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SUMMARY

In this paper, we extend our work for the heat equation [1] and for the Stokes equations [2] to the
nonstationary Navier-Stokes equations. We present fully implicit continuousGalerkin-Petrov (cGP) and
discontinuousGalerkin (dG) time stepping schemes for incompressible flowproblems which are, in contrast
to standard approaches like for instance the Crank-Nicolson scheme, of higher order in time. In particular, we
implement and analyze numerically the higher order dG(1) and cGP(2)-methods which are super-convergent
of 3rd, resp., 4th order in time, while for the space discretization, the well-known LBB-stable finite element
pair Q2/P

disc
1 is used. The discretized systems of nonlinear equations aretreated by using the Newton

method, and the associated linear subproblems are solved bymeans of a monolithic multigrid method
with a blockwise Vanka-like smoother [3]. We perform nonstationary simulations for two benchmarking
configurations to analyze the temporal accuracy and efficiency of the presented time discretization schemes.
As a first test problem, we consider a classicalflow around cylinderbenchmark [4]. Here, we concentrate
on the nonstationary behavior of the flow patterns with periodic oscillations and examine the ability of
the different time discretization schemes to capture the dynamics of the flow. As a second test case, we
consider the nonstationaryflow through a Venturi pipe[5, 6]. The objective of this simulation is to control
the instantaneous and mean flux through this device. Copyright c© 2011 John Wiley & Sons, Ltd.
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2 S. HUSSAIN ET AL.

1. INTRODUCTION

For solving nonstationary flow problems, it is very common todiscretize partial differential

equations (PDEs) first in space and then in time, known as the ‘Method of Lines’. This approach

creates a system of ordinary differential equations (ODEs)which might be solved by state-of-the-

art ODE integrators. However, the grid points of the spatialmesh have to stay fixed in time or are

often subject to certain constraints, as for example in the case of moving mesh methods, so that

these methods often have difficulties in changing the spatial mesh from time step to time step. On

the other hand, the Rothe method, which performs first the semi-discretization in time, allows a

fully adaptive integration of time dependent PDEs. A class of time discretization schemes which

is based on Rothe’s method is thecontinuousGalerkin-Petrov discretization (cGP(k)-methods) and

thediscontinuousGalerkin (dG(k)) approach. The cGP-method has already been used by Aziz and

Monk [7] (but not under this name) for the linear heat equation in which case they could prove

optimal error estimates as well as superconvergence results at the discrete time pointsτn. Currently,

extensive tests regarding the higher order accuracy in timehave been performed for the heat equation

in [1] and for the Stokes equations in [2].

In this paper, we extend these numerical studies to the nonstationary Navier-Stokes equations.

In particular, we implement and analyze numerically the (fully implicit) cGP(2)-method which is

found, at comparable numerical cost per time step, to be of higher order than classical schemes like

Crank-Nicolson or BDF methods, namely of order 3 in the wholetime interval and superconvergent

of order 4 in the discrete time points. Since we obtain such superconvergence results attn for

the velocity only, it is also desirable to get a higher order pressure at the same time points, for

instance for the computation of the hydrodynamic forces in CFD problems such as drag, lift etc.

Therefore, we perform additionally a special postprocessing based on a simple local interpolation

procedure as described in [2]. Moreover, the corresponding spatial discretization is carried out by

using biquadratic finite elements (Q2) for the velocity and discontinuous linear elements (P disc
1 )

for the pressure which are of similar high order accuracy in space, namely of third order for the

velocity and second order for the pressure measured in theL2-norm. On each time interval, the

cGP(2)-method as well as the dG(1)-method lead to a2× 2 nonlinear block-system of Navier-

Stokes equations in space. The resulting discretized systems of nonlinear equations, which are

characterized as coupled saddle point problems, are treated by means of the Newton method, and the

associated linear subproblems are solved using a monolithic multigrid solver with a local pressure

Schur complement type smoother of Vanka type [3].

For a systematic comparison of the various temporal discretizations w.r.t. the resulting accuracy

for prototypical flow configurations of benchmarking character, we perform detailed simulations

of two different nonstationary flow problems. The first test problem considers the classical ‘flow

around cylinder’ configuration in [4]: Here, we concentrate on the nonstationary behavior of the

flow patterns with periodic oscillations and examine the ability of the different time discretization

schemes to capture the dynamics of the flow. The quantities ofinterest are the lift and drag

coefficient, as well as the pressure drop between two points on the cylinder. The temporal accuracy

is compared by means of plotting these physical quantities for various time step sizes and schemes,
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and particularly the deviation per cycle (in percentage) ofthe corresponding reference curves is of

interest.

As a main result, the numerical tests show that the cGP(2)-method gains the same accuracy at

time step sizes which are approximately 10 times larger thanthe associated time steps for cGP(1),

resp., Crank-Nicolson (CN) while the dG(1)-method achieves this accuracy for which the associated

time step is approximately 5 time larger than that of cGP(1) or CN. These tests have been performed

for different spatial mesh levels and demonstrate the same grid-independent behaviour for all levels.

As a second test problem, we analyze the nonstationary ‘flow through a Venturi pipe’ which can

be found as a small device in sailing boats: If the inflow speedfrom the inlet is sufficiently large,

then due to the Bernoulli principle, the narrow section in the middle of the pipe produces a lower

pressure which creates a flux through the upper part of the small pipe. One of the objectives of

this simulation is to control the instantaneous and mean fluxthrough this device (see also [5, 6]).

