/50
—— 1=1/25
————— t=1/20
2.5 — — — T1=1/15
2.48
o
2
s
=
= 2.46
o
=
4
&
2.44
2.42
2.4
2.52 ——— reference
———— t=1/100
————— 1=1/50
2.51 — 1=1/25
——— t=1/20
— — — t=1/15
2.5 — — — t=1/10
2.49
@ 2.48
o
=
5 2.a7
=4
E
3
L
a 2.46
2.45
2.44
2.43

2.42

Figure 5. Pressure differendep = p4(0.15,0.2) — pp(0.25,0.2) for level 4 for differentt, using cGP(1)
(top), dG(1) (middle) and cGP(2) (bottom) method.
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reference
T=1/100
— — — T=1/50

Litt coefficient

reference
T=1/100
T=1/50
T=1/25
T=1/20
— — — T1=1/15

Lift coefficient

reference
T=1/100
T=1/50
T=1/25
T=1/20
— — — T=1/15

— — — Tt=1/10

Litt coefficient

Figure 6. Lift coefficient for level 4 for different, using cGP(1) (top), dG(1) (middle) and cGP(2) (bottom)
method.
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——— reference
——— Tt=1/100
—— Tt=1/50
— T=1/25
—— T=1/20

— — — T=1/15
— — — Tt=1/10

Litt coefficient

—  reference
——— 1=1/100
—— T=1/50
—— T=1/25
—— t=1/20

— — — T=1/15
— — — t=1/10

Lift coefficient

——— reference
——— Tt=1/100
T=1/50
T=1/25
T=1/20
— — — Tt=1/15
— — — Tt=1/10

Litt coefficient

Figure 7. Lift coefficient for different, using cGP(2)-method at (space) mesh level 2, 3 and 4.
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Next, we perform a more careful analysis on the basis of thies@lready (partially) shown in
Figure4 to 7. To this end, we will mainly concentrate on the values of tftecbefficient (Cr)
because this quantity has the larger amplitude in compavigih others. Tablé andIl demonstrate

the 'deviation in percentage of the curves per cycle’ fordbaesponding time step sizes from the

reference values, i.ewfﬁ x 100%, whereAx is the total deviation after T=10 (with length of
period= 0.33, number of cycles until T=16: 30). The reference values are taken from the higher
order cGP(2) scheme with very small time step: 1/200 (keep in mind that all tests started from
the same start solution and that we perform approximatets8ilations until T=10). The different

time discretization schemes are then compared in the skasallows large time steps to gain the

desired accuracy.

cGP(1) cGP(2) dG(1)

T cGP(l) cGP?2) dG(1) T
1/100 0.32% 0.00% 0.01% 1/100 0.32% 0.00% 0.01%
1/50 1.33% 0.01% 0.05% 1/50 1.32% 0.01% 0.05%
1/25 0.12% 0.39% 1/25 0.12% 0.37%
1/20 0.29% 0.71% 1/20 0.29% 0.68%
1/15 0.85% 1.61% 1/15 0.85% 1.51%

1/10 0.98% 1/10 0.85%

Table II. Deviation of the-velocity at point

Table |. Deviation of the lift coefficient in percentage
P(0.4, 0.2) in percentage for space level=4.

for space level=4.

In the next Tabléell, we conclude the maximum allowed time step sizes to gain epafybe results
with an error of less than 1% per time period at a given spagg fer the corresponding time

discretization schemes.

Lev | cGP(1) | cGP(2) | dG(1)
2 1/100 1/10 1/20
3 1/100 1/10 1/20
4 1/100 1/10 1/20

2

‘factor‘ 10 ‘ 1

Table 11l. Maximum allowed timestep sizes to obtain dewatof less than 1% per time period at given space
level for cGP(1) vs. cGP(2) vs. dG(1).

Summarizing the results from Tallé, we can see that the corresponding time step sizes to gain
the accuracy with an error of less th## per time period are two times larger for the cGP(2)- than
for the dG(1)-method and ten times larger than for the cGR@thod.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
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18 S. HUSSAIN ET AL.

Finally, we want to show all the presented time discretaratichemes with those time step sizes
for which the lift coefficient{ C',) values are almost identicek 0.5%) after T=10, resp., approx 30
periods. Figure3 depicts the corresponding lift coefficients, for 10 timetsniVe also zoom these
quantities in the last time unit (from T=9 until T=10) to see {very small) differences more clearly
in Figure9.

cGP(1)(1=1/100)

1+ N cGP(2)(1=1/20)
— — — dG(1)(1=1/25)
0.8 1 -

Lift coefficient
o
|

o 1 2 3 4 5 6 7 8 =] 10
time

Figure 8. Lift coefficient for cGP(1) vs. cGP(2) vs. dG(1) pase level 4.

cGP(1)(1=1/100)
> cGP(2)(1=1/20)
— < — dG(1)(1=1/25)

Lift coefficient

=] 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
time

Figure 9. Lift coefficient for cGP(1) vs. cGP(2) vs. dG(1) pase level 4.
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4.2. Nonstationary flow through a Venturi pipe

The test configuration for the ‘flow through a Venturi pipe’ialn is considered here is slightly
changed from the framework which has been already use#8,ifl].[Figure 10 shows the geometry
and the coarse mesh (level 1) used for this simulation. Tlagseomesh is recursively refined by
joining opposite midpoints. The total length of the Venpipe isL = 42, the height of the Venturi
pipe at the in/outlet ig7 = 5, the height in the most narrowing partfis = 1 and the width of the
small upper channel i8; = 0.8. The upper, lower walls of the pipe and the sides of the snpgléu
channel are subjected to the no slip boundary conditionthéinlet (left part of the boundary), an
inflow of constant velocity/ = 1 is prescribed while natural boundary conditions are presdrat
the outlet (right part of the boundary) and at the small uppkutlet. The value of the kinematic
viscosity is settar = 10~2 and the density of the fluid = 1. TheReynoldske numberdetermining
the flow properties may be defined as

whereU is the maximum velocity through the narrow section in thee@pdL is the height of this
section. The resulting maximum velocity~ 7.0 yields Re ~ 700. The resultingReynolds number
produces complex flow patterns which are oscillating in spaued time. As we explained before,
the aim of the simulation is to control the flux through the @pphannel. Beside this interesting
flow quantity we also compute thevelocity at the poinP(16.0, 5.4) (top of the small channel) and
P(27.05,2.5) (right of the pipe) and the pressure at the péit6.0, 2.5) in the middle of the pipe to
compare the accuracy of all the presented time discratizatthemes. FigurEl gives an overview
of the size of the problem on different space mesh levels evtier finite element discretization is
carried out by using the biquadratif-element for the velocity and discontinuofis-element for
the pressure. Here, we employ the edge oriented jump FENiz&ion approach (seelfl]) with
stabilization parameter = 0.1. In order to compare the accuracy of different time diszegions,

Lev. #EL | #DOF(total)

3| 384 4466

I e B ey 4| 1536 17378
1 5| 6144 68546
6 | 24576 272258

Figure 10. Coarse mesh for the Venturi pipe flow. Figure 11. Size of the different systems in space.

the flow is started on each mesh level from the correspondioigeS solution at timeé = 0, and the
simulation is performed until T=30 using different time afistization methods for different time
step sizes. At T=30, all the quantities of interest are plotted and ypedi in detail. Since the results
obtained from Crank-Nicolson and cGP(1)-method are alnuesttical as expected, therefore we
show the results for cGP(1) only together with the cGP(2)@@&¢L)-method.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2011)
Prepared usindldauth.cls DOI: 10.1002/fld



20 S. HUSSAIN ET AL.

Flux

reference

T=1/200

30

time

20

25

Flux

reference
1=1/25
T=1/20

time

20

1.5

Flux

— — — T1=1/6

reference
T=1/20
T=1/15
1=1/10
T=1/8

30

i
o 5 10 15
time

20

Figure 12. Flux through the upper inlet/outlet at spacellByesing the cGP(1) (top), dG(1) (middle) and

cGP(2) (bottom) method.
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reference