In order to compare the different temporal discretizations, the flow is always started from a same

start solution (namely the Stokes solution) and the simulations are performed for 30 time units with

various time step sizes. Again, the numerical results demonstrate that the necessary time step sizes

for cGP(2), for which almost the same results are obtained asfor cGP(1) or CN, are 10 times larger

while for the dG(1) approach they are 5 times larger. These factors 10 and 5 become even more

clear for higher space mesh levels when more and more scales of this complex flow configuration

can be resolved. As a main conclusion, we can say that the presented cGP(2) approach, together with

special Newton-multigrid FEM solvers which can handle large time steps and large problem sizes

in a very efficient way, has a great potential for complex flow simulations due to its high accuracy

and robustness.

The paper is organized as follows: Section2 describes the theoretical details ofcontinuous

Galerkin-Petrov (cGP(k)) anddiscontinuousGalerkin (dG(k)) methods. The finite element space

discretization is considered in Section3 together with the resulting discrete problems. Finally,

Section4 presents the numerical results for a couple of test problems. In Section5, the paper is

concluded with a discussion of the results.

2. GALERKIN TIME STEPPING FOR THE NAVIER-STOKES EQUATIONS

For a domainΩ ⊂ R
d, we consider the nonstationary incompressible Navier-Stokes equations,

i.e. we want to find for each timet ∈ [0, T ] a velocity fieldu(t) : Ω → R
d and a pressure field

p(t) : Ω → R such that

∂tu− ν△u+ (u · ∇)u+∇p = f, in Ω× (0, T ],

div u = 0 in Ω× (0, T ],

u = g on ∂Ω× (0, T ],

u(x, 0) = u0(x) in Ω for t = 0,

(1)

whereν denotes the viscosity,f the body force andu0 the initial velocity field at timet = 0. For

simplicity, we restrict to the cased = 2 and we assume homogeneous Dirichlet conditions at the

boundary∂Ω of a polygonal domainΩ (for other choices see [8]). To make this problem well-posed

in the case of pure Dirichlet boundary conditions, we have tolook for the fieldp(t) at each timet in

the subspaceL2
0(Ω) ⊂ L2(Ω) of functions with zero integral mean value.
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For the time discretization, we decompose the time intervalI = (0, T ] intoN disjoint subintervals
In := (tn−1, tn], wheren = 1, . . . , N and0 = t0 < t1 < · · · < tN−1 < tN = T. Thus, the value of
the time-discrete approximationuτ at time tn is always defined as theIn-value (i.e. the left-
sided value in case of discontinuous approximation)uτ(tn) := u

− := uτ|In(tn). The symbolτ
denotes thetime discretization parameterand is also used as the maximum time step sizeτ :=

max1≤n≤N τn, where τn := tn − tn−1. Then, for the subsequent continuous and discontinuous
Galerkin time stepping schemes, we approximate the solution u by means of a functionuτ which
is piecewise polynomial with respect to time. In case of the cGP(k)-method, we are looking foruτ

in the discrete time-continuous space (withV = (H1
0 (Ω))

2)

X
k
τ := {u ∈ C(I,V) : u

∣

∣

In
∈ Pk(In,V) ∀ n = 1, . . . , N}, (2)

where

Pk(In,V) :=
{

u : In → V : u(t) =

k
∑

j=0

U
jtj , ∀ t ∈ In, U

j ∈ V, ∀ j
}

. (3)

Moreover, we introduce the discrete time-discontinuous test space

Y
k−1
τ := {v ∈ L2(I,V) : v

∣

∣

In
∈ Pk−1(In,V) ∀ n = 1, . . . , N} (4)

consisting of piecewise polynomials of orderk − 1 which are (globally) discontinuous at the end

points of the time intervals. Similarly, we will use for the time-discrete pressurepτ an analogous

ansatz spacẽXk
τ
, where the vector valued spaceV is replaced by the scalar valued spaceQ = L2

0(Ω),

and an analogous discontinuous test spaceỸ k−1
τ

.

In case of the dG(k − 1)-method, we are looking foruτ in the time-discontinuous discrete space

Y
k−1
τ

. Next, we describe separately the cGP(k) and dG(k − 1)-method.

2.1. cGP(k)-method

In order to derive the time discretization, we multiply the equations in (1) with some suitableIn-
supported test functions and integrate overΩ× In. To determineuτ|In andpτ|In we represent them
by the polynomial ansatz

uτ|In(t) :=
k
∑

j=0

U
j
nφn,j(t), pτ|In (t) :=

k
∑

j=0

P j
nφn,j(t), (5)

where the ”coefficients”(Uj
n, P

j
n) are elements of the function spacesV ×Q and the polynomial

functionsφn,j ∈ Pk(In) are the Lagrange basis functions with respect to thek + 1 nodal points
tn,j ∈ In satisfying the conditions

φn,j(tn,i) = δi,j , i, j = 0, . . . , k (6)

with the Kronecker symbolδi,j . For an easy treatment of the initial condition, we settn,0 = tn−1.
Then, the initial condition is equivalent to the condition

U
0
n = uτ|In−1

(tn−1) if n ≥ 2 or U
0
n = u0 if n = 1. (7)

The other pointstn,1, . . . , tn,k are chosen as the quadrature points of thek-point Gaussian formula

onIn which is exact if the function to be integrated is a polynomial of degree less or equal to2k − 1.

We define the basis functionsφn,j ∈ Pk(In) of (5) via affine reference transformations (see [1, 2]
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for more details). Now, we can describe thetime discreteIn-problem of the cGP(k)-method[1, 9]:

Find on the intervalIn = (tn−1, tn] the k unknown pairs of ”coefficients”(Uj
n, P

j
n) ∈ V ×Q,

j = 1, . . . , k, such that for alli = 1, . . . , k, it holds for all(v, q) ∈ V ×Q

k
∑

j=0

αi,j

(

U
j
n,v

)

Ω
+

τn

2
a(Ui

n,v) +
τn

2
n(Ui

n,U
i
n,v) +

τn

2
b(v, P i

n) = τn

2

(

f(tn,i),v
)

Ω

b(Ui
n, q) = 0

(8)

with U
0
n := uτ(tn−1) for n > 1, U0

1 := u0 and(·, ·)Ω denotes the usual inner product in(L2(Ω))d.
The bilinear formsa(·, ·) andb(·, ·) onV ×V andV ×Q, respectively, are defined as

a(u,v) :=

∫

Ω

∇u · ∇v dx ∀ u,v ∈ V, b(v, p) := −
∫

Ω

∇ · v p dx, (9)

and the trilinear formn(·, ·, ·) onV ×V ×V is given asn(w,u,v) :=
∑d

i=1
ni(w, ui, vi) where

ni(w, ui, vi) :=

∫

Ω

(w · ∇ui)vi dx ∀ w ∈ V, ui, vi ∈ H1
0 (Ω). (10)

A typical property of this cGP(k)-variant is that the initial pressureP 0
n of the ansatz (5) does not

occur in this formulation. In order to achieve superconvergence for the pressure approximation at

the discrete time levelstn special interpolation techniques using two neighboured time intervals can

be applied (see [2]).

In the following subsections, we specify the constantsαi,j of the cGP(k)-method for the cases

k = 1 andk = 2, and for comparison we describe explicitly the well-known dG(1) approach (see [2]

for more details).

2.1.1. cGP(1)-method.We use the one-point Gaussian quadrature formula witht̂1 = 0 andtn,1 =

tn−1 +
τn

2
. Then, we getα1,0 = −1 and α1,1 = 1 (see [1, 2]). Thus, problem (8) leads to the

following problem for the ”one” pair of unknownsU1
n = uτ(tn−1 +

τn

2
) andP 1

n = pτ(tn−1 +
τn

2
):

Find (U1
n, P

1
n) ∈ V ×Q such that for all(v, q) ∈ V ×Q it holds

(

U
1
n,v

)

Ω
+ τn

2
a(U1

n,v) +
τn

2
n(U1

n,U
1
n,v) +

τn

2
b(v, P 1

n) = τn

2

(

f(tn,1),v
)

Ω
+
(

U
0
n,v

)

Ω

b(U1
n, q) = 0.

(11)

Once we have determined the solutionU
1
n at the midpointtn,1 of the time intervalIn, we get the

solution at the next discrete time pointtn simply by linear extrapolation based on the ansatz (5),
i.e.,

uτ(tn) = 2U1
n −U

0
n, (12)

whereU0
n is the initial value at the time interval(tn−1, tn] coming from the previous time interval

In−1 or the initial valueu0.

If we would replacef(tn,1) by the mean value(f(tn−1) + f(tn))/2, which means that we replace

the one-point Gaussian quadrature of the right hand side by the trapezoidal rule, the resulting

cGP(1)-method is equivalent to the well-knownCrank-Nicolson scheme. The cGP(1)-method is

accurate of order 2 in the whole time interval as it is known for the Crank-Nicolson scheme.

Concerning the pressure approximation, one observes that the second order accuracy holds only

in the midpoints of the time intervals. By means of linear interpolation between the midpoints of

two neighbouring time intervals we get second order accuracy also at the discrete time levelstn.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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2.1.2. cGP(2)-method.Here, we use the 2-point Gaussian quadrature formula with the points
t̂1 = − 1√

3
andt̂2 = 1√

3
. Then, we obtain the coefficients

(αi,j) =

(

−
√
3 3

2
2
√
3−3
2√

3 −2
√
3−3
2

3
2

)

i = 1, 2, j = 0, 1, 2. (13)

Consequently, on the time intervalIn, we have to solve for the two ”unknowns”

(Uj
n, P

j
n) =

(

uτ(tn,j), pτ(tn,j)
)

∈ V ×Q with tn,j := (tn−1 + tn + τnt̂j)/2 for j = 1, 2.

(14)

The corresponding coupled system reads

α1,1

(

U
1
n,v

)

Ω
+ τn

2
a(U1

n,v) +
τn

2
n(U1

n,U
1
n,v) + α1,2

(

U
2
n,v

)

Ω
+ τn

2
b(v, P 1

n) = ℓ1(v)

α2,1

(

U
1
n,v

)

Ω
+ α2,2

(

U
2
n,v

)

Ω
+ τn

2
a(U2

n,v) +
τn

2
n(U2

n,U
2
n,v) +

τn

2
b(v, P 2

n) = ℓ2(v)

b(U1
n, q) = 0

b(U2
n, q) = 0,

(15)

which has to be satisfied for all(v, q) ∈ V ×Q with

ℓi(v) =
τn

2

(

f(tn,i),v
)

Ω
− αi,0

(

U
0
n,v

)

Ω
i = 1, 2. (16)

Once we have determined the solutionsU
1
n,U

2
n at the Gaussian points in the interior of the interval

In, we get the solution at the right boundarytn of In by means of quadratic extrapolation from the
ansatz (5), i.e.,

uτ(tn) = U
0
n +

√
3(U2

n −U
1
n), (17)

whereU0
n is the initial value at the time intervalIn. The cGP(2)-method is accurate of order 3 in

the whole time interval and superconvergent of order 4 in thediscrete time points (see [1, 2]).