1=1/200

Pressure

time

T
reference
t=1/25 /
t=1/20 \\

Pressure

time

reference
t=1/20
T=1/15
T=1/10
T=1/8 / \
— — — 1=1/6

Pressure
|
B

—a I I i
[e] 5 10 15 20 25 30
time

Figure 13. Pressure at poiR{(16.0, 2.5) at space level 5, using the cGP(1) (top), dG(1) (middle) &zid(@)
(bottom) method.
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v-velocity

reference

-4 t=1/200 ||
t=1/100

— — — 1=1/50
_5 i i i i
o 5 10 15 20 25 30
time
a

v-velocity

—— reference
—— t=1/25
4 ——— t=1/20 B
t=1/15
— — — t=1/10
_5 T
o 5 10 1s 20 25 30
time
a

v-velocity

——— reference
———— t=1/20
—— 1=1/15

4 —————— 1=1/10 B
—— t=1/8
— — — 1=1/6

_5 i i i i T

o 5 10 15 20 25 30

time

Figure 14 »-velocity at pointP(27.05,2.5) at space level 5, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method.
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We observe from Figuré2 to 14 that the cGP(2)-method captures the dynamics of the flow at
quite large time step sizes as expected. The results heiifienedt mesh levels look somewhat more
different due to the higher Reynolds number. As in the casbeotylinder before, we demonstrate
in the same way the maximum allowed time step sizes which teagtry similar results in the
'picture norm’. TabldV shows these time step sizes for different space mesh levels.

Lev | cGP(1) | cGP(2) | dG(1)
3 1/50 1/5 1/10
4 1/50 1/5 1/10
5 1/100 1/10 1/20

‘factor‘ 10 ‘ 1 ‘ 2 ‘

Table IV. Maximum allowed time step sizes which lead (aljtssame results at given space level.

Accordingly, we show the corresponding plots associateédddime steps in Figurés.
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cGP(1)(t=1/100)
dG(1)(t=1/20)
cGP(2)(t=1/10)

Flux

time

T
cGP(1)(t=1/100)
dG(1)(t1=1/20)
CcGP(2)(1=1/10)

Pressure

time

v-velocity

—4r cGP(1)(t=1/100)
dG(1)(1=1/20)
cGP(2)(t=1/10)

5 i i i i T

o] 5 10 15 20 25 30
time

Figure 15. Flux (top)/pressure (middle¥elocity (bottom) at poinf>(27.05, 2.5) at space level 5, using the
cGP(1) vs. dG(1) vs. cGP(2)-method with max. allowed tinepst
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Finally, we demonstrate how the solution patterns deveidpé last 13 time units from T=18 to
T=30. Figurel6illustrates the velocity at space level 5.

Figure 16. Visualization of the velocity magnitude in thent@i pipe at space level 5 for 13 subsequent time
units.
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5. CONCLUSION

We have described in detail the application of the classcaiftinuousGalerkin-Petrov and
discontinuousGalerkin time discretization schemes to the nonstatiomagmpressible Navier-
Stokes equations. The first higher order members of thessedanamely the cGP(2)- and the
dG(1)-method, are superconvergent of 4th and 3rd ordereaetipoints of the time intervals,
respectively. The spatial FEM discretization has beenerhout by using conforming biquadratic
elements for velocity and discontinuous linear elementpifessure on a quadrilateral mesh leading
to 3rd order accuracy in space for thé-norm of the velocity. The discretized systems of nonlinear
equations are linearized by means of the Newton method,lenddsociated linear systems have
been solved using a geometrical multigrid method with a atype preconditioned GMRES
method as smoother.

For the evaluation of our approach, we performed numericallations for two nonstationary
benchmarking flow configurations in order to compare thegwerédnce of the various temporal
discretizations. For these two test problems, the clasiza around cylindeconfiguration and the
nonstationanflow through a Venturi pipewe can summarize as a result that the cGP(2)-method
allows approximately for a 10 times larger time step sizentttee cGP(1)-method (or Crank-
Nicolson scheme) to achieve the same accuracy, while thé&)d@€thod allows approximately
for a factor of 5. Since the corresponding analysis (4&B pf the numerical costs for the cGP(2)-
and dG(1)-method shows that the arising nonlinear blositesys in the implicit time discretization
schemes can be solved very efficiently with nearly optimahglexity, this higher order approach
is clearly advantageous in comparison to classical secaief time stepping schemes.
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