2.2. dG(k − 1)-method

Here, the time-discrete velocity and pressure solution is determined in the solution space(uτ, pτ) ∈

Y
k−1
τ

× Ỹ k−1
τ

, wherek ≥ 1. The ansatz for(uτ, pτ) on intervalIn is then analog to (5) with the
difference that the sum starts withj = 1 and the scalar basis functionsφn,j are polynomials of order
k − 1. In this paper, we will concentrate only on the casek = 2, i.e. on the well-known dG(1)-
method. We can derive the following constants fori, j ∈ {1, 2} (see again [1] and [2])

(αi,j) =

(

1
√
3−1
2

−
√
3−1
2

1

)

, (di) =

( √
3+1
2

−
√
3+1
2

)

. (18)

Then, on the time intervalIn, one has to determine the two ”unknowns”(Uj
n, P

j
n) ∈ V ×Q as the

solution of the following coupled system

α1,1

(

U
1
n,v

)

Ω
+ τn

2
a(U1

n,v) +
τn

2
n(U1

n,U
1
n,v) +

τn

2
b(v, P 1

n) + α1,2

(

U
2
n,v

)

Ω
= ℓ1(v)

α2,1

(

U
1
n,v

)

Ω
+ α2,2

(

U
2
n,v

)

Ω
+ τn

2
a(U2

n,v) +
τn

2
n(U2

n,U
2
n,v) +

τn

2
b(v, P 2

n) = ℓ2(v)

b(U1
n, q) = 0

b(U2
n, q) = 0

(19)

which has to be satisfied for all(v, q) ∈ V ×Q with ℓi(·) defined by

ℓi(v) =
τn

2

(

f(tn,i),v
)

Ω
+ di

(

U
0
n,v

)

Ω
i = 1, 2. (20)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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Once we have solved the above system, we obtainuτ andpτ at the timetn by means of the following
linear extrapolation

uτ(tn) =

√
3 + 1

2
U

2
n −

√
3− 1

2
U

1
n and pτ(tn) =

√
3 + 1

2
P 2
n −

√
3− 1

2
P 1
n . (21)

The dG(1)-method is of order 2 in the whole time interval and superconvergent of order 3 in the

discrete time points (see [1, 2]).

3. SPACE DISCRETIZATION BY FEM

After discretizing the Navier-Stokes equations (1) in time, we now discretize the resulting

”In-problems” in space by using the finite element method [10, 11, 12, 13]. In our numerical

experiments, the finite element spacesVh ⊂ V and Qh ⊂ Q are defined by biquadratic and

discontinuous linear finite elements, respectively, on a quadrilateral meshTh covering the

computational domainΩ. Each ”In-problem” for the cGP(k) or the dG(k − 1)-approach has the

structure:

For givenU0
n ∈ V, find(Uj

n, P
j
n) ∈ V ×Q, j = 1, . . . , k, such that

k
∑

j=1

αi,j

(

U
j
n,v

)

Ω
+

τn

2
a(Ui

n,v) +
τn

2
n(Ui

n,U
i
n,v) +

τn

2
b(v, P i

n) = ℓi(v)

b(Ui
n, q) = 0,

(22)

which has to be satisfied for alli = 1, . . . , k and all (v, q) ∈ V ×Q with

ℓi(v) :=
τn

2

(

f(tn,i),v
)

Ω
+ di

(

U
0
n,v

)

Ω
(23)

whereαi,j anddi are the corresponding constants described above.

For the space discretization, all(Uj
n, P

j
n) ∈ V ×Q are approximated by finite element functions

(Uj
n,h, P

j
n,h) ∈ Vh ×Qh, respectively, and the fully discrete ”In-problem” reads:

For givenU0
n,h ∈ Vh, find(Uj

n,h, P
j
n,h) ∈ Vh ×Qh, j = 1, . . . , k, such that it holds

k
∑

j=1

αi,j

(

U
j
n,h

,vh

)

Ω
+

τn

2
a(Ui

n,h,vh) +
τn

2
n(Ui

n,h,U
i
n,h,vh) +

τn

2
b(vh, P

i
n,h) = ℓi(vh)

b(Ui
n,h, qh) = 0

(24)

for all (vh, qh) ∈ Vh ×Qh and all i = 1, . . . , k.

Once we have solved this system, we have computed for each time t ∈ In a finite element

approximationuτ,h(t) ∈ Vh of the time discrete solutionuτ(t) ∈ V which is defined by an

analogous ansatz to (5) where theUj
n ∈ V are replaced by the discrete functionsU

j
n,h ∈ Vh.

In the following, we will write problem (24) as a nonlinear algebraic block system. Let
Sh ⊂ H1

0 (Ω) denote the scalar finite element space for the velocity componentsU j
n, V

j
n ∈ Sh of

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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8 S. HUSSAIN ET AL.

U
j
n,h = (U j

n,h, V
j
n,h) ∈ Vh = S2

h and letφµ ∈ Sh, µ = 1, . . . ,mh, denote the scalar finite element

basis functions ofSh. Then, we define the nodal vectorUj
n = (U j

n, V
j
n) ∈ R

2mh of U
j
n,h =

(U j
n,h, V

j
n,h) ∈ Vh such that

Uj
n,h

(x) =

mh
∑

µ=1

(Uj
n)µφµ(x), V j

n,h
(x) =

mh
∑

µ=1

(V j
n)µφµ(x) ∀ x ∈ Ω. (25)

Similarly for the pressure, letψµ ∈ Qh, µ = 1, . . . , nh, denote the finite element basis functions and
P j

n ∈ R
nh the nodal vector ofP j

n,h ∈ Qh such that

P j
n,h

(x) =

nh
∑

µ=1

(P j
n)µψµ(x) ∀ x ∈ Ω. (26)

Furthermore, we introduce the mass matrixM ∈ R
mh×mh , the discrete Laplacian matrixL ∈

R
mh×mh , the gradient matricesBi ∈ R

nh×mh , i = 1, 2, as

Mν,µ := (φµ, φν)Ω , Lν,µ := a(φµ, φν), (Bi)ν,µ := b(φµe
i, ψν), (27)

and the right hand side vectorsF i
n, G

i
n ∈ R

mh , i = 1, . . . , k, with the components

(F i
n)ν :=

(

f(tn,i), φνe
1
)

Ω
, (Gi

n)ν :=
(

f(tn,i), φνe
2
)

Ω
. (28)

Next, for a given discrete velocity fieldwh ∈ Vh with the nodal vectorw ∈ R
2mh , we define the

matrixN(w) ∈ R
mh×mh as

N(w)ν,µ := n(wh, φµ, φν). (29)

Using the block-matrices and block-vectors

M =

[

M 0

0 M

]

, L =

[

L 0

0 L

]

, N(w) =

[

N(w) 0

0 N(w)

]

, B =

[

B1

B2

]

, F
i
n =

[

F i
n

Gi
n

]

, (30)

the fully discrete ”In-problem” is equivalent to the following nonlineark × k block system:

For given U
0
n ∈ R

2mh , find U
j
n ∈ R

2mh and P j
n ∈ R

nh , j = 1, . . . , k, such that for all
i = 1, . . . , k, it holds

k
∑

j=1

αi,jMU
j
n +

τn

2
LU

i
n +

τn

2
N(Ui

n)U
i
n +

τn

2
BP i

n = diMU
0
n + τn

2
F
i
n,

B
T
U

i
n = 0.

(31)

The vectorU0
n is defined as the finite element nodal vector of the fully discrete solutionuτ,h(tn−1)

computed from the previous time interval[tn−2, tn−1] if n ≥ 2 or from a finite element interpolation

of the initial datau0 if n = 1. In the case of higher Reynolds numbers, we apply additionally an edge

oriented FEM stabilization (EOFEM) [14] for the convective term. This means that we replace the

trilinear formn(w, ·, ·) by a modified formnh(w, ·, ·) such that, in (31), differences will appear only

in the nonlinear matrixN(w).

In the following, we will present the resulting block systems for the cGP(1), cGP(2) and dG(1)

method which are used in our numerical experiments.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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3.1. cGP(1)-method

The problem on time intervalIn reads:

For given initial velocityU0
n = (U0

n, V
0
n), findU1

n = (U1
n, V

1
n) and a pressureP 1

n such that

(

M + τn

2
L+ τn

2
N1

)

U1
n + τn

2
B1P

1
n = τn

2
F 1
n +MU0

n
(

M + τn

2
L+ τn

2
N1

)

V 1
n + τn

2
B2P

1
n = τn

2
G1

n +MV 0
n

BT
1 U

1
n +BT

2 V
1
n = 0

(32)

whereN1 := N(w1) with w
1 := (U1

n, V
1
n)

T denotes the nonlinear convection operator. Once we
have determined the solutionU1

n, V 1
n we compute the nodal vectorU0

n+1, V 0
n+1 of the fully discrete

solutionuτ,h at timetn by using the following linear extrapolation

u
τ,h(tn) ∼ U0

n+1 = 2U1
n − U0

n, v
τ,h(tn) ∼ V 0

n+1 = 2V 1
n − V 0

n. (33)

3.2. cGP(2)-method

The6× 6 block system on time intervalIn reads:

For given initial velocityU0
n = (U0

n, V
0
n), findU1

n, U
2
n, V

1
n, V

2
n andP 1

n, P
2
n such that

(3M + τnL+ τnN1)U
1
n +

(

2
√
3− 3

)

MU2
n + τnB1P

1
n = τnF

1
n + 2

√
3MU0

n
(

−2
√
3− 3

)

MU1
n + (3M + τnL+ τnN2)U

2
n + τnB1P

2
n = τnF

2
n − 2

√
3MU0

n

(3M + τnL+ τnN1)V
1
n +

(

2
√
3− 3

)

MV 2
n + τnB2P

1
n = τnG

1
n + 2

√
3MV 0

n
(

−2
√
3− 3

)

MV 1
n + (3M + τnL+ τnN2)V

2
n + τnB2P

2
n = τnG

2
n − 2

√
3MV 0

n

BT
1 U

1
n +BT

2 V
1
n = 0

BT
1 U

2
n +BT

2 V
2
n = 0

(34)

whereNi := N(wi) with w
i = (U i

n, V
i
n)

T , i = 1, 2, denotes the nonlinear convection operator
associated with the velocity approximation evaluated at the i-th Gauß point on the time interval.
Once we have determined the solution(U1

n, U
2
n, V

1
n, V

2
n), we compute the nodal vectorsU0

n+1 and
V 0

n+1 of the fully discrete solutionuτ,h at timetn by using the following quadratic extrapolation

u
τ,h(tn) ∼ U0

n+1 = U0
n +

√
3(U2

n − U1
n), v

τ,h(tn) ∼ V 0
n+1 = V 0

n +
√
3(V 2

n − V 1
n). (35)

To get a higher order pressure at timetn, particularly for the computation of lift, drag, etc., we

perform a special post processing as described in [2].

3.3. dG(1)-method

The analogous6× 6 block system on the time intervalIn reads:

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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10 S. HUSSAIN ET AL.

For given initial velocityU0
n = (U0

n, V
0
n), find U1

n, U
2
n, V

1
n, V

2
n andP 1

n, P
2
n such that

(2M + τnL+ τnN1)U
1
n +

(√
3− 1

)

MU2
n + τnB1P

1
n = τnF

1
n +

(√
3 + 1

)

MU0
n

(

−
√
3− 1

)

MU1
n + (2M + τnL+ τnN2)U

2
n + τnB1P

2
n = τnF

2
n +

(

−
√
3 + 1

)

MU0
n

(2M + τnL+ τnN1)V
1
n +

(√
3− 1

)

MV 2
n + τnB2P

1
n = τnG

1
n +

(√
3 + 1

)

MV 0
n

(

−
√
3− 1

)

MV 1
n + (2M + τnL+ τnN2)V

2
n + τnB2P

2
n = τnG

2
n +

(

−
√
3 + 1

)

MV 0
n

BT
1 U

1
n +BT

2 V
1
n = 0

BT
1 U

2
n +BT

2 V
2
n = 0

(36)

where againNi := N(wi) with w
i = (U i

n, V
i
n)

T , i = 1, 2, denotes the nonlinear convection
operator associated with the velocity approximation evaluated at thei-th Gauß point on the time
interval. Once we have determined the solution(U1

n, U
2
n, V

1
n, V

2
n), we compute the nodal vectors

U0
n+1,V 0

n+1 andP 0
n+1 as the left side limit of the fully discrete solutionuτ,h andpτ,h at timetn by

using the following linear extrapolation

u−
τ,h

(tn) ∼ U0
n+1 =

√
3+1
2

U2
n −

√
3−1
2

U1
n,

v−
τ,h

(tn) ∼ V 0
n+1 =

√
3+1
2

V 2
n −

√
3−1
2

V 1
n,

p−
τ,h

(tn) ∼ P 0
n+1 =

√
3+1
2

P 2
n −

√
3−1
2

P 1
n.

(37)

The resulting nonlinear saddle point problems from (32), (34) or (36) are solved by using a

Newton-multigrid method with Vanka type smoothers (see [2] for details). A detailed analysis

regarding the solver behavior (similar to [3]) will be part of the forthcoming paper in [15]. The

solution approach is based on an outer nonlinear loop which has to solve a linear system in each

nonlinear step. The associated linear subproblems are solved by means of a geometrical multigrid

method with a local pressure Schur complement smoother (see[5, 16, 3, 17]), resp., Vanka-like

smoother. The corresponding linear systems in each time interval(tn−1, tn], are6× 6 block systems

in the case of the cGP(2) and dG(1) approach, and3× 3 block systems for the cGP(1)-method,

respectively, as described before.

4. NUMERICAL RESULTS

Analytical test cases to analyze the order of convergence have been considered in [2]. Here,

we perform nonstationary simulations for more complex flow configurations to demonstrate the

temporal accuracy and efficiency of the presented higher order time discretization schemes for

prototypical test cases of benchmarking character. To thisend, we continue the work which had

been started by one of the authors in [6], where different time stepping schemes for two problems,

namelyflow around cylinderandflow through a Venturi pipe, were analyzed. First, we consider the

flow around cylinderconfiguration which has been described in [4]. Here, we will concentrate only

on the nonstationary behavior of the flow patterns with periodic oscillations and examine the ability

of the different time discretization schemes (combined with the same FEM discretization in space)

to capture the dynamics of the flow.

As a second test case, we consider the nonstationary behavior of a higher Reynolds number flow

through a Venturi pipe which has many real life and industrial applications. If the inflow speed from

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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the inlet is sufficiently high, then due to the Bernoulli principle, the narrow section in the middle of

the pipe produces a low pressure which creates a flux through the upper part of the small pipe. The

objective of this simulation is to control the instantaneous and mean flux through this device.

4.1. Nonstationary flow around cylinder

The flow problem related to the ‘flow around cylinder’ configuration [4] is characterized as follows:

• (laminar) nonstationary Navier-Stokes equations atRe = 100

• parabolic inflow withUmax = 1.5

• time interval:[t0, t0 + T ] = [0, 10], wheret0 corresponds to the fully developed solution for

each mesh level

• space-discretization:Q2-elements for velocity and discontinuousP1-elements for the pressure

on a quadrilateral mesh (Q2/P
disc
1 )

• time-discretization: cGP(1), cGP(2), dG(1)

• no stabilization for space-discretization

Here, the domainΩ consists of a channel of heightH = 0.41 and lengthL = 2.2 having

a circular cylinder located at(0.2, 0.2) with diameterD = 0.1, placed at right angle to the

direction of the fluid (see Figure1). Further details regarding the settings can be found on

http://www.featflow.de/en/benchmarks/cfdbenchmarking.html.

The maximum velocityUmax = 1.5 yieldsRe = 100 which leads to periodically oscillatory time-

dependent vortex shedding behind the cylinder. For this range of Reynolds numberstogether with

theQ2/P
disc
1 discretization, our results have shown that there is no needfor stabilization of the

convective terms.

Quantities of physical interest: The examined accuracy of the benchmark crucially depends on

the following quantities computed on the boundaryS of the cylinder

FD =

∫

S

(ρν
∂ut
∂n

ny − pnx)dS, and particularly FL = −

∫

S

(ρν
∂ut
∂n

nx + pny)dS (38)

representing the total forces in the horizontal and vertical directions, respectively. The resulting drag

and lift coefficients are (withρ = 1 andUmax = 1.5)

CD =
2FD

ρU2
meanD

, CL =
2FL

ρU2
meanD

. (39)

Furthermore, the pressure drop on the cylinder which is defined as

∆p = pA − pB, (40)

whereA(0.15, 0.2) andB(0.25, 0.2) are points on the boundary of the cylinder, is also of interest.

Beside these quantities, we also compare the accuracy of thedifferent time discretization schemes

by computing thev velocity at the pointP (0.4, 0.2) near the obstacle.

Figure2 shows the initial coarse mesh (level 1), which will be uniformly refined, and Figure3

presents for different space mesh levels the number ’#EL’ ofelements and the total number ’#DOF’

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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12 S. HUSSAIN ET AL.

Figure 1. Geometry for theflow around cylinderconfiguration in 2D.

Figure 2. Coarse mesh forflow around cylinder.

Lev. #EL #DOF(total)

2 520 5 928

3 2 080 23 296

4 8 320 92 352

Figure 3. Size of the different systems in space.

of degrees of freedom where the finite element discretization is carried out by using the described

biquadraticQ2-element for velocity and discontinuousP1-element for the pressure.

In order to compare the accuracy of the different time discretizations, the flow is started from a

fully developed solution, that means the simulation on the same mesh with small time step had been

performed until a fully periodical flow behavior had been reached, at timet0, and the simulation

is performed until T=10 using different time discretization methods for various uniform time step

sizesτn := τ. After T=10, all the introduced quantities are plotted and analyzed in detail. To this

end, in addition to the global picture of all quantities fromtimet0 to t0 + 10, these quantities are also

zoomed in the last unit from T=9 to T=10. Since the results obtained from the Crank-Nicolson and

cGP(1)-method are almost identical as expected, we show theresults for the cGP(1) only together

with the cGP(2) and dG(1)-method. All the time discretization schemes are started from the same

initial solution (fully developed velocity field) and pressure and the simulations are performed with

the same time step sizes. First, we show the results for mesh level 4. Next, we demonstrate that the

results are already grid independent by showing them for different (space) levels for the cGP(2)-

method, so that higher levels are not required.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
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Figure 4.v-velocity at pointP (0.4, 0.2) for level 4 for differentτ, using cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method (from T=9 until T=10 after starting from T=0).
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Figure 5. Pressure difference∆p = pA(0.15, 0.2) − pB(0.25, 0.2) for level 4 for differentτ, using cGP(1)
(top), dG(1) (middle) and cGP(2) (bottom) method.
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Figure 6. Lift coefficient for level 4 for differentτ, using cGP(1) (top), dG(1) (middle) and cGP(2) (bottom)
method.
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Figure 7. Lift coefficient for differentτ, using cGP(2)-method at (space) mesh level 2, 3 and 4.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2011)
Prepared usingfldauth.cls DOI: 10.1002/fld



GALERKIN TIME DISCRETIZATIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 17

Next, we perform a more careful analysis on the basis of the plots already (partially) shown in

Figure4 to 7. To this end, we will mainly concentrate on the values of the lift coefficient (CL)

because this quantity has the larger amplitude in comparison with others. TableI andII demonstrate

the ’deviation in percentage of the curves per cycle’ for thecorresponding time step sizes from the

reference values, i.e., ∆x
30×0.33

× 100%, where∆x is the total deviation after T=10 (with length of

period≈ 0.33, number of cycles until T=10≈ 30). The reference values are taken from the higher

order cGP(2) scheme with very small time stepτ = 1/200 (keep in mind that all tests started from

the same start solution and that we perform approximately 30oscillations until T=10). The different

time discretization schemes are then compared in the sense that allows large time steps to gain the

desired accuracy.

τ cGP(1) cGP(2) dG(1)

1/100 0.32% 0.00% 0.01%

1/50 1.33% 0.01% 0.05%

1/25 0.12% 0.39%

1/20 0.29% 0.71%

1/15 0.85% 1.61%

1/10 0.98%

Table I. Deviation of the lift coefficient in percentage
for space level=4.

τ cGP(1) cGP(2) dG(1)

1/100 0.32% 0.00% 0.01%

1/50 1.32% 0.01% 0.05%

1/25 0.12% 0.37%

1/20 0.29% 0.68%

1/15 0.85% 1.51%

1/10 0.85%

Table II. Deviation of thev-velocity at point
P(0.4, 0.2) in percentage for space level=4.

In the next TableIII , we conclude the maximum allowed time step sizes to gain comparable results

with an error of less than 1% per time period at a given space level for the corresponding time

discretization schemes.

Lev cGP(1) cGP(2) dG(1)

2 1/100 1/10 1/20

3 1/100 1/10 1/20

4 1/100 1/10 1/20

factor 10 1 2

Table III. Maximum allowed timestep sizes to obtain deviation of less than 1% per time period at given space
level for cGP(1) vs. cGP(2) vs. dG(1).

Summarizing the results from TableIII , we can see that the corresponding time step sizes to gain

the accuracy with an error of less than1% per time period are two times larger for the cGP(2)- than

for the dG(1)-method and ten times larger than for the cGP(1)-method.
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Finally, we want to show all the presented time discretization schemes with those time step sizes

for which the lift coefficient(CL) values are almost identical(≤ 0.5%) after T=10, resp., approx 30

periods. Figure8 depicts the corresponding lift coefficients, for 10 time units. We also zoom these

quantities in the last time unit (from T=9 until T=10) to see the (very small) differences more clearly

in Figure9.
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Figure 8. Lift coefficient for cGP(1) vs. cGP(2) vs. dG(1) at space level 4.
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Figure 9. Lift coefficient for cGP(1) vs. cGP(2) vs. dG(1) at space level 4.
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4.2. Nonstationary flow through a Venturi pipe

The test configuration for the ‘flow through a Venturi pipe’ which is considered here is slightly

changed from the framework which has been already used in [5, 6]. Figure10 shows the geometry

and the coarse mesh (level 1) used for this simulation. The coarse mesh is recursively refined by

joining opposite midpoints. The total length of the Venturipipe isL = 42, the height of the Venturi

pipe at the in/outlet isH = 5, the height in the most narrowing part isHi = 1 and the width of the

small upper channel isWi = 0.8. The upper, lower walls of the pipe and the sides of the small upper

channel are subjected to the no slip boundary conditions. Atthe inlet (left part of the boundary), an

inflow of constant velocityU = 1 is prescribed while natural boundary conditions are prescribed at

the outlet (right part of the boundary) and at the small upperin/outlet. The value of the kinematic

viscosity is set toν = 10−2 and the density of the fluidρ = 1. TheReynoldsRe numberdetermining

the flow properties may be defined as

Re =
UHi

ν
,

whereU is the maximum velocity through the narrow section in the pipe andL is the height of this

section. The resulting maximum velocityU ≈ 7.0 yieldsRe ≈ 700. The resultingReynolds number

produces complex flow patterns which are oscillating in space and time. As we explained before,

the aim of the simulation is to control the flux through the upper channel. Beside this interesting

flow quantity we also compute thev-velocity at the pointP (16.0, 5.4) (top of the small channel) and

P (27.05, 2.5) (right of the pipe) and the pressure at the pointP (16.0, 2.5) in the middle of the pipe to

compare the accuracy of all the presented time discretization schemes. Figure11gives an overview

of the size of the problem on different space mesh levels where the finite element discretization is

carried out by using the biquadraticQ2-element for the velocity and discontinuousP1-element for

the pressure. Here, we employ the edge oriented jump FEM stabilization approach (see [14]) with

stabilization parameterγ = 0.1. In order to compare the accuracy of different time discretizations,

Figure 10. Coarse mesh for the Venturi pipe flow.

Lev. #EL #DOF(total)

3 384 4 466

4 1 536 17 378

5 6 144 68 546

6 24 576 272 258

Figure 11. Size of the different systems in space.

the flow is started on each mesh level from the corresponding Stokes solution at timet = 0, and the

simulation is performed until T=30 using different time discretization methods for different time

step sizesτ. At T=30, all the quantities of interest are plotted and analyzed in detail. Since the results

obtained from Crank-Nicolson and cGP(1)-method are almostidentical as expected, therefore we

show the results for cGP(1) only together with the cGP(2) anddG(1)-method.
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Figure 12. Flux through the upper inlet/outlet at space level 5, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method.
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Figure 13. Pressure at pointP (16.0, 2.5) at space level 5, using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method.
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Figure 14.v-velocity at pointP (27.05, 2.5) at space level 5, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method.
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We observe from Figure12 to 14 that the cGP(2)-method captures the dynamics of the flow at

quite large time step sizes as expected. The results here on different mesh levels look somewhat more

different due to the higher Reynolds number. As in the case ofthe cylinder before, we demonstrate

in the same way the maximum allowed time step sizes which leadto very similar results in the

’picture norm’. TableIV shows these time step sizes for different space mesh levels.

Lev cGP(1) cGP(2) dG(1)

3 1/50 1/5 1/10

4 1/50 1/5 1/10

5 1/100 1/10 1/20

factor 10 1 2

Table IV. Maximum allowed time step sizes which lead (almost) to same results at given space level.

Accordingly, we show the corresponding plots associated tothe time steps in Figure15.
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Figure 15. Flux (top)/pressure (middle)/v-velocity (bottom) at pointP (27.05, 2.5) at space level 5, using the
cGP(1) vs. dG(1) vs. cGP(2)-method with max. allowed time steps.
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Finally, we demonstrate how the solution patterns develop in the last 13 time units from T=18 to

T=30. Figure16 illustrates the velocity at space level 5.

Figure 16. Visualization of the velocity magnitude in the Venturi pipe at space level 5 for 13 subsequent time
units.
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5. CONCLUSION

We have described in detail the application of the class ofcontinuousGalerkin-Petrov and

discontinuousGalerkin time discretization schemes to the nonstationaryincompressible Navier-

Stokes equations. The first higher order members of these classes, namely the cGP(2)- and the

dG(1)-method, are superconvergent of 4th and 3rd order at the endpoints of the time intervals,

respectively. The spatial FEM discretization has been carried out by using conforming biquadratic

elements for velocity and discontinuous linear elements for pressure on a quadrilateral mesh leading

to 3rd order accuracy in space for theL2-norm of the velocity. The discretized systems of nonlinear

equations are linearized by means of the Newton method, and the associated linear systems have

been solved using a geometrical multigrid method with a Vanka-type preconditioned GMRES

method as smoother.

For the evaluation of our approach, we performed numerical simulations for two nonstationary

benchmarking flow configurations in order to compare the performance of the various temporal

discretizations. For these two test problems, the classical flow around cylinderconfiguration and the

nonstationaryflow through a Venturi pipe, we can summarize as a result that the cGP(2)-method

allows approximately for a 10 times larger time step size than the cGP(1)-method (or Crank-

Nicolson scheme) to achieve the same accuracy, while the dG(1)-method allows approximately

for a factor of 5. Since the corresponding analysis (see [15]) of the numerical costs for the cGP(2)-

and dG(1)-method shows that the arising nonlinear block-systems in the implicit time discretization

schemes can be solved very efficiently with nearly optimal complexity, this higher order approach

is clearly advantageous in comparison to classical second order time stepping schemes.
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